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Abstract

We introduce a novel method for recovering per-pixel

surface normals from a pair of polarization cameras. Un-

like past methods that use polarimetric observations as aux-

iliary features for correspondence matching, we fully inte-

grate them in cost volume construction and filtering to di-

rectly recover per-pixel surface normals, not as byproducts

of recovered disparities. Our key idea is to introduce a po-

larimetric cost volume of distance defined on the polarimet-

ric observations and the polarization state computed from

the surface normal. We adapt a belief propagation algo-

rithm to filter this cost volume. The filtering algorithm si-

multaneously estimates the disparities and surface normals

as separate entities, while effectively denoising the origi-

nal noisy polarimetric observations of a quad-Bayer po-

larization camera. In addition, in contrast to past meth-

ods, we model polarimetric light reflection of mesoscopic

surface roughness, which is essential to account for its

illumination-dependency. We demonstrate the effectiveness

of our method on a number of complex, real objects. Our

method offers a simple and detailed 3D sensing capability

for complex, non-Lambertian surfaces.

1. Introduction

Stereo reconstruction has been a long-standing research

topic in computer vision since its inception. Binocular

stereo, in particular, has been studied in depth and has been

deployed in a wide range of applications. Its simple pas-

sive setup which requires minimal calibration, maintenance,

and cost has made it a reliable choice for 3D sensing. Even

when alternative methods with higher precision are avail-

able, binocular stereo is often favored for its dense per-pixel

depth that comes with relatively low cost for computation.

Stereo, however, is inherently limited by its underlying

reconstruction process, namely matching and triangulation.

Correspondence matching fundamentally requires view-

independent appearance (color constancy), which translates

to limited applicability in terms of target surface materials.

Despite the large body of work including those that train

deep neural networks to establish matching metrics, depart-

ing from this Lambertian surface requirement remains chal-

lenging. Triangulating the resulting correspondences also

only recovers surface depth. For most cases, due to the

fragility of this matching and triangulation, spatial regu-

larization and quantization are employed. As a result, the

geometry recovered by stereo, albeit useful for many appli-

cations, is often a crude measurement of the true surface.

Can we make stereo, in particular, simple binocular

stereo recover detailed geometry of real-world surfaces that

are composed of arbitrary materials? Can we match non-

Lambertian surface points, but recover the geometry with-

out relying solely on their geometric triangulation? In this

paper, we show that we can achieve these by exploiting po-

larization of light reflected from real-world surfaces.

Catapulted by the introduction of quad-Bayer polariza-

tion cameras, polarization cues have started to see adoption

in a wide range of computer vision methods. Geometry re-

construction is no exception (see Sec. 2). These past meth-

ods, however, use polarization as auxiliary cues for match-

ing and proceeds with regular triangulation of depth. Sur-

face normals are only computed from the recovered depth.

That is, they are byproducts of the depth and not mea-

surements of the actual surface normals. They also ignore

the complex polarimetric reflection properties and assume

purely Lambertian or mirror reflection, which ostracizes a

broad range of real-world materials and lighting conditions.

In this paper, we show that we can establish surface point

correspondences in a polarimetric stereo pair and recover

per-pixel surface normals from the two polarimetric obser-

vations. We also integrate a full polarimetric BRDF model

to handle complex lighting-dependent polarimetric reflec-

tion. To the best of our knowledge, our work is the first to

show that surface normals can be directly, not as a byprod-

uct of depth, recovered from binocular polarimetric stereo

for a wide range of surfaces from matte, glossy, to mirrored.

Our key idea is to formulate simultaneous estimation of

per-pixel depth-independent normal and albedo as RGB-

polarimetric cost volume filtering. In addition to a regu-

lar RGB cost volume as a function of pixel disparities, we

also construct a polarimetric cost volume that stores Stokes
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vector differences for different surface normals and albedo

values. These surface normals are computed directly from

corresponding Stokes vectors in the two stereo views given

hypothesized disparity values. Our goal is to filter these cost

volumes to arrive at optimal disparities that give pixel cor-

respondences, which in turn enables computation of surface

normals and albedo values from the two Stokes vectors.

We achieve this cost volume filtering using belief prop-

agation with three distinct characteristics. First, filtering of

the two cost volumes are seamlessly integrating by multi-

plication of their beliefs. Second, the beliefs encode surface

normals and use them to propagate disparities according to

them. This leads to depth estimates that respect the sur-

face normals measured in their view-dependent polarimet-

ric observations. Finally, the surface normals themselves

are also propagated, which effectively denoises the surface

normals on the hypothesized surface. This is essential for

using quad-Bayer polarization cameras as they are inher-

ently noisy. These updated surface normals are then fed

back into the polarimetric cost volume, i.e., the Stokes vec-

tors are updated to match the surface normals, and the whole

process is iterated to convergence. We also fully model the

diffuse, specular lobe, and specular spike reflection with a

microfacet-based polarimetric BRDF model [3]. Account-

ing for illumination-dependent polarization by glossy re-

flection in this way, which past methods ignored, is crucial

for practical polarimetric 3D reconstruction.

We experimentally validate our method on a number of

objects captured in a variety of lighting conditions. The re-

sults demonstrate the accuracy of the recovered surface nor-

mals and the method’s effectiveness in practical real-world

situations. With the advent of polarization cameras, we be-

lieve these results have implications in a wide range of ar-

eas, including autonomous driving, robotics, VR/AR, and

medicine owing to its passive reconstruction of detailed ge-

ometry from a simple setup.

2. Related works

The majority of past stereo algorithms are disparity-

based, which computes surface normals as gradients of re-

covered depth. These methods tend to result in overly

smooth surface normals. Patch-based reconstruction meth-

ods [8, 5] explicitly estimate the surface normal to deform

the texture matching window, but cannot estimate per-pixel

surface normals as they still rely on window matching.

Light reflection by a surface changes its state of polar-

ization, i.e., the polarization state implicitly encodes the

surface normal direction. The mapping between the nor-

mal and the polarization state is, however, not bijective.

Various methods have been proposed that make different

assumptions on the surface orientation while utilizing ini-

tial shape reconstruction from non-polarization methods

[10, 7, 4, 21] and illumination [9]. Others assume differ-

ent polarimetric reflection properties such as diffuse only

[1, 13, 15, 2], mirror dominant [19], and a combination of

them [11, 22, 3, 17].

Kadambi et al. [10] use polarization cues to refine sur-

face normals of geometry captured with conventional depth

sensing. Cui et al. [7] disambiguate possible surface nor-

mals computed from polarization using depth recovered

by conventional stereo. Berger et al. [4] combines color-

based cost with a polarization-based cost function to aid

correspondence search in non-Lambertian areas. Zhao et

al. [21] refine depth estimates using multiview angle-of-

polarization images. These methods fundamentally rely on

depth estimates from regular stereo reconstruction or other

3D sensing techniques and polarimetric observations are

auxiliary information for regular stereo matching and tri-

angulation, not a source of direct surface normal recovery.

Wolff and Boult [19] directly recover surface normals

from polarimetric observations by intersecting specular

planes of incidence defined by the polarizer angles at each

view. Atkinson and Hancock [2] proposed binocular stereo

with polarizers. They assume pure diffuse polarization to

estimate normal zenith from the degree of polarization.

Zhu and Smith [22] classify surface points into either

pure diffuse or mirror reflection to estimate their surface

normals. Smith et al. [17] introduce a linear solution for

single-image reconstruction. Yu et al. [20] propose an anal-

ysis by synthesis approach. Miyazaki et al. [12] and Chen

et al. [6] estimate surface normals as the intersection of

plane-of-reflections defined by the angle of polarizer at each

viewpoint. All these methods use the same diffuse or mir-

ror binary classification, which is inherently limiting as real

surfaces are always a combination of them at a pixel, not a

spatial binary map of either. Moreover, they ignore specu-

lar lobe (glossy) reflection which is essential for handling

lighting-dependent polarization of real surfaces.

Baek et al. [3] recently introduced a method that es-

timates the surface normal for full polarimetric reflection

consisting of diffuse and specular lobe (not merely mirror).

The method, however, requires an active stereo system to

obtain the accurate 3D shape by structured lighting and fun-

damentally relies on a co-axial imaging setup.

In contrast to these past methods, our polarimetric nor-

mal stereo is completely passive, does not require initial es-

timates of depth, and recovers per-pixel surface normals for

combined diffuse and specular reflection directly from po-

larimetric observations.

3. Polarimetric Reflection

Let us first review polarization in general and then po-

larimetric reflection and its BRDF model.
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3.1. Polarization

Light is a composition of transverse waves of electric

and magnetic fields that are always perpendicular to each

other. The “orientation” of light can be defined as the angle

the electric plane wave makes in the plane perpendicular

to the traverse direction. Within a non-zero finite time of

observation, this orientation can be randomly distributed.

We call such light unpolarized. In contrast, light can be

oriented in a single direction, which we refer to as linearly

polarized light. This orientation can also be rotating as a

function of time. Such light is called circular polarized. In

this paper, we only consider linear polarization as surface

reflection primarily causes it, but not circular polarization

unless with water.

Within the temporal span of an observation (i.e., camera

exposure), the observed light can consist of a collection of

linearly polarized light of varying magnitudes. This results

in an elliptic distribution of linear polarization. If we ob-

serve such partially linearly polarized light with a camera

equipped with a polarization filter on the image plane (or

lens plane), the observed intensity will be a function of the

filter angle φc

I(φc) = Imax cos
2 (φc − φ) + Imin sin

2 (φc − φ)

= I + ρI cos (2φc − 2φ) , (1)

where Imax and Imin are the light intensities in the major

and minor axes of the ellipse and I is the average intensity

(= Imax+Imin

2
). The scalar ρ = Imax−Imin

Imax+Imin

is referred to as

the degree of linear polarization (DoLP) and represents how

strongly the light is linearly polarized (i.e., how elongated

the ellipse is). The angle φ is called the angle of linear polar-

ization (AoLP) and represents the major linear polarization

angle. The observed intensity I(φc) becomes a sinusoidal

wave of φc which takes on its maximum value at φc = φ.

To recover the polarization state of a linearly polarized

light from its intensity, we need at least three observations

at three different filter angles (i.e., three angular samples of

the polarization ellipse). Quad-Bayer polarization cameras

use four filters of different angles laid out on each pixel.

Intensity observations at these four filter angles of π
4

incre-

ments can be expressed with the Stokes vector

s =




s0
s1
s2
s3


 =




I(0) + I(π
2
)

I(0)− I(π
2
)

I(π
4
)− I( 3π

4
)

0


 =




2I
2ρI cos (2φ)
2ρI sin (2φ)

0


 . (2)

The polarization state can easily be extracted from the

Stokes vector

I =
s0
2
, ρ =

√
s21 + s22
s0

, φ =
1

2
tan−1

(
s2
s1

)
. (3)

Light 0 Light 1 Light 2 +π

2

0

-π
2

Figure 1. When a surface is illuminated from different directions

(light 0: left behind camera, 1: above camera, and 2: right behind

camera), the angle of polarization changes. This phenomenon can-

not be explained with the polarization characteristics of diffuse and

mirror reflection, the latter of which is often referred to as specular

reflection in past methods. It requires modeling of the microgeom-

etry of the surface projected in each pixel.

3.2. Polarimetric Microfacet BRDF

Polarimetric light reflection by an object surface can be

characterized with two processes. When the incident light

strikes the interface, part of the light gets reflected in the

perfect mirror direction where the incident, surface normal,

and viewing directions span the reflection plane. This mir-

ror reflection, regardless of the polarization state of the in-

cident light, linearly polarizes the light in the direction per-

pendicular to the reflection plane (s-polarized). In contrast,

the light that transmits into the subsurface is polarized in

the direction parallel to the reflection (refraction) plane (p-

polarized), gets depolarized due to scattering, and then be-

comes p-polarized again when reemitted back into air. Past

methods for polarimetric 3D reconstruction have assumed

this combination of diffuse plus mirror reflection, often re-

ferring to the latter as “specular” reflection. This, however,

is incomplete and does not explain an important property of

polarization of surface reflection.

Fig. 1 shows images of the AoLP of a real scene com-

puted from polarimetric observations captured with a quad-

Bayer polarimetric camera from a fixed view point but with

a different light source direction for each image. If the sur-

face reflection was really a linear combination of diffuse

reflection and mirror reflection, the AoLP at each surface

point should have stayed the same regardless of the light-

ing. Fig. 1 shows otherwise; the AoLP distribution clearly

changes together with the light source direction. This is be-

cause, as the light source direction changes, the surface nor-

mals that contribute to “specular” reflection (light reflected

at the interface of the surface) actually varies. That is, the

mesoscopic surface contains a variety of surface normals

in the projected area of a pixel, and a different set of them

that lies on the plane spanned by the normal and viewing

directions are observed via mirror reflection. As a result,

this mesoscopic surface roughness introduces illumination-

dependent polarization. This means that, just like regular

radiometric surface reflection modeling [14], we must ac-

count for the polarimetric properties of glossy reflection
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(specular lobe) as depicted in Fig. 2(a).

We model the polarimetric light reflection as a linear

combination of diffuse and specular lobe reflections. Note

that the polarization properties of specular spike reflection

are included in the polarimetric specular lobe reflection

which we, from now on, refer to as specular reflection. The

mesoscopic surface can be modeled as a collection of mi-

crofacet mirrors whose polarimetric reflection can be de-

rived similarly to a radiometric microfacet bidirectional re-

flection distribution function (BRDF). Baek et al. [3] intro-

duce such a polarimetric microfacet BRDF. Instead of ex-

pressing the polarization state in Stokes vector parametriza-

tion, here we review this model in terms of AoLP and DoLP.

This formulation is more suitable for surface normal estima-

tion in our setting.

The radiometric microfacet BRDF model can be ex-

pressed as a linear combination of diffuse reflection and

specular reflection

I = (ℓ · n) (fd(ℓ,n,vc) + fs(ℓ,n,vc, σ))L , (4)

where I is the observed radiance, L is the source radiance,

σ is the surface roughness, and fd and fs are the diffuse and

specular reflectance, respectively. The diffuse reflectance is

a function of the incident light direction ℓ, surface normal

n, and the viewing direction vc. In contrast, specular re-

flectance is also a function of the surface roughness σ.

Diffuse reflectance is that of the light transmitted into

the subsurface that is scattered and transmitted back into

the viewing direction

fd(ℓ,n,vc) = kdT (n,vc)T (ℓ,n) , (5)

where T is Fresnel transmittance and kd is the diffuse

albedo.

For specular reflectance that models the specular lobe

and spike, we adopt the microfacet model by Walter et al.

[18]

fs(ℓ,n,vc) = ksW (ℓ,n,vc, σ)R(h,vc) , (6)

where

W (ℓ,n,vc, σ) =
D(n,h, σ)G(ℓ,n,vc, σ)

4|ℓ · n||n · vc|
, . (7)

Here D(n,h, σ) is the surface normal distribution of the

microfacets, where h is the half vector of the viewing and

incident light directions, and G(ℓ,n,vc, σ) is the geometric

attenuation term.

The Fresnel reflection R and transmittance T at polar-

ization filter angle φc on the image plane becomes

R(φc) = Rs cos
2(φc − φr) +Rp sin

2(φc − φr)

=
Rs +Rp

2
+

Rs −Rp

2
cos(2φc − 2φr)

= R+ ρrR cos(2φc − 2φr) , (8)

camera

source

normal

specular spike
specular lobe

IL

(a)

source

n

half vector h

ℓ vc

(b)

camera

microfacet

normal

Figure 2. (a) Polarization of specular lobe (gloss) reflection is es-

sential to account for the illumination-dependent polarization of

light reflection on real-world surfaces. Past methods have only

modeled the specular spike (mirror) reflection as “specular” reflec-

tion. (b) We model the specular lobe with a microfacet orientation

distribution using the halfway vector.

and

T (φc) =
Tp + Ts

2
+ ρt

Tp − Ts

2
cos(2φc − 2φt)

= T + ρtT cos(2φc − 2φt) , (9)

where the subscripts s and p denote the perpendicular and

parallel components to the reflection plane, ρr and ρt are the

degree of linear polarization of reflection and transmittance,

respectively, and φr and φt are the angle of polarization of

reflection and transmittance, respectively. We have dropped

dependency on the halfway vector, normal, and light source

and viewing directions for brevity. Note that light trans-

mitted into the surface is depolarized before reemitted to

air, which is why Fresnel transmittance into the subsurface

T (ℓ,n) is not a function of φc.

The observed radiance at polarization filter angle φc can

be written as

I(φc) = (ℓ · n)
(
kdT (ℓ,n)T (n,vc, φc)

+ ksW (ℓ,n,vc, σ)R(h,vc, φc)
)
L .

(10)

From Eqs. 10, 9, 8, and 2, the Stokes vector of a sur-

face point with surface normal n, diffuse albedo kd, and

specular albedo ks can be computed from its polarimetric

observations I(φc)

s̃(n, kd, ks) =


2(ℓ · n)
(
f̃d + f̃s

)
L

2(ℓ · n)
(
f̃dρt cos (2φt) + f̃sρr cos (2φr)

)
L

2(ℓ · n)
(
f̃dρt sin (2φt) + f̃sρr sin (2φr)

)
L

0




,
(11)

where

f̃d = kdT (ℓ,n)T (12)

f̃s = ksW (ℓ,n,vc, σ)R . (13)

4. Polarimetric Normal Stereo

As depicted in Fig. 3, our method directly recovers sur-

face normals from polarimetric stereo pairs by cost volume
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output normal and albedoinput images normal and albedo normal-disparity belief propagation

polarimetric cost volume

RGB cost volume integrated beliefsright
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Figure 3. Overall framework of polarimetric normal stereo. From a pair of polarimetric images from which AoLP and DoLP can be

computed for each pixel, we construct a polarimetric cost volume, in addition to a regular RGB cost volume, that measures the Stokes

vector discrepancy between that computed from the surface normal estimate and the two observations for a given disparity. We filter these

cost volumes, while effectively denoising the input polarimetric observations to estimate the surface normal as well as diffuse and specular

albedo values at each pixel.

construction and filtering that fully leverages the polarimet-

ric observations with polarimetric cost volume construction,

surface normal propagation, and iterative updating.

4.1. Polarimetric Cost Volume

A regular RGB cost volume is constructed by evaluating

the RGB color difference for a given set of discrete disparity

values at each pixel

CRGB(p, dp) =|IL(u, v)− IR(u− dp, v)|

+ |∇IL(u, v)−∇IR(u− dp, v)| ,
(14)

where dp denotes the disparity at pixel p = (u, v), IL, IR
are the left and right DC component of intensity, respec-

tively, and CRGB(d) denotes the cost at (u, v) for a dispar-

ity d. The second term encodes the difference in the inten-

sity gradients.

In addition to this regular RGB cost volume, we leverage

the polarimetric observations by constructing and filtering a

polarimetric cost volume. We first define the polarimetric

distance between a Stokes vector s̃ computed from surface

parameter estimates consisting of the surface normal, dif-

fuse albedo and specular albedo and the observed Stokes

vectors s in the two views

Ls(p, dp,np, kd,p, ks,p) =

|s{L,R}(u, v)− s̃{L,R}(u, v,np, kd,p, ks,p)| ,
(15)

where we add the cost for left and right views {L,R}. We

can estimate the surface normal and albedo values at a pixel

as those that minimize this cost

n
⋆
p, k

⋆
d,p, k

⋆
s,p = arg min

np,kd,p,ks,p

Ls(p, dp,np, kd,p, ks,p) .

(16)

In our implementation, we achieve this with regular gra-

dient descent. This optimization is over-constrained with

effectively 10 constraints for 8 unknowns. As the surface

normal is shared among the color channels, the Stokes vec-

tor will only differ in the first element, which reduces the

apparent 18 constraints down to 10. Note that, for a sin-

gle view, this means there are only 5 constraints, and thus

single-view surface normal recovery is not possible. The

optimization has a unique solution because the binocular

observation provides an AoLP for each view and their inter-

section resolves the π- and π/2- ambiguities. This, in other

words, means that given two polarimetric observations (i.e.,

a hypothesized disparity value d), we can estimate the sur-

face normal and albedo values that best explain them.

For any hypothesized disparity value for a given pixel,

we can solve for the surface normal and albedo values at

the corresponding surface point of the pixel in interest from

Eq. 16 and evaluate the goodness of that disparity value

with the polarimetric distance (Eq. 15)

Cs(p, dp) = Ls(p, dp,n
⋆
p, k

⋆
d,p, k

⋆
s,p) . (17)

We refer to this as the polarimetric cost volume. Note that

the disparity values parameterize this cost volume but the

surface normals and albedo values are used to evaluate the

polarimetric distance and that the surface normals are com-

puted from the polarimetric observations, not the disparity.

4.2. Normal-Disparity Belief Propagation

Unlike conventional binocular stereo, our goal is not

to estimate the disparity but the surface normal at each

pixel. The disparity, however, gives us pixel correspon-

dence which is necessary to obtain two polarimetric ob-

servations to estimate the surface normal. We have con-

structed two cost volumes both parameterized by the dis-
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Figure 4. Surface normal estimates and their error maps compared

with ground truth. Our method can recover fine surface geometry

as per-pixel surface normals independent of depth and regardless

of the lighting and surface roughness.

parity. We filter these cost volumes simultaneously with

belief propagation by defining beliefs that encode the un-

certainties of these costs and propagate them together with

the surface normals. By also propagating the surface nor-

mals computed from corresponding polarimetric observa-

tions at pixels with disparity values of high certainty, we

can effectively denoise the otherwise noisy polarimetric ob-

servations, which is critical to use quad-Bayer polarization

cameras. These propagated surface normals are reflected in

the polarimetric distance used to construct the polarimetric

cost volume, and these cost volume reconstruction and fil-

tering is iterated till convergence.

We define the energy potential to maximize as

Ψ(d) = exp [−E(d)] , (18)

where we define the energy

E(d) =
∑

p∈P

∑

q∈Np

CV (p, dp, dq) +
∑

p∈P

(CRGB(p, dp) + Cs(p, dp)) ,

(19)

where d is a vector of disparity values for all pixels. Here

we have denoted the set of all pixels with P and the dis-

parity at pixel p ∈ P with dp ∈ D, where D is a discrete

set of possible disparity values. Np denotes the four pixels

horizontally and vertically adjacent to pixel p.

The pairwise cost CV (dp, dq) is defined as

CV (p, dp, dq) =





0 (|dp − d̂q| < 1)

P1 (1 < |dp − d̂q| < 2)

P2 otherwise

, (20)

where d̂q is the disparity value taking into account the sur-

face normal n at p, which is defined as d̂q = dq+∆d̂. For a

smooth surface area, ∆d̂ can be expressed using the surface

gradient as

∆d̂ = dpf

(
f +

nz,p

nx,p

∆u+
nz,p

ny,p

∆v

)−1

− dp , (21)

[5] [16] [22] Ours⋆1 Ours⋆2

33.3, 23.6 39.3, 34.2 27.8, 18.6 21.8, 17.4 21.8, 17.6

(a) 807.9 646.1 561.2 252.2 228.7

58.5, 52.5 50.8, 45.7 28.9, 15.8 20.9, 16.7 21.3, 17.0

(b) 825.6 872.5 843.3 292.4 264.6

22.3, 14.3 46.0, 43.4 25.6, 15.7 23.7, 18.7 23.6, 18.8

(c) 532.5 257.0 420.2 260.9 243.0

29.2, 25.8 40.3, 38.3 35.7, 34.0 32.2, 28.4 32.8, 29.3

(d) 336.9 405.1 337.2 412.8 333.6

70.2, 67.9 37.5, 34.4 41.1, 40.5 31.6, 29.2 31.5, 29.8

(e) 883.3 446.3 280.6 308.3 267.6

Table 1. Angular errors in degrees for (a) Pig, (b) Lemon, (c) Book,

(d) Dinosaur, (e) Stone. The three numbers for each result report

the mean, median, and the variance of the error. Our method con-

sistently achieves higher accuracy compared with past methods.

Propagating the normals with BP (Ours⋆2) results in less variance

than without it (Ours⋆1).
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Figure 5. Histograms of angular errors in degrees for Pig and

Stone. Our method has fewer pixels with large angular errors.

where f is the focal length of the camera and ∆u,∆v are

the horizontal and vertical differences of the pixel location

q − p. P1 and P2 are penalties for discontinuities.

We find the disparity values d and simultaneously the

surface normals and albedo values {(dp, kd,p, ks,p : p ∈ P}
that maximize the energy potential with belief propagation

that integrates the beliefs from both the RGB and polari-

metric cost volumes. Although each cost volume has non-

negative values, in order to make them valid probabilistic

uncertainties we define their potentials

BRGB(p, dp) = exp [−CRGB(p, dp)] (22)

Bs(p, dp) = exp [−Cs(p, dp)] . (23)

The uncertainty for a given disparity is then computed as

their joint probability

B(p, d) = BRGB(p, dp)×Bs(p, dp) . (24)

We can now define the message from pixel p to its neigh-

bor pixel q

mp→q(dq) =

d∑

dp=0

(exp [−CV (p, dp, dq)]B(p, dp))
∏

k∈Np\q

mk→p(dp) .

(25)
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Figure 6. Surface normal estimates for polarimetric stereo pairs

of the same object captured under different light source directions

(light 0: left behind camera, 1: above light 0, 2: right behind cam-

era). Despite the change in polarimetric observations, our method

correctly recovers consistent per-pixel surface normals, while the

baseline method suffers from inconsistency and fails to recover the

two sides of the rock.

As we pass these messages from pixel to pixel, we also

update the surface normal and albedo values at each pixel

according to the uncertainty of its disparity value. By up-

dating these quantities as a weighted linear combination of

the current normal and albedo estimates at a pixel and its

neighbors using the messages (uncertainties) as the weights

n
⋆
q = (1−mp→q(dq))nq +mp→q(dq)np (26)

(same for k⋆d,q and k⋆s,q) we are able to denoise the raw

polarimetric observations, effectively, while estimating the

disparity, normal, and albedo values at each pixel.

As we propagate more certain surface normals and

albedo values from neighbors, the polarimetric cost volume

computed from the raw polarimetric observations should be

updated to reflect the new normals and albedo values by

substituting n⋆
p, k⋆d,p, and k⋆s,p with those computed in Eq.

26. We then go back to running belief propagation on this

updated polarimetric cost volume and the original RGB cost

volume and iterate this process till convergence.

5. Experimental Results

We experimentally evaluate the effectiveness of our po-

larimetric normal stereo method on a number of real polari-

metric images. We use two commercial color polarization

cameras (Lucid TRI050S-QC) that use quad-Bayer polar-

ization filter chips (Sony IMX250MYR) and calibrate them

with conventional stereo calibration methods.

5.1. Surface Normal Estimation

We first evaluate the accuracy of recovered surface nor-

mals and compare it with past relevant methods. We con-

sider three methods for comparison. The two representative

Smith et al. [16] Zhu & Smith [22] Ours

Figure 7. Diffuse albedo estimates of past methods suffer from

residual shading as they do not model the full polarimetric reflec-

tion. Our method, in contrast, does not suffer from such artifacts.

shape from polarization methods, Zhu and Smith [22] and

Smith et al. [16], model polarimetric reflection of only dif-

fuse and mirror and essentially conduct binary classification

on the surface1. In contrast, we model the full polarimetric

BRDF including glossy specular reflection. Note that Zhu

and Smith [22] assume known point source similar to our

method. Smith et al. [16] can handle an unknown point

source direction, but only when the object surface has uni-

form albedo and it has to be known, like in our method, for

spatially varying albedo. Although we leave as future work,

since the cost volume construction and filtering are clean

separate steps in our method, we believe we can incorpo-

rate light source estimation as an alternating minimization

where we iteratively update the point source direction used

to construct the cost volumes. We also compare with sur-

face normals computed by differentiating depth estimates

reconstructed with PatchMatch Stereo [5] as a baseline.

Fig. 4 shows the surface normal estimates using our

method and other methods as well as ground truth computed

from photometric stereo. The results clearly show that our

surface normal estimates capture the detailed geometry of

the complex objects and match the ground truth well. They

are also more accurate than other methods. For instance, the

results show that the surface normals computed from recov-

ered depth [5] do not capture fine surface geometry. Both

methods by [22] and [16] result in large surface regions with

inaccurate surface normals as they cannot take into account

the illumination-dependency of polarimetric appearance. In

sharp contrast, our polarimetric normal stereo is able to re-

store detailed surface geometry regardless of the depth and

light source directions.

Table 1 shows mean and median angular errors of the

surface normal estimates of all objects for all methods. The

results show that our method achieves the highest accuracy

for all objects. PatchMatch stereo [5] cannot leverage po-

larimetric information and suffers from textureless appear-

ance especially of objects like the stone and the lemon. The

stereo method by Zhu and Smith [22] only uses polarimetric

information for matching and does not account for glossy

reflection. These results demonstrate that directly comput-

ing surface normals from polarimetric information is essen-

tial to recover accurate fine geometry from polarimetric ob-

1We used implementations provided by the paper authors.
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RGB AoLP GT Normal Patch Match [5] Smith et al. [16] Zhu & Smith [22] Ours Albedo

Figure 8. Surface normal, albedo, and surface roughness recovery of various complex real objects. The results demonstrate the accuracy of

polarimetric normal stereo. Patch Match Stereo [5] cannot estimate the surface normal for objects with homogeneous textures. The height

recovery method by Smith et al. [16] and the stereo method bu Zhu & Smith [22] cannot accurately resolve the π-ambiguity.

servations. The height recovery method by Smith et al. [16]

also cannot handle glossy reflection and results in large er-

rors, especially for rough surfaces. Our method achieves

state-of-the-art accuracy on these complex, real objects.

Fig. 5 shows histograms of angular errors for Pig and

Stone. The results show that our method has fewer pixels

with large angular errors than past methods.

5.2. Lighting Invariance and Albedo Estimation

Fig. 6 shows surface normal estimates for three differ-

ent polarimetric stereo pairs of the same object taken under

different light source directions. Note how the input AoLP

changes for different lighting. Our method is able to recover

consistent surface normals regardless of the lighting.

Fig. 7 shows diffuse albedo estimates. The albedo esti-

mates by [22] and [16] suffer from residual shading as they

model shading on the DC component of the intensity which

actually includes the specular lobe. In contrast, our method

is able to accurately estimate the spatially varying albedo

without remaining shading, except for some irregularities

in small saturated spots.

5.3. Complex Objects

Fig. 8 shows our results on various objects with complex

reflection and geometry. The results demonstrate that our

method is able to recover the fine geometry of these objects

accurately regardless of material composition. As the in-

put AoLP images show, the polarimetric observations are

quite noisy. Our method is able to robustly recover the sur-

face normals and albedo values thanks to the denoising in-

tegrated in cost volume filtering. The black holes in images

from 3rd through 8th columns of Fig. 8 correspond to pix-

els where photometric stereo for ground truth capture failed

due to saturation. These holes are not identical to the high-

lights in the RGB images since the images for photometric

stereo were captured under different lighting conditions.

6. Conclusion

We introduced a novel binocular stereo method that

leverages polarimetric observations to recover fine geom-

etry of objects with complex non-Lambertian reflectance

properties. Our method models the lighting-dependent po-

larimetric appearance and directly recovers per-pixel sur-

face normal and albedo from pairs of polarimetric observa-

tions. We achieved this by introducing a novel polarimetric

cost volume and an iterative filtering method based on be-

lief propagation that also denoises raw polarimetric obser-

vations. We believe this polarimetric normal stereo method

significantly extends the reach of binocular stereo by en-

abling fine geometry reconstruction while retaining its sim-

plicity and passiveness.
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