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Abstract

Unsupervised domain adaptation (UDA) enables trans-

ferring knowledge from a related source domain to a fully

unlabeled target domain. Despite the significant advances

in UDA, the performance gap remains quite large between

UDA and supervised learning with fully labeled target data.

Active domain adaptation (ADA) mitigates the gap under

minimal annotation cost by selecting a small quota of target

samples to annotate and incorporating them into training.

Due to the domain shift, the query selection criteria of prior

active learning methods may be ineffective to select the most

informative target samples for annotation. In this paper, we

propose Transferable Query Selection (TQS), which selects

the most informative samples under domain shift by an en-

semble of three new criteria: transferable committee, trans-

ferable uncertainty, and transferable domainness. We fur-

ther develop a randomized selection algorithm to enhance

the diversity of the selected samples. Experiments show that

TQS remarkably outperforms previous UDA and ADA meth-

ods on several domain adaptation datasets. Deeper analy-

ses demonstrate that TQS can select the most informative

target samples under the domain shift.

1. Introduction

Wide attention has been paid to Unsupervised Domain

Adaptation (UDA) [11, 42], which adapts a model learned

in the labeled source domain to the target domain with only

unlabeled data. However, UDA still falls far in accuracy be-

hind its supervised learning counterpart [37, 3]. As shown

in [19], the “market value” of target labeled data is much

more pronounced than that of source labeled data, and even

a few target labeled data can improve Domain Adaptation

(DA) models significantly. Thus, a promising DA paradigm

is to informatively annotate a small quota of target data that

maximally benefits the DA model. This learning paradigm

is known as Active Domain Adaptation (ADA) [27].

Pool-based active learning [33] adopts a query selection
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Figure 1. Examples of three kinds of target data. The normal row

is similar to source images and can be classified correctly by UDA

methods. The need annotation row is quite different from source

images and cannot be recognized by UDA, which needs manual

annotation. The outliers row shows outlier samples like black im-

ages or noisy objects, which are not informative for classification.

strategy to select the most useful data for training from a

large unlabeled data pool, which can be incorporated into

DA to maximize the revenue of the small labeling budget.

Previous active learning methods mainly apply three query

selection strategies: committee, uncertainty, and represen-

tativeness [33], which respectively query the samples with

maximal disagreement by a classifier committee [4, 34], of

the highest uncertainty [15, 12], and more distinctive from

labeled samples [13, 35]. While successful in general for

single-domain active learning, these traditional criteria are

not transferable. As we explained later, these criteria fail to

select informative target samples under the domain shift.

The selection criterion under domain shift is the major

challenge of Active Domain Adaptation (ADA). In this pa-

per, we propose Transferable Query Selection (TQS) by

transferable committee, transferable uncertainty, and trans-

ferable domainness. The ‘transferable’ here means that the

criteria are specially designed to mitigate the domain gap.

To build a transferable committee, we enforce multiple clas-

sifiers to only pass target low-density areas by training with

adversarial samples. Based on the multi-classifier architec-

ture of the transferable committee, we compute the trans-
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Table 1. Comparison of prior Active Learning (AL) and ADA methods in three dimensions: committee, uncertainty, and representativeness.

The main difference is that the existing criteria are non-transferable while our TQS is designed as a transferable criterion for ADA.

Method
Non-Transferable Transferable

Outliers

Committee Uncertainty Representativeness Committee Uncertainty Representativeness

QBC [34] ✓ ✗ ✗ ✗ ✗ ✗ ✗

UCN [15] ✗ ✓ ✗ ✗ ✗ ✗ ✗

Cluster [43] ✗ ✗ ✓ ✗ ✗ ✗ ✗

ADMA [13] ✗ ✓ ✓ ✗ ✗ ✗ ✗

AADA [35] ✗ ✓ ✓ ✗ ✗ ✗ ✗

TQS (ours) ✗ ✗ ✗ ✓ ✓ ✓ ✓

ferable uncertainty from the ensemble of multiple classi-

fiers to reduce the variance of the uncertainty. We further

adopt the margin function to assess uncertainty, which is

more discriminative and stable. Transferable domainness

simultaneously decides whether a target sample is an out-

lier and measures its distinctiveness if it is not an outlier.

The three transferable criteria are complementary to form a

unified criterion that selects the most informative samples.

We also propose a randomized selection mechanism to in-

crease sample diversity. In summary:

• We propose Transferable Query Selection(TQS), a

novel query selection criterion for active domain adap-

tation, which is an integrated ensemble of transferable

committee, transferable uncertainty, and transferable

domainness. We demonstrate that the three criteria are

complementary to enable informative query selection.

• We further design a randomized selection mechanism

to increase sample diversity and prevent different se-

lected samples from providing redundant information.

• Experimental results on several DA benchmarks show

that the proposed TQS criterion selects the most infor-

mative target samples and achieves higher target do-

main accuracy than unsupervised domain adaptation,

active learning, and active domain adaptation methods.

2. Related Work

Domain Adaptation (DA). One of the DA paradigms is

Unsupervised Domain Adaptation (UDA) where no labeled

data are available in the target domain. Early UDA methods

minimize the marginal distribution distance [39, 20], while

adversarial learning based methods [38, 10, 31, 21] gener-

ally achieve stronger performance. However, UDA still per-

forms worse than its supervised learning counterpart [37, 3].

Labeling small target data is a practical trade-off of fully su-

pervised learning and unsupervised domain adaptation.

Our work is also related to Semi-Supervised Domain

Adaptation (SSDA) [30, 6, 22, 23] and Few-Shot Domain

Adaptation (FSDA) [24] that allow a few target labeled data.

SSDA and FSDA assume that a few labeled data are pas-

sively given beforehand, while ADA actively selects the

most informative samples to annotate. Due to their orthog-

onality to ADA, SSDA and FSDA can be readily applied to

the samples actively selected and annotated by ADA to fur-

ther boost the performance with the limited labeling budget.

Active Learning (AL). Active learning methods select

which sample to annotate instead of providing labeled data

beforehand [33]. They can be mainly categorized into query

by committee, by uncertainty, and by representativeness.

Query by committee methods use Gibbs training [34, 9],

random sampling [4] or Dropout [8] to generate diverse

classifiers and measure their disagreement. Early uncer-

tainty methods are based on SVM [32, 36], confidence [18]

or margin [1, 7]. Recently, methods based on deep networks

estimate uncertainty by confidence [41], entropy minimiza-

tion [13], best-vs-second-best [15] and mutual informa-

tion [17]. Representativeness methods [43, 5, 25] mainly

pre-cluster unlabeled samples, in which [13] achieves state-

of-the-art performance through the distinctiveness of target

samples on multi-layer feature maps. However, all the cri-

teria used in previous AL works are designed for the single-

domain situation. When exposed to the domain shift, such

non-transferable criteria may not select the most informa-

tive samples for annotation.

Active Domain Adaptation (ADA). ADA was firstly

addressed by a two-phase training [27] or confidence-based

metric [29], but they only fall into shallow learning regimes.

Deep ADA method [35] adopts entropy as uncertainty and

domain similarity as representativeness. However, the un-

calibrated entropy is unreliable across domains and the do-

main similarity is indiscriminative under domain shift [44],

hence both are not transferable. [14] applies deep ADA to

driving but directly uses classic query selection criteria.

With the above discussion, we conclude that all previous

active learning and active domain adaptation methods use

non-transferable criteria, which means that the criteria suf-

fer from the domain gap and become inaccurate when ap-

plied to the target domain. Also, prior criteria fail to detect

non-informative outliers. Instead, as discussed below, the

three criteria in TQS are specially designed to mitigate the

domain gap. We summarize the difference between TQS

and prior methods in Table 1.
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3. Approach

In Active Domain Adaptation (ADA), we have a labeled

source domain Ds = {(xs, ys)} and an unlabeled target do-

main Dt = {xt} drawn from different distributions. We

follow the standard domain adaptation setting [10] where

the source and target domains share identical label space.

We further have a labeling budget B in the target domain,

which is the maximum number of samples we can anno-

tate by human experts. The goal of this work is to design a

transferable criterion for ADA that selects and annotates the

B most informative samples to maximize the target domain

accuracy.

3.1. Transferable Committee (TQSc)

The original query by committee methods adopt multiple

classifiers and seek samples maximally disagreed by these

classifiers [34]. However, they need to train the classifiers

on labeled data that are from the source domain in the ADA

setting. So the classifiers may pass high-density areas of the

target domain due to the domain shift. Then different com-

mittees may select extremely different sets of target sam-

ples, e.g., committee C1, C2 and committee C3, C4 select

entirely different samples in Figure 2. So high randomness

exists in sample selection, which may lead the original com-

mittee criterion to select non-informative target samples.
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Figure 2. The top left figure shows that source classifiers may pass

target high-density areas. Two different committees C1, C2 and

C3, C4 disagree on red samples and orange samples respectively,

so they select different sets of target samples. The two bottom fig-

ures show that we enforce the predictions of original and adversar-

ial samples to be consistent, which gradually pushes the classifiers

to low-density areas. In the top right figure, after adversarial train-

ing, different committees C1, C2 and C3, C4 select a similar set of

target samples, which are more likely to be informative.

To mitigate the randomness caused by different commit-

tees in query selection, we enforce that the classifiers should

not pass through target high-density areas. To this end, we

slightly perturb each target sample and make the predictions

of the perturbed samples stay the same. The number of per-

turbations is exponential to the dimension of the data, which

is inefficient to sample. So we select the perturbation that

mostly changes the prediction, known as adversarial sam-

ples. We denote the M classifiers by C1, C2, . . . , CM and

the feature extractor as F . The loss Lcom for generating the

proposed transferable committee can be defined as

Lcom =
M
∑

m=1

E
xt∼Dt

[

max
|x′

t−xt|≤ǫ

∣

∣Cm(F (xt))− Cm(F (x′
t))

∣

∣

]

(1)

where ǫ is the maximum perturbation allowed and the per-

turbed sample x′
t is learned to maximize the prediction dis-

crepancy from xt. With the above loss, we can increase the

consistency between different committees, making it more

probable to select the most informative samples. Enforc-

ing consistent prediction between adversarial samples can

improve uncertainty estimation, which further enhances the

transferability of the uncertainty criterion. For each target

sample x, we compute Qc(x), the transferable committee

criterion (TQSc) by the disagreement of M classifiers:

Qc(x) =

√

√

√

√

∑M

m=1

∥

∥

∥
Cm(F (x))− 1

M

∑M

m′=1 Cm′(F (x))
∥

∥

∥

M
(2)

We use standard deviation to measure the disagreement of

predictions, which lets Qc stay stably in the range [0,
√
2
2 ].

We normalize it into range [0, 1] by further multiplying
√
2.

3.2. Transferable Uncertainty (TQSu)

Existing active learning criteria measure the uncertainty,

e.g. entropy, based on a single classifier. But we find that

the uncertainty estimated by a single classifier suffers from

large variance and it leads to unreliable queries. As shown

in Figure 3, there are different classifiers well separating

two source classes. But due to the domain gap, a target

sample can lie on the decision boundary for one classifier

(meaning that it has high uncertainty) while being far from

the decision boundary for another classifier. Thus, different

source classifiers have different uncertainties on the target

samples, causing a large variance if using a single classi-

fier for the uncertainty estimation. When using the ensem-

ble of multiple classifiers, only samples nearest to all deci-

sion boundaries have high uncertainty. These samples are

extremely ambiguous for the source classifiers and anno-

tating them is valuable to reduce the ambiguity. Thus, we

compute the transferable uncertainty based on the multi-

ple classifiers of the transferable committee in TQSc. The

cross-entropy loss for the K-way classification of M clas-

sifiers corresponds to

Lclass =
M
∑

m=1

E
(xs,ys)∼Ds

[

−
K
∑

k=1

✶[k=ys] log
(

Ck
m(F (xs))

)

]

(3)
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The M classifiers are initialized with different random ini-

tializations to ensure diversity. Unlike most previous works

that use entropy to estimate uncertainty, we use the margin

of the highest and the second-highest probability in the pre-

dicted class distribution ŷ. Note that with more classes, the

maximum value of entropy increases while the margin stays

in the range [0, 1]. Thus, if normalizing entropy into [0, 1],
the margin is more sensitive than entropy when only a small

portion of classes have high probabilities, which is common

for uncertain samples. Based on the multiple classifiers and

the margin function, we define the transferable uncertainty

criterion Qu(x) for each target sample x as

Qu(x) =

M
∑

m=1

[

1−
(

maxi ŷ
i
m −maxj|j 6=argmaxk ŷk

m
ŷjm

)]

M

(4)

where ŷm = Cm(F (x)) is the class distribution predicted

by classifier Cm and ŷim is probability of the ith class for

x. We use minus margin since smaller margin means higher

uncertainty. The transferable uncertainty only assigns high

uncertainty to most ambiguous samples that are disagreed

by multiple classifiers, which reduces the variance of uncer-

tainty estimation for the target data under the domain shift.

It reuses the multiple classifiers of our transferable commit-

tee and introduces no more computational and storage costs.

source target ensemble marginal confidence

Figure 3. The left shows two classes of source samples (blue and

green) and unlabeled target samples (gray). Four source classifiers

are derived. The right shows the overall uncertainty of target sam-

ples estimated by four classifiers, where redder color means larger

uncertainty. Only samples nearest to all decision boundaries have

high uncertainty, so multiple classifiers of our transferable com-

mittee can select the most uncertain samples under domain shift.

3.3. Transferable Domainness (TQSd)

Recent active learning or ADA methods [13, 35] con-

sider samples with higher distinctiveness from the source to

capture the unique part in the target domain. However, as

shown in Figure 4(a), we find that outliers exist in the target

domain, which are useless or even harmful for target clas-

sification. When the domain shift is on, both normal target

samples disjoint from the source domain and target outliers

are far from the source domain. Thus, prior distinctiveness

measures cannot discriminate target-specific samples from

outliers and may select outliers to waste the labeling budget.

In light of this finding, we design transferable domain-

ness, which assesses how private each sample to the target

(a) Outlier illustration
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(b) Density of D’s output

Figure 4. (a) Plot of source (◦) and target (+) samples. Dotted lines

indicate the best linear classifier to discriminate source from tar-

get. The dotted ellipses highlight the outliers. (b) The density of

domain discriminator D’s output for normal samples and outliers.

The output of D is continuously distributed in the range [0, 1] in-

stead of concentrated on 0 and 1 since source and target samples

are not perfectly separable and we use a one-layer classifier. The

similar observation is also found in [44].

domain with consideration of outliers. We employ a domain

discriminator D trained to classify whether a sample is from

the source domain or target domain, with the following loss:

Ldom =− E(xs,ys)∼Ds
[log (1−D(F (xs)))]

− Ext∼Dt
[log (D(F (xt)))]

(5)

with label 0 for source and label 1 for target. Unlike the

existing ADA method [35] which trains D and F adversar-

ially, we do not back-propagate Ldom to F as it may spoil

the quality of F [44]. D’s output reflects the probability of

a sample belonging to the target domain. We plot in Fig-

ure 4(b) the density of D’s output for normal target samples

and outliers on Office-Home dataset [40]. The outliers here

are detected by outlier detection methods [2] with target la-

bels (just for this showcase) and verified manually. We can

observe that outliers have clearly higher D outputs.

With the above analysis, we can conclude that the ex-

tremely low D’s output means that the sample is close to the

source domains, and the extremely high D’s output means

that the sample is likely to be an outlier. So both sam-

ples with extremely low or high D’s output should not be

selected. Based on this conclusion, to derive domainness

from the D’s output, we need a function with a bell shape

and with constrained values. So we use the Gaussian den-

sity function to define the transferable domainness Qd(x)
for each target sample x as

Qd(x) =
1

σ
√
2π

exp

(

− (D(F (x))− µ)
2

2σ2

)

(6)

where 0 ≤ µ ≤ 1. Qd based on Gaussian density is in the

range [0, 1] and has a nice property for measuring domain-

ness. For samples with D’s output lower than µ, increas-

ing D’s output increases the domainness, because higher

D’s output means that the sample is closer to the target do-

main and is more likely to represent the target unique part.

For samples with D’s output higher than µ, increasing D’s
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Figure 5. The three criteria are complementary. (a) Source samples and source decision boundary. (b) Samples selected by the transferable

committee, which are disagreed by classifiers; (c) Samples selected by transferable uncertainty, which are close to all decision boundaries;

(d) Samples selected by transferable domainness, where red samples are selected to cover target domain while pink outliers are removed.

output decreases the domainness, because we regard target

samples far from the source domain (with D(F (x)) close to

1) as outliers and assign them with low domainness. We can

control µ to decide a soft separation between inliers and out-

liers. We can tune σ to control the difference between the

largest domainness (D(F (x)) = µ) and the smallest one

(D(F (x)) = 0 or 1), which controls the extent we aim to

filter outliers. In the experiments, we find that a fixed set of

µ and σ work well for all the datasets.

3.4. Transferable Criterion for Query Selection

We integrate transferable committee TQSc, transferable

uncertainty TQSu, and transferable domainness TQSd into

a unified transferable query selection (TQS) criterion Q(x):

Q(x) = Qc(x) +Qu(x) +Qd(x). (7)

We do not impose trade-offs between the three criteria since

the three criteria are all in range [0, 1] and empirical results

show that adding trade-offs does not introduce much higher

accuracy. Our three criteria are complementary to address

query selection in ADA. (1) Samples with high Qu and Qc

can also be outliers as the prediction on outliers is random,

while Qd can help eliminate these outliers. (2) Qd can only

select target unique samples but some of them are already

classified correctly by source classifiers, while Qu and Qc

can prioritize those more informative samples. (3) Qu and

Qc share multiple diverse classifiers in an ensemble, where

Qu provides Lclass to train diverse classifiers required by Qc

while Qc provides Lcom to improve the prediction required

by Qu. As showcased in Figure 5, samples selected by each

criterion have a large disjoint part.

The architecture of the proposed ADA approach based

on TQS is shown in Figure 6. Instead of using C1, ..., CM ,

we use another classifier C purely trained with classification

loss for prediction to remove the influence of Equation (1):

L =− E
(xs,ys)∼Ds

[

K
∑

k=1

✶[k=ys] log
(

C
k(F (xs))

)

]

− E
(xt,yt)∼Dt

[

✶[IQ(xt)
]

K
∑

k=1

✶[k=yt] log
(

C
k(F (xt))

)

]

(8)

IQ(x) is an indicator, which is true when the target sample

x is selected by the criterion Q(x) and false otherwise. yt
is only annotated for samples with IQ being true, which are

added to the training set for learning classifier C. Similarly,

we use these data to train the M classifiers C1, . . . , CM . So

the loss in Equation (3) can be iteratively extended as

L′
class =−

M
∑

m=1

E
(xs,ys)∼Ds

[

K
∑

k=1

✶[k=ys] log
(

C
k
m(F (xs))

)

]

−
M
∑

m=1

E
(xt,yt)∼Dt

[

✶[IQ(xt)
]

K
∑

k=1

✶[k=yt] log
(

C
k
m(F (xt))

)

]

(9)

The overall optimization problem can be defined as follows:

min
F,C,C1,...,CM

L+ L′
class

min
C1,...,CM ,D

Lcom + Ldom

(10)

Note that we do not back-propagate Lcom and Ldom to F as

they may spoil the quality of features for final classification.

For the learning process, we first train F , C and Cm|Mm=1

on source data. Then as previous active learning methods

[13], we use the labeling budget B in a gradual manner. We

repeat the following steps until using up the labeling budget.

We compute the criterion Q based on the current network

parameters and select b (a portion of the total budget B)

target samples to annotate and train with all the selected

samples by Equation (10) until convergence.

To further ensure that the selected samples are represen-

tative of the target domain, we design a randomize selec-

tion (RS) algorithm to select more diverse target samples.

In each selection step, instead of selecting b samples with

the highest Q, we first select a set of b′ > b candidates with

the highest Q. Then we sample points from the candidates

where the probability of each point is proportional to its Q

value. RS can increase the diversity of the selected samples

while still selects more informative samples.

Complexity. In terms of space cost, TQS only uses M

more classifiers and one more domain discriminator, which

are one-layer networks and cheap compared to the back-

bone. The computation of transferable criteria Qc, Qu and

Qd only needs a forward pass of the whole network, which

7276



learner

…

label & add to training set

threshold selection

Oracle

(sorted)

forward

loss 

compute 

and 

backward

metric

compute

sample

select

weighted sampling

candidate

𝐹 𝐷

𝐶

ℒdom

ℒ ℒcom ℒclass
𝐶1𝐶2 𝐶𝑀 𝑄𝑢𝑄𝑐𝑄𝑑 𝑄 𝐔𝐋

Figure 6. The architecture of TQS. The training repeats many steps of model training and query selection until the labeling budget B runs

out. Each step uses labeled data to train F,C,C1, ..., CM , D as Equation (10). Three criteria Qc, Qu and Qd are computed on unlabeled

target samples to form the transferable selection criterion Q as Equation (7). A set of samples with the highest Q values are selected from

the pool as candidates. Then we sample b points from the candidates with the probability proportional to its Q value. The oracle annotates

the ground-truth label for the b selected samples, which are removed from the unlabeled set and added to labeled data.

costs comparable time to previous active learning methods.

Compare to unsupervised domain adaptation (UDA), we

have multiple stages of data selection, and in each stage, we

initialize with the converged model of the previous stage.

So the model converges faster in later stages. Also, UDA

needs to compute an extra domain alignment loss while

TQS only needs to compute the classification loss. There-

fore, the time complexity for TQS and UDA methods is

comparable. In our experiments with the Office-31 dataset

[28], TQS needs about 20 epochs to converge (25 minutes),

while a typical UDA method [21] needs about 40 epochs

(110 minutes).

4. Experiments

We conduct experiments on three widely-used domain

adaptation datasets: Office-31 [28], Office-Home [40] and

VisDA-2017 [26]. We compare the proposed TQS approach

with Source-Only (ResNet), Random (RAN, which ran-

domly selects target examples to annotate), and active learn-

ing methods including query by uncertainty (UCN) [15],

pre-cluster (Cluster) [25], query by committee (QBC) [4],

Active Adversarial Domain Adaptation (AADA) [35] and

Active Deep Model Adaptation (ADMA) [13], which is the

state-of-the-art ADA method. We also compare TQS with

state-of-the-art UDA methods CDAN [21], AFN [42] and

CAN [16]. Note that the data transformations and multi-

ple classifiers are only used to learn query selection cri-

teria in TQS. For a fair comparison, we employ a single

classifier and the same image pre-processing for all meth-

ods when doing classification. We explain details on the

datasets and the experimentation in Section 2.1 of the sup-

plementary materials.

The code is available at https://github.com/

thuml/Transferable-Query-Selection.

4.1. Results

The classification results of Office-31, Office-Home, and

VisDA-2017 are shown in Tables 2–3. The labeling budget

of all active methods is 5% of target samples. The variance

in the ‘Avg’ column is the mean of the variances of all tasks.

Table 2. Classification accuracies (%) on Office-31 with 5% target

samples as the labeling budget for active learning methods.

Method
Office-31

A→D A→W D→A D→W W→A W→D Avg

ResNet 81.5 75.0 63.1 95.2 65.7 99.4 80.0±0.1

RAN 87.1 84.1 75.5 98.1 75.8 99.6 86.7±0.5

UCN 89.8 87.9 78.2 99 78.6 100.0 88.9±0.3

QBC 89.7 87.3 77.1 98.6 78.1 99.6 88.4±0.2

Cluster 88.1 86.0 76.2 98.3 77.4 99.6 87.6±0.1

AADA 89.2 87.3 78.2 99.5 78.7 100.0 88.8±0.3

ADMA 90.0 88.3 79.2 100.0 79.1 100.0 89.4±0.3

TQS 92.8 92.2 80.6 100.0 80.4 100.0 91.1±0.3

Randomly selecting samples can still achieve higher per-

formance than ResNet, which implies that ADA is a promis-

ing solution for domain adaptation. All different kinds

of active learning methods outperform random selection

(RAN). Though not tailored to ADA, previous active learn-

ing criteria still bias to highly informative samples. TQS

consistently outperforms these methods, because TQS con-

sists of transferable committee, uncertainty, and domain-

ness specially designed for ADA. Note that TQS also out-

performs ADMA, which emphasizes the importance of re-

ducing the variance of uncertainty and detecting outliers.
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Table 3. Classification accuracies (%) on Office-Home and VisDA-2017 with 5% target samples as the labeling budget for active methods.

Method
Office-Home

VisDA-2017
A→C A→P A→R C→A C→P C→R P→A P→C P→R R→A R→C R→P Avg

ResNet 42.1 66.3 73.3 50.7 59.0 62.6 51.9 37.9 71.2 65.2 42.6 76.6 58.3±0.1 44.7±0.1

RAN 52.5 74.3 77.4 56.3 69.7 68.9 57.7 50.9 75.8 70.0 54.6 81.3 65.8±0.5 78.1±0.6

UCN 56.3 78.6 79.3 58.1 74.0 70.9 59.5 52.6 77.2 71.2 56.4 84.5 68.2±0.3 81.3±0.4

QBC 56.9 78.0 78.4 58.5 73.3 69.6 60.2 53.3 76.1 70.3 57.1 83.1 67.9±0.2 80.5±0.3

Cluster 56.0 76.8 78.1 58.4 72.6 69.2 58.4 51.2 75.4 70.1 56.4 82.4 67.1±0.2 79.8±0.2

AADA 56.6 78.1 79.0 58.5 73.7 71.0 60.1 53.1 77.0 70.6 57.0 84.5 68.3±0.2 80.8±0.4

ADMA 57.2 79.0 79.4 58.2 74.0 71.1 60.2 52.2 77.6 71.0 57.5 85.4 68.6±0.3 81.4±0.4

TQS 58.6 81.1 81.5 61.1 76.1 73.3 61.2 54.7 79.7 73.4 58.9 86.1 70.5±0.3 83.1±0.4

4.2. Analyses

Varying Labeling Budget. In this experiment, we want

to show two claims by varying the labeling budget: (1) TQS

consistently outperforms other active learning or active do-

main adaptation methods with varying labeling budgets; (2)

TQS outperforms UDA methods only with a small labeling

budget. For each budget, we conduct experiments on all

6 tasks of Office-31 and all 12 tasks of Office-Home and

compute the average accuracy on each dataset. The results

are shown in Figures 7(a)–7(b). We can observe that TQS

consistently outperforms previous active learning and active

domain adaptation methods with various labeling budgets.

In particular, with only about 3% labeling budget, TQS per-

forms comparably with UDA methods while outperforms

UDA with a larger budget, indicating that TQS only needs

little labeling burden but boosts the domain adaptation per-

formance significantly.
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Figure 7. Accuracies with varying percent of labeling budget aver-

aged on all tasks of Office and Office-Home datasets respectively.

Ablation Study. We go deeper into the efficacy of each

of our contributions. For the three criteria: TQSc, TQSu and

TQSd, we design two sets of variants: removing each crite-

rion from TQS (w/o TQSc, w/o TQSu, and w/o TQSd) and

replacing the transferable criterion with its non-transferable

version. The non-transferable versions are corresponding

previous state-of-the-art criteria: For committee, we remove

the min-max optimization (w/ c); For uncertainty, we use

the entropy on a single classifier (w/ u); For domainness, we

replace TQSd with the domain similarity in [35] (w/ d). For

the transferable uncertainty, we further analyze the efficacy

of the ensemble of multiple classifiers and the margin func-

tion by only using one classifier to estimate Qu (w/o ensem-

ble) and replacing the margin function with the well-known

entropy function (w/o margin) in Equation (4) respectively.

For these two variants, the computation of the other two

criteria: TQSc and TQSd, are not influenced. We verify the

efficacy of the random selection algorithm by comparing

it with removing RS (w/o RS). The performance is evalu-

ated as the average accuracy of all 6 tasks on the Office-31

dataset.
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Figure 8. (a) Accuracy of TQS and its variants averaged on 6 tasks

of Office-31. (b) Combining TQS with UDA/SSDA methods.

In Figure 8(a), we can observe that TQS outperforms

w/o TQSc, w/o TQSu and w/o TQSd, indicating that TQSc,

TQSu and TQSd are all important to selecting informative

samples. TQS outperforms w/ c, w/ u and w/ d, indicat-

ing that our transferable committee, transferable uncertainty

and transferable domainness are more suitable to the cross-

domain setting than the original committee, uncertainty and

representativeness designed for traditional active learning.

TQS outperforms w/o ensemble, indicating the efficacy of

ensemble to reduce variance in the uncertainty estimation.

TQS outperforms w/o margin, which proves that the mar-

gin function is a more stable and discriminative uncertainty

measurement. TQS outperforms w/o RS, which verifies that
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the RS mechanism can select more diverse target samples to

increase the information gain of the selected samples.

Combination with UDA/SSDA Methods. We have an-

alyzed that UDA methods are orthogonal to our work. We

will further show that the selected samples by TQS are more

beneficial for UDA methods, meaning that if given a fixed

labeling budget, annotating the samples selected by TQS

can improve the performance of UDA methods more than

random selection. We compare the UDA methods, the com-

bination of UDA methods with samples selected by TQS

(CDAN/AFN/CAN+TQS), and the supervised oracles. We

combine TQS with UDA methods by applying distribution

matching losses to labeled source data and unlabeled target

data, and applying the classification loss to labeled source

data and labeled target data. We show the performance av-

eraged on all 6 tasks of the Office-31 dataset.

As shown in Figure 8(b), there is a large gap between

UDA and oracle. With the labeling budget increased from

0% to 15%, TQS with UDA methods achieves much better

accuracy than both TQS and UDA methods and is close to

the oracle, indicating that TQS is complementary to UDA

methods. Furthermore, with enough budget of more than

15%, TQS can achieve similar performance with and with-

out UDA methods, showing that even a modest labeling

budget can eliminate the effect of unsupervised domain

adaptation. We show the comparison of UDA methods with

randomly selected samples in the supplementary materials.

As we stated in the related work, SSDA methods are or-

thogonal to our work and TQS can be naturally combined

with SSDA methods by using TQS selected samples as la-

beled samples for SSDA. We further show that using the se-

lected samples by TQS is much more beneficial for SSDA

methods than randomly selected samples, which means that

combining TQS with SSDA further boosts the performance

of SSDA. Similar to UDA, in Figure 8(b), we compare

SSDA+TQS with SSDA+RAN in terms of average accuracy

on all 6 tasks of Office-31, where we use the state-of-the-art

SSDA work MME [30]. We can observe that MME+TQS

outperforms MME+RAN, showing that TQS is orthogonal

to SSDA methods and can improve them to higher accuracy.

4.3. Analysis of the Tradeoffs between Criteria

We argue that the trade-offs are not needed between

the three criteria in Equation (7). We empirically demon-

strate that directly adding the three criteria without trade-

offs achieves the optimal performance. We employ two pa-

rameters λ1 and λ2 to compute the criterion as

Q′ = Qc + λ1Qu + λ2Qd. (11)

We show the accuracy on the A→D task of Office-31

with varying λ1 and λ2. We select the task A→D because

the target domain D is small and the performance is more

unstable than other tasks. If we demonstrate the stability of

the performance with respect to λ1 and λ2 on A→D, we can

easily generalize the conclusion to other tasks.
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Figure 9. The smoothed classification accuracy on Office-31

A→D task (5% budget) with varying trade-offs.

From Figure 9, we can observe that the performance

changes very slightly within a small range of λ1 and λ2

around 1. Furthermore, the performance of λ1 = 1 and

λ2 = 1 is also almost the best. These observations demon-

strate TQS is not sensitive to trade-offs in a reasonable

range. Adding the three criteria without any trade-off does

not drop the performance much and can be widely used

across different tasks. One may ask whether the stable per-

formance is due to that Qu and Qd actually do not influence

the performance. We observe that when the parameter λ1 or

λ2 is close to 0, the performance drops much, which demon-

strates that both Qu and Qd are required for the method.

5. Conclusion

This paper presents a new Transferable Query Selection

(TQS) approach to active domain adaptation, consisting of

transferable uncertainty, transferable domainness and trans-

ferable committee that are complementary to each other

for selecting informative target samples under domain shift.

The random selection algorithm further increases the diver-

sity of selected samples. A large volume of experimental

results on three benchmarks show that TQS is an effective

approach for active domain adaptation. Deep analyses indi-

cate that TQS can be used in various labeling budgets and

collaborate with unsupervised and semi-supervised domain

adaptation methods to further boost performance.
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