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Abstract

Few-shot instance segmentation methods are promising

when labeled training data for novel classes is scarce. How-

ever, current approaches do not facilitate flexible addition of

novel classes. They also require that examples of each class

are provided at train and test time, which is memory inten-

sive. In this paper, we address these limitations by present-

ing the first incremental approach to few-shot instance seg-

mentation: iMTFA. We learn discriminative embeddings for

object instances that are merged into class representatives.

Storing embedding vectors rather than images effectively

solves the memory overhead problem. We match these class

embeddings at the RoI-level using cosine similarity. This

allows us to add new classes without the need for further

training or access to previous training data. In a series of

experiments, we consistently outperform the current state-

of-the-art. Moreover, the reduced memory requirements al-

low us to evaluate, for the first time, few-shot instance seg-

mentation performance on all classes in COCO jointly1.

1. Introduction

Convolutional neural networks (CNNs) have led to state-

of-the-art results for image classification [16, 32], object de-

tection [28] and instance segmentation [11]. In general, per-

formance increases with network depth and training set size.

While we can usually rely on large annotated databases for

more general classes, adding a class for which we have lit-

tle training data available is challenging. For example, we

typically have a modest number of labeled training images

when adding new classes for state-specific street furniture

for self-driving cars, or types of weapons for automated de-

tection in social media videos. Especially for instance seg-

mentation, obtaining pixel-level annotations is costly.

Few-shot learning addresses the problem of learning

with limited available data. Typically, one assumes the ex-

istence of a set of base classes, for which there exist nu-

merous training samples, and a disjoint set of novel classes,

1Code available at: https://github.com/danganea/iMTFA
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Figure 1. Incremental few-shot instance segmentation. For all

K instances of each novel class, we produce vector embeddings

using an Instance Feature Extractor. The average of these em-

beddings is stored as a per-class weight vector inside a cosine-

similarity classifier. At test time (green), we compare the cosine

distance embeddings of object proposal to the per-class weights.

for which training data is scarce (K examples). The goal

is to train a system to correctly classify N classes: only the

novel classes, or both novel and base classes jointly.

Compared to few-shot image classification, few-shot ob-

ject detection (FSOD) and few-shot instance segmentation

(FSIS) have received significantly less attention. While the

few solutions that have been introduced show great promise,

there is room for improvement in terms of practicality and

accuracy. Often, long training procedures with both novel

and base class samples are required [13, 36, 39]. This is

unpractical when we flexibly want to add novel classes to a

trained network. In incremental few-shot learning, the ad-

dition of novel classes is independent from previous data,

so computation time is reduced.

In this paper, we introduce the first incremental few-shot

instance segmentation method: iMTFA (Figure 1). We em-

ploy a two-stage training and fine-tuning approach based on

Mask R-CNN [11]. The first stage trains the Mask R-CNN

network. In the second stage, the fully-connected layers
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at the region of interest (RoI) level are re-purposed. Es-

sentially, we transform a fixed feature extractor into an In-

stance Feature Extractor (IFE) that produces discriminative

embeddings that are aligned with the per-class representa-

tives. These embeddings are subsequently used as weights

inside a cosine-similarity classifier.

Our approach has several advantages. First, it eliminates

the need for extensive retraining procedures for new classes

because these can be added incrementally. The IFE gener-

ates embeddings that are used as class representatives with-

out requiring access to base classes. Because we predict

localization and segmentation in a class-agnostic manner,

these embeddings are all that is needed to add novel classes.

Second, in contrast with related methods [8, 39], our

mask predictor is class-agnostic. Similar to [21], no mask

labels are needed for the addition of novel classes.

Third, our approach incurs no performance drawbacks

at test time. We neither require additional memory for ev-

ery class example [8, 39] nor require these examples to be

passed one-by-one (e.g., [21]).

We make two main contributions:

• We present the first incremental few-shot instance seg-

mentation method: iMTFA. Our method outperforms

the current state-of-the-art for FSIS as well as the cur-

rent state-of-the-art in incremental FSOD.

• To compare between incremental and non-incremental

methods, we extend an existing FSOD approach [36]

to the instance segmentation task (MTFA), and also

demonstrate state-of-the-art results.

The remainder of the paper is structured as follows. We

first discuss related work on few-shot learning and instance

segmentation. We introduce our novel incremental and non-

incremental methods in Section 3, and evaluate both exten-

sively in Section 4. We conclude in Section 5.

2. Related Work

This section provides an overview of instance segmenta-

tion and few-shot learning.

Instance segmentation is the task of detecting objects

in an image whilst also segmenting all the pixels that be-

long to them. Approaches generally fall into two cate-

gories: grouping-based [4, 11, 17, 24] and proposal-based

[2, 6, 15, 20] detection methods. The former employ a

grouping strategy in which a network produces per-pixel in-

formation that is post-processed to obtain instance segmen-

tations. In proposal-based methods, a model first identi-

fies potential areas and subsequently classifies and segments

these regions. The most widely used two-step detection

method is Mask R-CNN [11], which uses a Region Pro-

posal Network (RPN) to propose detection regions which

are passed to classification, localization, and mask predic-

tor heads. However, these approaches do not perform well

with small amounts of training data [39].

Few-shot learning enables models to accommodate new

classes for which little training data is available. Often, an

episodic methodology [35] is used by providing query items

to be classified into N classes and a support set containing

training examples of the N classes. Approaches for few-

shot learning can largely be split up in optimization-based

[1, 9, 26] and metric-learning [5, 10, 14, 33, 34, 35].

Optimization-based methods train a meta-learner from a

series of tasks such that it is able to generate weights for a

learner which learns parameters for new tasks that have few

training examples. The meta-learner is generally modeled

as an optimization procedure [1, 9] or is a separate network

enhanced with memory [22, 26] that uses previous tasks as

experience and is trained to produce a learner.

Metric-learning methods learn a feature embedding such

that objects from the same class are close in the embedding

space and objects of different classes are far apart. Koch

et al. [14] employed a Siamese network [3], where the dis-

tance between query and support image embeddings is min-

imized if they are of the same class, and maximized other-

wise. Matching Networks [35] compute the distance be-

tween every learned query and support embedding, while

Prototypical Networks [33] compute per-class representa-

tives. Relation Networks [34] learn both a distance function

and an embedding. In contrast to previous methods that

focus solely on the performance on the novel classes, Gi-

daris and Komodakis [10] focus on classifying both novel

and base classes jointly using a softmax cosine-similarity

classifier along with a weight generator for novel classes.

Recently, Chen et al. [5] have shown that fine-tuning on the

novel classes, which was largely ignored previously, gen-

erally performs better than episodic training. Finally, Qi

et al. [25] propose weight-imprinting by adding novel class

embeddings into an existing weight matrix, allowing incre-

mental addition of classes without training.

Few-shot object detection extends few-shot learning

to object detection. RepMet [30] trains a metric-learning

sub-network to encode the support set, while Kang et al.

[13] directly train a meta-learner on top of YOLOv2 [27].

Inspired by [5], Wang et al. developed TFA [36], which

achieves state-of-the-art in object detection with a two-stage

approach. Instead of fine-tuning the entire network, TFA

first trains Faster R-CNN [28] on the base classes and then

only fine-tunes the predictor heads.

Few-shot instance segmentation. Few works have ad-

dressed FSIS [8, 21, 39]. Most approaches provide guid-

ance to certain parts of the Mask R-CNN architecture to

ensure the network is better informed of the novel classes.

Both Meta R-CNN [39] and Siamese Mask R-CNN [21]

compute embeddings of the support set and combine these

with the feature map produced by the network backbone.

The combination is implemented through different opera-

tions such as subtraction [21] to focus the network on spe-
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cific image areas, or concatenation [39] to provide addi-

tional information at a certain stage. FGN [8] guides the

RPN, RoI detector and mask upsampling layers with the

support set feature embeddings through similar operations.

Incremental few-shot object detection has been con-

sidered in ONCE [23], which uses CenterNet [40] as a back-

bone to learn a class-agnostic feature extractor and a per-

class code generator network for novel classes.

Incremental few-shot instance segmentation. To our

knowledge, we are the first to target incremental FSIS. FGN

and Siamese Mask R-CNN depend on being passed ex-

amples of every class at test time, which requires a large

amount of memory when considering many classes. Meta

R-CNN can pre-compute per-class attention vectors, but re-

quires retraining to handle a different number of classes. In

contrast, our method can incrementally add classes without

retraining or requiring examples of base classes.
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Figure 2. Architecture of TFA and MTFA. MTFA extends TFA

with a mask prediction branch. In the first training stage, the whole

network is trained on the base classes. In the second stage, the

feature extractor is frozen (blue) while the classifier and box and

mask heads (in red) are fine-tuned on base and novel classes.

3. Methodology

We first introduce common terminology in few-shot

learning (Section 3.1). We then introduce our baseline few-

shot instance segmentation method MTFA (Section 3.2). In

Section 3.3, we introduce our incremental method: iMTFA.

3.1. Formulation of few-shot instance segmentation

In few-shot learning, we have a set of base classes Cbase,

for which a large amount of training data is available, and

a disjoint set of novel classes Cnovel, which has a small

amount of training data. The goal is to train a model that

does well on the novel classes Ctest = Cnovel [33, 35] or on

both base and novel classes jointly Ctest = Cbase ∪ Cnovel

[10]. In few-shot classification, Vinyals et al. [35] intro-

duce the episodic-training methodology. Episodic-training

sets up a series of episodes Ei = (Iq, Si) where Si is a sup-

port set containing N classes from Ctrain = Cnovel∪Cbase

along with K examples per class (N -way K-shot). A net-

work is then tasked to classify an image I
q , termed query,

out of the classes in Si. The idea is that solving a different

classification task each episode leads to better generaliza-

tion and results on Cnovel. This approach has also been

extended to FSOD (e.g., [13]) and FSIS (e.g., [8, 39]) by

considering all objects in an image as queries and having a

single support set per-image instead of per-query.

The challenge of FSIS is not only to classify the query

objects, but also to determine their localization and segmen-

tation. Given a query image I
q , FSIS produces labels yi,

bounding boxes bi and segmentation masks Mi for all ob-

jects in I
q that belong to Ctest.

3.2. MTFA: A non-incremental baseline approach

Our non-incremental baseline approach extends the

Two-Stage Fine-tuning (TFA, [36]) object-detection

method introduced by Wan et al. We first give an overview

of TFA and then describe our extension, Mask-TFA

(MTFA), which includes an instance segmentation task. In

Section 3.3, we extend MTFA to an incremental approach.

TFA (Figure 2) uses Faster R-CNN [28] with a two-stage

training scheme. In the first stage, the network is trained

on the base classes Cbase. In the second stage, feature-

extractor F is frozen and only the prediction heads are

trained. F consists of network backbone B, region proposal

network (RPN) and RoI feature extractor G. Thus, only RoI

classifier C and box regressor R are fine-tuned in the second

stage. Fine-tuning is performed on a dataset containing an

equal number of examples of Cbase and Cnovel classes.

MTFA. We extend TFA similarly to how Mask R-CNN

extends Faster R-CNN: by adding a mask prediction branch

at the RoI level (Figure 2). Thus, MTFA includes a branch

with an up-sampling component and a mask predictor M.

We also employ a two-stage fine-tuning approach by first

training the network on the base classes and then fine-tuning

all predictor heads C, R and M on a balanced dataset of K

shots for every class.

Cosine-similarity classifier. Similar to TFA and other

recent metric-learning methods [5, 10], a cosine-similarity

classifier is used for C to learn more discriminative per-class

representatives. C is a fully-connected layer which, given

embeddings computed by the fixed feature extractor F for a

RoI, produces classification scores S. C is parameterized

by weight matrix W ∈ R
e×c where e is the size of an

embedding vector produced by F and c is the number of

classes. We denote the columns of W as wj ∈ R
e such

that W = [w1,w2, . . . ,wc]. Similar to [11, 16, 39], classi-

fication scores Si,j for the i-th object proposal of an image

X and the j-th class are produced as:

Si,j = F(X)⊤i ·wj . (1)

Normalizing both the output of the feature extractor F
and the weights wi causes C to compute the cosine similar-

ity between F(X)i and class-representative wj :
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Figure 3. Architecture of iMTFA. (A.) In the first stage, the whole network is trained. In the second stage, the blue components are frozen,

while the RoI Feature Extractor G is trained to produce discriminative embeddings aligned with the class-representatives in the cosine-

similarity classifier C. Both stages are trained only on the base classes. (B.) Given the K shots for each novel class, the IFE computes class

weight vectors that are placed alongside the weights for the base classes.

Si,j =
αF(X)⊤i ·wj

‖F(X)i‖ ‖wj‖
, (2)

where α is used to scale the scores before they are passed

to a softmax layer.

Forcing all embeddings to align to a single class repre-

sentative wj results in class prototypes that are similar to

prototypical networks [33]. Normalization bounds the dot

product, which simplifies the network’s training task by al-

lowing only angular degrees of freedom for optimization.

3.3. iMTFA: Incremental MTFA

The main drawback of MTFA is the procedure of adding

new classes. The second fine-tuning stage fixes the num-

ber of novel classes that can be recognized. Adding new

classes requires this stage to be run again, which is not prac-

tical. The class-specific mask and box regressor heads also

require adaptation to novel classes in the form of weights

learned through fine-tuning. In this section, we extend

MTFA to an incremental approach: iMTFA. To this end, we

make the model class-agnostic and learn discriminative em-

beddings at the feature extractor level. These embeddings

are used as novel class representatives in the classification

head without further need for training. The architecture and

procedure for adding new classes are depicted in Figure 3.

Instance Feature Extractor (IFE). The fixed feature

extractor F employed by TFA and MTFA is not trained

to produce discriminative vector embeddings. Instead, the

classification head C is fine-tuned in order to align the

learned per-class weights wi to fixed features computed by

F for every RoI. We replace the fixed feature extractor by

an instance feature extractor (IFE).

The key idea of our approach is to generate discrimi-

native embeddings for each instance. To add new classes,

the average of the generated embeddings is used as a per-

class representative wi in W. This allows us to directly use

instance embeddings as class representatives, without the

need for fine-tuning.

The backbone B of Mask R-CNN produces feature maps

for every RoI Ri = B(X)i with i indicating one RoI. The

RoI-level feature extractor G, typically consisting of two

fully-connected layers, then takes these feature maps and

computes embeddings zi that are compared to the per-class

representatives wi in the classifier head C. The vector em-

bedding for each RoI is thus:

zi = F(X)i = G(Ri) = G(B(X)i) (3)

We propose to train G such that it produces discrimi-

native embeddings per instance. This is achieved in two

stages. First, we employ the same first training stage as

MTFA – fully training Mask R-CNN on the Cbase base

classes. Second, we fine-tune G alongside the classifier C
and box regressor R, whilst keeping the backbone B and the

RPN frozen. The fine-tuning is only performed on the set of

base classes Cbase, with the goal of generalizing to unseen

classes in Cnovel. The architecture of MTFA remains un-

changed, only the training procedure is different. By train-

ing G as a sub-network with a cosine-similarity classifier, it

produces embeddings which act as class representatives.

Creating class representatives. The final goal is to cre-

ate novel class weight vectors that can be placed alongside
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Figure 4. Inference examples. Successful (top row) and failure cases (bottom two rows), obtained on the 5-shot setting for the COCO

novel classes. Failures include wrong classifications, wrong detections and inaccurate instance segmentations. See Section 4.3 for details.

the weights for the base classes, held in C’s weight ma-

trix W after the second fine-tuning stage. To accomplish

this, every image X containing one of the K available novel

shots is passed to the IFE, producing a feature embedding

for each of the shots, zi = F(X)i. This is done for all K

shots, with novel class representatives wnew computed as:

wnew =
1

K

K∑

i=0

zi

‖zi‖
. (4)

Because the normalized feature embeddings zi are points

on a hypersphere, their normalized average wnew is mean-

ingful in this space and can be used as a class representative.

We can pre-compute the class representatives and do not re-

quire all shots to be passed in at once. This greatly reduces

the memory bottleneck in [8, 39].

Class-agnostic box and mask predictors. iMTFA does

not need class-specific weights for the box regressor and

mask predictor R and M. Instead, we use class-agnostic

variants of these components and can add new classes by

simply averaging their computed embeddings and placing

them in the classification head’s weight matrix W. This

also implies that we can train on novel classes without pro-

viding instance masks.

Inference. Because we predict the localization and seg-

mentation components in a class-agnostic manner, class

representative are all we need at test time. The lowest cosine

distance between an RoI’s embedding and the class repre-

sentatives gives us the class predictions.

Relation to other methods. Related approaches [8, 21,

39] rely on being passed examples of every class during

training and at test time. This causes a memory bottleneck

and forces some methods to only report evaluation results

on the ground truth classes in an image [8, 21], train for

significant amounts of time to match classes in a pairwise

manner [21], or to use greatly reduced image sizes [39]. In

contrast, iMTFA uses weight-imprinting [25, 31] to keep an

internal memory for the class representatives, and thus does

not need this memory consumption at test or train time.

4. Experiments

We first introduce our experiment setting (Section 4.1)

and the implementation details (Section 4.2). Then we eval-

uate iMTFA and MTFA and compare them to related ap-

proaches (Section 4.3), followed by an ablation study.

4.1. Experiment setup

Our main evaluation procedure follows conventions es-

tablished in FSOD [13, 36, 39]. We evaluate on the COCO

[19], VOC2007 [7] and VOC2012 [7] datasets. We split the

80 COCO classes as proposed in [13]. The 20 classes that

intersect with VOC are set as novel classes and the remain-

ing 60 classes as base classes. The union of COCO’s 80k

train and 35k validation images are used for training and the

remaining ∼5k images are the test set. The VOC dataset

combines VOC2007 and VOC2012 and the resulting vali-

dation set is used for testing. We evaluate the performance

of having K = 1, 5, 10 shots per novel class. To reduce

the effect of outliers as a result of the random selection of

the K shots, we run all tests 10 times with K random ex-

amples per class, and report the mean result. Our few-shot

evaluation procedure is the same as in [36].

Comparison with other methods. We compare the

instance segmentation performance of iMTFA and MTFA

with the three other known FSIS methods: Meta R-CNN

[39], Siamese Mask R-CNN [21], and FGN [8]. Addition-

ally, we compare the object detection performance to the

only known incremental FSOD method, ONCE [23].

For Meta R-CNN and ONCE, we use the method de-

scribed above. However, Siamese Mask R-CNN and FGN
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Shots Inc. Method

Detection Segmentation

Overall Base Novel Overall Base Novel

AP AP50 AP AP50 AP AP50 AP AP50 AP AP50 AP AP50

1

Base-Only 28.67 43.53 38.22 58.04 — — 26.34 41.55 35.12 55.40 — —

MTFA 24.32 39.64 31.73 51.49 2.10 4.07 22.98 37.48 29.85 48.64 2.34 3.99

�
ONCE 13.6 N/A 17.9 N/A 0.7 N/A — — — — — —

iMTFA 21.67 31.55 27.81 40.11 3.23 5.89 20.13 30.64 25.9 39.28 2.81 4.72

5

Base-Only 28.67 43.53 38.22 58.04 — — 26.34 41.55 35.12 55.40 — —

MTFA 26.39 41.52 33.11 51.49 6.22 11.63 25.07 39.95 31.29 49.55 6.38 11.14

�
ONCE 13.7 N/A 17.9 N/A 1.0 N/A — — — — — —

iMTFA 19.62 28.06 24.13 33.69 6.07 11.15 18.22 27.10 22.56 33.25 5.19 8.65

10

Base-Only 28.67 43.53 38.22 58.04 — — 26.34 41.55 35.12 55.40 — —

MTFA 27.44 42.84 33.83 52.04 8.28 15.25 25.97 41.28 31.84 50.17 8.36 14.58

�
ONCE 13.7 N/A 17.9 N/A 1.2 N/A — — — — — —

iMTFA 19.26 27.49 23.36 32.41 6.97 12.72 17.87 26.46 21.87 32.01 5.88 9.81

Table 1: FSOD and FSIS performance on COCO for both base and novel classes. ONCE cannot perform instance

segmentation and Base-Only does not consider novel classes. For ONCE, no AP50 is reported. Both MTFA and iMTFA

outperform ONCE for object detection while also being able to perform instance segmentation. Inc. stands for incremental.

use an evaluation scheme in which the classes that belong

to each query image are known during testing. Only the

classes that appear in the ground truth are included in the

support set for each image. This eliminates many potential

false positives, since similar classes that do not appear in an

image together will not be confused. In contrast, we per-

form a N -way K-shot evaluation for every image, where N

is the number of test classes. This ensures that all classes

in a dataset can be detected in an image. For comparison,

we emulate an evaluation method with a similar property by

zeroing the probabilities computed by our softmax classifier

for classes that do not appear in the query image. This dis-

credits our methods, since it leaves non-occurring classes

inside our metric space. Nevertheless, it serves as a lower-

bound for the performance of non-episodic testing. We

name this procedure ground-truth only evaluation (GTOE).

To compare against Siamese Mask R-CNN, we use

one of their evaluation setups, which we term COCO-

Split-2. This split consists of COCO classes with indices

4k, 1 ≤ k ≤ 20 as novel classes, leaving the rest as base

classes. The ResNet-50 backbone of Siamese Mask R-CNN

is trained on 687 classes from ImageNet1K [29] that do not

overlap with the classes in COCO. Unfortunately, it is un-

known which classes have been used, so we opt to train on

all 1,000 classes in ImageNet1K. To compare against FGN,

we use the COCO2VOC setup, where we train on COCO

but test on the VOC test set.

Following COCO evaluation practices, we report the per-

formance using AP and AP50, using an intersection-over-

union (IoU) overlap of bounding boxes and masks, for ob-

ject detection and instance segmentation, respectively.

4.2. Implementation details

Our Mask R-CNN [11] is implemented using Detectron2

[38]. Our backbone is a ResNet-50 [12] with a Feature

Pyramid Network [18]. All models are trained using SGD

and a batch size of 8 on two NVIDIA V100s, with four

images per GPU. The second fine-tuning stage has a learn-

ing rate of 0.0007 for iMTFA and a learning rate of 0.0005

for MTFA. We set the cosine-similarity scaling factor α to

1.0 for the iMTFA COCO-Novel, 10.0 for iMTFA COCO-

All and 20.0 for MTFA (see also Section 4.4). Mask R-

CNN has many parameters, hence we encourage the reader

to visit the public repository for more details.

# Inc. Method
Detection Segmentation

AP AP50 AP AP50

1
MTFA 2.47 4.85 2.66 4.56

� iMTFA 3.28 6.01 2.83 4.75

5

MRCN+ft-full 1.3 3.0 1.3 2.7
Meta R-CNN 3.5 9.9 2.8 6.9
MTFA 6.61 12.32 6.62 11.58

� iMTFA 6.22 11.28 5.24 8.73

10

MRCN+FT-full 2.5 5.7 1.9 4.7
Meta R-CNN 5.6 14.2 4.4 10.6
MTFA 8.52 15.53 8.39 14.64

� iMTFA 7.14 12.91 5.94 9.96

Table 2: FSOD and FSIS performance on the COCO

novel classes. MTFA and iMTFA outperform the current

state-of-the-art in terms of AP. Inc. stands for incremental.

4.3. Results

Results on the COCO novel classes. We compare

against Meta R-CNN [39] and a fully-converged Mask R-

CNN model fine-tuned on the novel classes (MRCN+ft-full,

[39]). We report object detection and instance segmentation

performance on the 20 COCO novel classes (COCO-Novel)

in Table 2. For all methods, detection and segmentation per-

formance increases with the number of shots. Both iMTFA

and MTFA outperform Meta R-CNN and MRCN+ft-full by

a large margin in terms of AP, for every number of tested

shots. In terms of AP50, MTFA surpasses Meta R-CNN but

iMTFA is slightly behind. This suggests we may have diffi-

culties finding the coarse location of an object but perform

better at higher IoU thresholds.
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Meta R-CNN directly uses image crops of the K avail-

able shots per class to infer class-attentive vectors. In con-

trast, iMTFA and MTFA re-use the largest part of the net-

work F by directly working at a feature-map level. We ar-

gue this generates more representative vector embeddings

for the novel shots, which would explain the large perfor-

mance gap between Meta R-CNN and our methods.

Examples of inference results for iMTFA on the COCO

novel classes with K = 5 appear in Figure 4. Success-

ful segmentations are generally accurate. Failure cases in-

clude correctly classifying but incorrectly localizing an ob-

ject (row 2, columns 1–3), correctly classifying and local-

izing but incorrectly segmenting (row 2, columns 4–5), and

incorrectly classifying but correctly localizing and segment-

ing (row 3, columns 1–2). Classes that are diverse in appear-

ance have more false positives. This is noticeable especially

for the dining table class. Many objects that resemble

food will be incorrectly classified as a dining table. For the

person class, a similar trend is observed.

Results on both base and novel COCO classes. In

this experiment, we strive to detect all 80 COCO classes

(COCO-All). We report the standard evaluation of AP and

AP50 over the 80 COCO classes. Additionally, we report

the performance of the base and novel classes individu-

ally. We are the first to report performance for Ctest =
Cbase ∪ Cnovel in FSIS. To understand the merits of our

approaches, we compare the object detection performance

of iMTFA and MTFA with the state-of-the-art incremen-

tal FSOD method ONCE [23]. We also report on a model

trained only on the base classes (Base-Only). While this

model cannot be used for the novel classes, it demonstrates

how much the performance on base classes is affected.

Results are summarized in Table 1. As expected, Base-

Only performs best on the base classes. iMTFA surpasses

the object detection performance of ONCE in terms of base

and novel class performance. MTFA consistently outper-

forms iMTFA on the base classes, which may be caused by

iMTFA’s inability to adapt to existing per-class representa-

tives when generating new ones. See also Section 4.4. Apart

from K = 1, MTFA also performs better than iMTFA on

the novel classes, in line with the results on COCO-All.

# Inc. Method
Detection Segmentation

AP AP50 AP AP50

1

Siamese Mask R-CNN 8.6 15.3 6.7 13.5
MTFA 8.26 15.24 8.25 14.31

� iMTFA 10.06 17.85 8.67 15.47

5

Siamese Mask R-CNN 9.4 16.8 7.4 14.8
MTFA 15.80 28.12 15.14 25.83

� iMTFA 14.55 25.73 12.33 21.95

Table 3: FSIS performance on COCO-Split-2. iMTFA

outperforms Siamese Mask R-CNN for K = 1 and K = 5,

while MTFA performs best on K = 5.

Comparison with Siamese Mask R-CNN We follow

the GTOE evaluation procedure described in Section 4.1

and report AP and AP50 for COCO-Split-2 in Table 3.

For both object detection and instance segmentation,

MTFA and iMTFA outperform Siamese Mask R-CNN.

Siamese Mask R-CNN uses image crops for the K shots

to guide the network. This may prove to be detrimental in

terms of performance, similar to Meta R-CNN. Addition-

ally, the learned embeddings may not have strong discrim-

inative power since they are not directly optimized through

the loss function. In contrast, iMTFA’s IFE is trained to

produce discriminative embeddings for the K shots.

Our higher performance might also be due to our use of

a cosine-similarity classifier, which has been shown to pro-

duce more meaningful embeddings than the binary cross-

entropy loss employed by Siamese Mask R-CNN [37]. Fi-

nally, our models are trained on all 1,000 ImageNet1K

classes, whereas Siamese Mask R-CNN only uses 687.

# Inc. Method
Detection Segmentation

AP AP50 AP AP50

1

FGN N/A 30.8 N/A 16.2
MTFA 9.99 21.68 9.51 19.28

� iMTFA 11.47 22.41 8.57 16.32

Table 4: FSIS performance on COCO2VOC. For FGN,

no AP results are reported by the authors.

Comparison with FGN. We compare iMTFA and

MTFA to FGN using the cross-dataset COCO2VOC evalua-

tion setting and the GTOE evaluation procedure. The FGN

paper evaluates 1-way 1-shot, 3-way 1-shot and 3-way 3-

shot performance. Since FGN’s source code is not released

and the used evaluation scheme is not common, we are only

able to compare against 1-way 1-shot results. From Table 4,

it shows that MTFA has superior performance in terms of

instance segmentation while iMTFA’s incremental approach

is on par with FGN.

FGN’s higher object detection performance suggests that

guidance at the RPN and classifier stages is effective, al-

though the better performance could partly be due to the

use of a deeper backbone (ResNet-101 vs. ResNet-50).

A combined approach appears promising for future work.

Although the instance segmentation performance between

iMTFA and FGN is similar, iMTFA maintains the key ad-

vantage of being incremental.

# Inc. Method
Detection Segmentation

AP AP50 AP AP50

5

MTFA 6.61 12.32 6.62 11.58

CA MTFA 7.00 12.58 6.11 10.16
CA MTFA w/o FT M 7.00 12.64 5.83 9.48

� iMTFA 6.22 11.28 5.24 8.73

Table 5: Ablation MTFA/iMTFA. Comparison between

different variants of MTFA and iMTFA on COCO-Novel.
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4.4. Ablation study

We perform several ablations on the COCO 5-shot set-

ting for novel classes.

Comparison between iMTFA and MTFA. We iden-

tify two main reasons that can account for the performance

difference between MTFA and iMTFA: using class-specific

components and adjusting parts of the network through fine-

tuning. To measure their effect, we compare MTFA and

iMTFA along with (1) MTFA with a class-agnostic mask

predictor M and box regressor R (CA MTFA) and (2) a

class-agnostic MTFA without fine-tuning the mask predic-

tor M (CA MTFA w/o FT M). Results appear in Table 5.

Class-specific components and fine-tuning both help

MTFA to achieve better segmentation performance. iMTFA

is unable to adjust the generated novel weights based on ex-

isting weights in the metric space, which fine-tuning can do.

We also find that fine-tuning the class-agnostic mask predic-

tor is advantageous. This may be because iMTFA does not

explicitly use the segmentation information for the K shots

to inform the mask predictor, whereas MTFA and class-

agnostic MTFA achieve this by optimizing the segmenta-

tion loss directly. The performance loss from class-specific

to class-agnostic is in line with [11] and may be attributed

to the additional number of trainable parameters.

# Inc. Method
Detection Segmentation

AP AP50 AP AP50

5 �

One-Stage-Cosine 5.37 9.91 4.3 7.32
One-Stage-Linear 5.32 9.87 4.49 7.54
iMTFA 6.19 11.24 5.22 8.71

Table 6: Ablation second fine-tuning stage. Results on

COCO-Novel for different classification heads in iMTFA.

Effectiveness of the second fine-tuning stage. To judge

the merits of the second fine-tuning stage for feature extrac-

tor G, we compare iMTFA to a variant that directly trains

Mask R-CNN using a cosine-similarity head (One-Stage-

Cosine) and one that directly uses the linear classification

head in Mask R-CNN (One-Stage-Linear). iMTFA outper-

forms both, see Table 6. This demonstrates the effectiveness

of the second fine-tuning stage. Instead of focusing on the

cosine-similarity sub-network during training, One-Stage-

Cosine seems to focus on the backbone and the RPN. One-

Stage-Linear can produce embeddings with similar angles

but dissimilar scales, which cannot be easily distinguished

using cosine similarity.

Cosine-similarity scaling factor. Parameter α in Eq. 2

scales the classification scores before applying softmax. In

Table 7, we experiment with various α values and find that

α = 1.0 produces the best performance for COCO-Novel.

For COCO-All, α = 10.0 provides a good balance between

high Overall and Novel AP. These values are subsequently

used in all experiments on these datasets. For optimal per-

formance, α needs to be tweaked based on the number of

classes, which is in line with previous insights [37].

COCO-Novel COCO-All

Detection Segmentation Detection Segmentation

α Overall Overall Novel Overall Novel

1.0 6.22 5.24 — — — —

2.0 6.19 5.22 0.36 0.36 1.42 1.46

3.0 6.17 5.21 10.31 6.17 9.55 5.21

5.0 6.09 5.17 16.99 6.62 15.72 5.53

10.0 5.76 4.94 19.62 6.07 18.22 5.19

15.0 5.34 4.60 19.67 5.62 18.28 4.82

20.0 4.94 4.26 19.45 5.19 18.09 4.47

25.0 4.62 3.99 19.20 4.86 17.87 4.19

Table 7: Ablation alpha value. Comparison of cosine scal-

ing factors for iMTFA in COCO-All and COCO-Novel.

5. Conclusions

We have presented the first incremental approach to few-

shot instance segmentation: iMTFA. iMTFA repurposes

Mask R-CNN’s feature extractor to generate discriminative

per-instance embeddings. The mean of these embeddings is

used as a class-representative in a cosine-similarity classi-

fier. Because the localization and segmentation components

are class-agnostic, the embeddings are all that is needed to

add new classes. To compare iMTFA with a stronger non-

incremental and class-specific baseline, we also introduced

MTFA. It extends the few-shot object detection approach

TFA [36] by adding a mask prediction branch. Both iMTFA

and MTFA outperform the current state-of-the-art on a vari-

ety evaluation scenarios using the COCO and VOC datasets.

There are several ways in which iMTFA can be im-

proved. First, iMTFA cannot adapt to existing embeddings

when generating new ones. Attention mechanisms such as

those employed by [10, 35] are a promising future direction.

Second, iMTFA’s class-agnostic localization and seg-

mentation components are suboptimal compared MTFA’s

class-specific counterparts. An obvious improvement is to

learn a transfer function from the generated embeddings to

class-specific box regressor and mask predictor. We believe

combining our approach with a guidance mechanism (e.g.,

[8, 21]) would further improve the performance of iMTFA.

Third, iMTFA’s frozen box regressor and mask predictor

introduce base class bias compared to MTFA. Employing

guidance mechanisms would also alleviate this issue.

With these improvements in mind, the advances made

with iMTFA present a promising outlook to narrow the

gap between non-incremental and incremental few-shot in-

stance segmentation, and to allow for a flexible addition of

novel classes to already powerful networks.
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