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Abstract

In this paper, we propose a feature embedding based

video object segmentation (VOS) method which is simple,

fast and effective. The current VOS task involves two main

challenges: object instance differentiation and cross-frame

instance alignment. Most state-of-the-art matching based

VOS methods simplify this task into a binary segmentation

task and tackle each instance independently. In contrast,

we decompose the VOS task into two subtasks: global em-

bedding learning that segments foreground objects of each

frame in a pixel-to-pixel manner, and instance feature em-

bedding learning that separates instances. The outputs of

these two subtasks are fused to obtain the final instance

masks quickly and accurately. Through using the rela-

tion among different instances per-frame as well as tempo-

ral relation across different frames, the proposed network

learns to differentiate multiple instances and associate them

properly in one feed-forward manner. Extensive experi-

mental results on the challenging DAVIS[34] and Youtube-

VOS [57] datasets show that our method achieves better

performances than most counterparts in each case.

1. Introduction

Video object segmentation (VOS) aims at segmenting

out the class-agnostic object(s) in the video. It has various

applications in video editing, autonomous driving, robotic-

s, human-computer interaction, etc. According to whether

providing the annotation of the initial frame, VOS can be di-

vided into two settings: unsupervised and semi-supervised.

Unsupervised VOS needs to segment the primary objects

automatically[11, 42, 64] while semi-supervised VOS need-

s to segment the specified objects from human interaction

or predefined interesting target[33, 5, 52]. In this paper, we

focus on the latter task, where the initial annotation of the

object(s) are provided in the first frame.

Most current successful semi-supervised VOS approach-

es formulate VOS as a binary classification task and seg-
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Figure 1: Illustration of our intuition. (a) For multiple instances

case, STM [30] tackles each instance independently while our

method handles them simultaneously. (b) Comparison of accuracy

(in the histogram) and computation speed (by the curve) regarding

different instance numbers. Our method takes the instance relation

into consideration and achieves better and faster performance than

STM.

ment each instance separately [17, 55, 30] (Fig. 1(a)). This

leads to two disadvantages: the computation efficiency is

heavily affected by the instance number. Moreover, the s-

patial and temporal relation between different instances can

not be sufficiently mined. To capture multiple instances

per frame, some methods employ region proposal network-

s to generate instance masks [27, 58, 63]. Then, the re-

identification network is used to find and associate multi-

frame instances. However, the performance of these meth-

ods heavily relies on the region proposal model that lacks

the temporal information during proposal generation. To

guide the network to differentiate multiple instances, some

recent methods append the instance mask as prior knowl-

edge during the input stream [23]. Nevertheless, this leads

to the unclear segmentation boundary as well as ambiguity
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accumulation due to unstable temporal mask propagation.

To alleviate these issues, we need to explore an effec-

tive framework that can comprehensively capture the intra-

frame as well as inter-frames instance relationship. We

break VOS into two parallel components: (1) an instance

level representation that predicts a coarse mask for each lo-

cal area, which can separate different instances automatical-

ly and simultaneously. (2) a global saliency map that seg-

ments out all foreground objects which can provide salien-

cy details and realize pixel-wise alignment. Correspond-

ingly, we design a two-branch network, the instance branch

takes the instance-specific embedding as input and gener-

ates coarse instance score maps. The global branch takes

the global object embedding as input and produces a glob-

al saliency map of the whole image to separates the fore-

ground from the background. Finally, the coarse instance

score maps are interacted with the global saliency map to

generate refined instance masks. To maintain the tempo-

ral correspond of instances across frames, we make use of

memory-reading [54, 38, 29, 31, 20] mechanism to incor-

porate temporal information for both instance embedding

and global object embedding. During the segmentation, the

proposed network handles all the instances in a single feed-

forward pass.

We extensively evaluate our model on three widely-used

video object segmentation datasets, namely DAVIS17 val,

DAVIS17 test-dev and Youtube-VOS18, showing its superi-

or performance as well as higher speed over most existing

methods. Our model is flexible, and we also evaluate a per-

formance priority version of our approach (see Fig. 1(b)).

Equipped with a learnable decoder, our method achieves

state-of-the-art performances for comprehensive evaluation

on these VOS datasets.

We summarize the main contributions as follows:

• We propose a new insightful solution for VOS based

on embedding learning from instance segmentation.

We construct a two-stream network in which one

stream focuses on instance embedding learning while

the other stream focuses on global feature embedding

learning.

• We integrate both the temporal as well as spatial re-

lation between instances into the embedding learning

which helps to obtain more accurate mask boundary.

• We propose a temporal attention mechanism to effec-

tively exploit support set information to facilitate the

query frame segmentation. This module can adaptive-

ly assign different weights to each element in the sup-

port set during the network inference.

• We extensively evaluate the proposed method on re-

cent large-scale benchmark datasets. The proposed

method performs favorably against state-of-the-arts.

2. Related Works

2.1. Video Object Segmentation

The task of VOS is commonly formulated as a tempo-

ral label propagation problem. Traditional methods usual-

ly build spatio-temporal graph over the pixels [40], region-

s [1, 37, 50] and superpixels [49, 41] to infer the labels for

subsequent frames. Current top-leading deep learning based

VOS models are mainly built upon two critical techniques,

i.e., online finetuning and cross-frame feature matching.

Video Object Segmentation with Online Finetuning.

Given the ground-truth segmentation mask of the initial

frame, semi-supervised VOS methods finetune the network

for each video with samples generated in the first frame.

Therefore, semi-supervised VOS can be referred to one-

shot VOS (O-VOS). OSVOS[5] firstly applies a pre-trained

convolutional network for semantic segmentation, and fine-

tunes in the first frame to segment out foreground and back-

ground. OnAVOS [44] and OSVOS-S [28] further extend

OSVOS by online learning with unlabeled data in the sub-

sequent frame, and by adding instance-level semantic in-

formation. Another approach is to learn to propagate the

segmentation mask from the previous frame to the next

frame after finetuning in the first frame, such as optical flow

in MaskTrack [32], LucidTracker [19], PreMVOS [27] and

CRN [15] or deep recurrent network module in MaskRN-

N [16] and DyeNet [21]. Bao et al. [2] integrate Markov

Random Field into VOS for iterative refining segmentation

results. While these approaches have achieved satisfying

performance, they have one critical drawback in common:

the network learning in the first frame as well as subsequent

frame updating is quite time-consuming.

Video Object Segmentation with Feature Matching. To

avoid invoking expensive fine-tuning procedure in the first

frame of semi-supervised VOS, some recent works re-

sort to some techniques in few-shot learning. One rep-

resentative work is OSMN [60] in which a first-frame re-

lated visual modulator is learned for adapting the seg-

mentation rapidly. More recently, with the emergence of

large-scale VOS datasets[34, 57], matching-based network-

s[17, 55, 42, 24, 48, 47, 26, 43, 23, 30, 63, 18, 36, 22] usu-

ally train a prototypical Siamese network to find the most

matching pixel (or feature) between the first frame (or a seg-

mented frame) and the query frame, and then perform label

prediction accordingly. Moreover, more advanced internal

meta learners [35, 3, 25] have been exploited for updating

VOS network quickly.

2.2. Feature Embedding Learning

Compared to the traditional VOS methods, most deep

learning based methods have achieved better performance

without complex graph-based model design as well as post-

processing. The reason mainly attributes to the powerful
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feature embedding learning. Considering most current VOS

datasets [35, 3, 6] are instance-level annotated, it is mean-

ingful to learn more instance-specific feature embedding.

However, most methods mentioned above formulate feature

embedding learning as a binary segmentation task by han-

dling each instance independently. This binary supervision

ignores mining the global context between each instance as

well as the wealthy annotation information which is provid-

ed by instance-level annotations.

Some works have paid attention to learning more

instance-related information by pixel-wise metric learn-

ing[8], location-sensitive embedding[10] or attention mech-

anism[23]. The differences from previous methods are sig-

nificant: 1) Our method takes multiple instances relation in-

to consideration to facilitate the instance embedding learn-

ing. 2) Our method provides an elegant architecture to si-

multaneously segment multiple objects.

Recently, one-stage instance segmentation[62, 4, 51, 56,

7, 52, 39] in static images becomes popular via omitting the

proposal generation step in two-stage methods (e.g., Mask-

RCNN [13]). Without instance-level proposals in the two-

stage methods, to distinguish instances, most of the one-

stage methods try to learn an instance-specific embedding

from the global pixel embedding. By taking advantage of in-

stance embedding learning, for instance, anchor-free based

proposal embedding in EmbedMask[62], instance mask co-

efficients in YOLACT [4], position-sensitive instance fea-

tures in Blendmask[7], polygon surrounded contour in Po-

larMask [56], point based local shape in CenterMask [52]

and instance-aware mask head in CondInst[39], these meth-

ods have achieved comparable even better performance than

two-stage ones. The success of the one-stage instance seg-

mentation inspires us to design a VOS method that can gen-

erate all the instances simultaneously.

3. Proposed Algorithm

3.1. Revisiting Label Propagation in VOS

Before elaborating on our method (§3.2), we first give a

brief introduction to the common label propagation meth-

ods in VOS. One representative methodology[8, 65, 58, 20]

computes the similarity between the reference frames Ir
and the query frame (i.e., current frame) It, then estimates

the label based on the learned similarity matrix directly:

Pt = Fs (φ(It), φ(Ir))P
t−1

, (1)

where Fs denotes the similarity function with feature ex-

traction φ. Pt−1 and Pt represent the labels and prediction

in the reference and current frames, respectively.

Another popular label propagation strategy is to integrate

the label propagation into the feature learning at the input

level or feature level[17, 55, 30, 18]:

Pt = Fg(It, Ir,P
t−1), (2)

where Fg denotes the end-to-end segmentation network.

These methods tend to handle each object individually and

perform better than direct label propagation methods at the

cost of slow inference speed.

3.2. Feature Embedding Learning in VOS

In contrast to much prior work on decomposing instance

VOS into multiple binary segmentation subtasks or propa-

gate the mask directly, our approach focuses on fully ex-

ploiting the spatio-temporal relation in a video sequence.

This enables us to construct an elegant model that is both

strong in performance and fast in inference. Specifically,

we advocate a new solution that learns instance-specific em-

bedding for instance video object segmentation. Inspired by

instance segmentation [7, 52, 39] and conditional convolu-

tion[59], our heuristic approach makes the training process

be consistent with the inference stage. In the following, we

will describe each of the components in more detail.

Global feature embedding learning. Fig. 2 depicts our

network structure. Our framework handles each video in

a sequential manner. Prior frames that can be regard-

ed as support set in few-shot learning [3] are fed together

with the annotated or segmented objects mask to the sup-

port encoder for obtaining the support feature embeddings

{mi}T ∈ R
T×W×H×C , where T is the size of support set,

W,H and C represent the width, height and channel, re-

spectively. In this way, we can obtain the objects-level em-

bedding. Current frame (i.e., query image) is fed into the

query encoder to output the query embedding q ∈R
W×H×C .

To learn instance-specific feature embedding while con-

sidering temporal information from past frames, follow-

ing [54, 38, 29, 31], we employ Query-to-Memory mech-

anism to implement the temporal feature combination.

Specifically, the embedded key and value are computed

from the support and query embeddings directly:

k
S = fk({mi}T ) = {kS

i }T ∈R
T×W×H×C/8

v
S = fv({mi}T ) = {vS

i }T ∈R
T×W×H×C/2

k
Q = fk(q) = {kQ} ∈R

W×H×C/8

v
Q = fv(q) = {vQ} ∈R

W×H×C/2
.

(3)

In the memory reading [54, 38, 29, 31], the global cor-

relation A between current frame and support set can be

formulated as:

A = softmax( k
S

︸︷︷︸
TWH×C/8

· k
Q⊤

︸︷︷︸
C/8×WH

)∈R
(TWH)×(WH)

. (4)

Once obtained A, the global feature embedding about the

query image is computed as:

Embglobal = [ v
Q

︸︷︷︸
W×H×C/2

, v
S⊤

A︸ ︷︷ ︸
W×H×C/2

] ∈R
W×H×C

, (5)
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Figure 2: Illustrationofour instance embedding based VOS method. Previous frames are fed together with the pre-defined or self-segmented

object masks to the support encoder to obtain support embedding. Instance labels are encoded into one-hot tensors and fused with support

embeddings to obtain the instance-level embeddings. Current frame is fed into the query encoder to output the query embedding. The

query embedding interacts with support embedding under two levels: the first level is to mine instance-specific information via instance

branch while the second level is to obtain global object context via global branch. After that, the global decoder predicts a binary global

saliency map while the instance branch forms the coarse instance maps directly by differential cropping.

where the first term in concatenation [·] reflects the content

of the current frame while the second term reflects the trans-

ferred global objects-level feature from support frames.

The global feature embedding aims to represent the

salience of each pixel in the whole image, i.e., whether the

pixel belonging to an object area or not[52]. Based on glob-

al feature embedding, the prediction is a class-agnostic bi-

nary map Fglobal (i.e., objects map) that provides a strong

Foreground-Background objects prior for current frame in

the video[61]:

F global = fdecoder(Embglobal) ∈R
1×Wim×Him , (6)

where fdecoder is a learnable decoder that comes from [30],

Wim, Him means the width and height of the output.

Instance-specific feature embedding learning. In ad-

dition to transferring global objects information from the

support frames using the learned objects embedding, we

employ Query-to-Memory mechanism to learn instance-

specific feature embedding. To incorporate instance-level

information, we merge the one-hot label tensor in which

each channel represents one instance[55] into the instance-

level embedding learning.

Let {Pi}T denote the one-hot label tensors [55] in the

support frames, we introduce a label encoder module. It

takes the label tensors as input and predicts an instance level

target mask representation with high dimensional space:

P̃i = fθ(P
i) ∈R

D×W×H×C/2
, (7)

where fθ(·) denotes the label encoder. For each instance

label tensor Pi ∈ R
Wim×Him×3, it has three channels (See

Fig. 2): The first channel contains a certain instance, the

second channel is about the rest instances, and last channel

only contains the background. In this way, our label en-

coder can suppress the distraction from other instances and

maintain the instance-specific information [17]. We set the

maximum instances number D = 6.

After that, P̃i is multiplied to the value of support em-

beddings vS . This operation allows each support value only

contain the instance-specific information:

Vinstance = v
S

︸︷︷︸
T×W×H×C/2

⋆ {P̃i}T
︸ ︷︷ ︸

D×T×W×H×C/2

∈R
D×T×W×H×C/2

, (8)

where ‘⋆’ denotes dimension-wise Hadamard product. Af-

ter that, we conduct instance-level memory reading through

the correlation matrix A (i.e., Eq.4) and obtain the instance-

level pixel embedding as:

Embinstance=[ v
Q

︸︷︷︸
D×W×H×C/2

,V
⊤

instanceA︸ ︷︷ ︸
D×W×H×C/2

] ∈R
D×W×H×C

. (9)

Based on the instance embedding, we can generate the

coarse instance score map directly with a small fully convo-

lution network:

F coarse = fcoarse(Embinstance) ∈R
D×W×H

, (10)

where fcoarse denotes the small fully convolution network.

Each channel of the F coarse is a heatmap for the corre-

sponding instance.

Instance mask generation. To construct the final instance

mask, we take advantage of both Fglobal (i.e., Eq. 6) and
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F coarse (i.e., Eq. 10) collaboratively. The instance coarse

map indicates the coarse area for each instance and the

cropped global saliency map realizes precise segmentation.

Specifically, we calculate the Hadamard product of these t-

wo items:

F̃final = U(Fcoarse)
︸ ︷︷ ︸
D×Wim×Him

⋆ Fglobal
︸ ︷︷ ︸

1×Wim×Him

∈R
D×Wim×Him , (11)

where U(·) is upsampling operation that resizes the coarse

instance maps into the current spatial resolution. Finally, all

the instance masks can be assembled using soft max aggre-

gation[55] across the D-dimension.

Overall, our method generates all the instance masks si-

multaneously during both the training phase and the infer-

ence phase. To further improve the final segmentation re-

sult, we replace the upsampling function U(·) in Eq. 11 with

learnable decoder [30] to refine the coarse instance maps

(see dashed line in Fig. 2):

F final = fdecoder(Embinstance) ∈R
D×Wim×Him . (12)

3.3. Network Architecture

We implement the whole method via an end-to-end net-

work. We use ResNet50 [14] as the backbone network for

the query and support encoders, except for the input chan-

nels. The initial weights come from pre-trained Mask R-

CNN [13]. The query encoder takes an RGB query frame

as input, while, for the support encoder, input is an RGB

support frame concatenated with the class-agnostic binary

mask from global feature embedding. For instance embed-

ding module, we implement the label encoder (Eq. 7) as

a fully convolutional network that consists of two convolu-

tion layers followed by batch normalization layers. The rest

newly added layers in Eqs. 3 and 10 are implemented by

1×1 convolution layers.

Temporal Attention Mechanism. In the context of VOS,

each instance may exhibit appearance variation as well

as underlying occlusion. For video with fast appearance

change, the latest segmented frames help to locate the tar-

gets in the current frame[55], meanwhile, the first annotated

frame yet is able to re-identify targets when they re-appear

after occlusion[21]. Therefore, it is meaningful to guide the

network to assign different weights to the memory key un-

der different scenarios. In particular, we present a temporal

attention module which consists of convolution layers and

pooling layers. For each key in the support set, the proposed

temporal attention module takes this key, the first frame key

(i.e., as the first frame and its annotation always provide the

most reliable information) and the query key together as in-

put, and then regresses a normalized weight with a small

network. Because there are T frames in the support set, the

length of total weights is T×1. Next, this adaptive weight
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Figure 3: Diagram of the proposed temporal attention mechanis-

m. For each element (i.e., key) in the support set, the proposed

temporal attention module first computes a global summarization

of the first key, the selected one and the query key. This is im-

plemented by 1×1 convolution layers and global average pooling

followed by a concatenation operation. With the combined fea-

ture, three1×1 convolution layers are used for regressing a weight

vector.

is applied to the similarity matrix to emphasize the impor-

tance of certain support images. The detailed architecture

of temporal attention can be seen in Fig. 3.

3.4. Implementation Details

Network Training. Following the training protocol in [3,

43, 31], we sample video clips with length T+1from a video

to simulate the inference procedure. The first T frames in

the clips build the support set while the last frame is used for

the query set. We feed them with corresponding annotations

into the network and compute the loss functions as:

Lall = Lmask + Linstance

= BCE(Fglobal, {P
i}T ) + λCE(F final, {P

i}T ),
(13)

where λ>0 is a pre-defined tradeoff parameter. T frames

annotations in total are involved in the “recurrence training”

procedure [55, 12]. BCE and CE are binary cross entropy

and cross entropy loss, respectively. Objects annotations in

BCE can be obtained by simply combining the instance-

level labels. In this way, we can sufficiently use both

objects-level and instance-level annotations for network su-

pervision. We utilize videos from Youtube-VOS18 [57] and

DAVIS17 [34] datasets to train the network. The video clip

lengthT+1is set to 4. We employ a random 740×384 crop

for each frame with random flipping, rotation and scaling

for data augmentation. Our model is implemented on Py-

Torch and trained on four NVIDIA Tesla V100 GPUs with

32 GB memory per card. The batch size is set to 16. We op-

timize the loss function with Adam optimizer using “poly”

learning schedule, with the base learning rate of 1e-5 and

power of 1.0. λ is set to 1.0.

Network Inference. After training, we apply our learned

model for the unseen video sequences directly. Similar to

the previous works [55, 30, 18], we process each video in

a temporally sequential manner. For the first T frames, we

take all of them as the support images with corresponding
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predictions. Starting from T + 1 frame, we perform a tem-

poral sampling[45] from the processed frames to construct

the support set. As the first frame and its annotation always

provide the most reliable information, we absorb the first

frame into the support set every time. Our full model runs

at a speed of 6.6 FPS. We also evaluate a faster version of

our approach that achieves a speed of 9.1 FPS, with only a

slight degradation in segmentation accuracy. All our imple-

mentations, trained models, and segmentation results will

be released to provide the full details of our approach.

4. Experiments

4.1. Experimental Setup

To demonstrate the effectiveness of our method, we

apply it to two famous one-shot VOS datasets including

DAVIS17 [34] and Youtube-VOS18 [57].

DAVIS17 contains 150 video sequences, totaling 10,459 an-

notated frames. The whole dataset is divided into three sub-

sets: training set (60 videos), val set (30 videos) and test-

dev set (30 videos). Following the standard evaluation pro-

tocol[34], we adopt two evaluation metrics: region similar-

ity J which denotes the mean IoU between the prediction

and ground truth, and boundary accuracy F which is aver-

age similarity measure between the boundary of the predic-

tion and the ground truth.

Youtube-VOS18 is the latest large-scale dataset for video

object segmentation. Similar to DAVIS17, this dataset con-

tains three subsets: training set (3,471 videos), val set (507

videos) and test-dev set (541 videos). The training set cov-

ers 65 categories, the val set contains additional 26 unseen

categories while the test-dev set contains 29 unseen cate-

gories. These unseen categories are used for measuring the

generalization ability of the evaluation methods. J and F
are separately computed for the seen and unseen sets.

4.2. Ablation Study

In this section, we analyze the effect of the individual

components of our method to the final performance. Table 1

shows the diagnostic experiment results on the DAVIS17 val

set[34]. The experimental results are evaluated by mean J
and mean F . All the variants are retrained independently

with their specific network architectures.

Importance of Instance Embedding. We first study the

effect of instance embedding learning. As seen, removing

instance embedding leads to huge performance degradation

(mean J : 80.2→76.4, mean F : 85.3→81.8). This per-

formance gap attributes to that the proposed instance em-

bedding learning can mine instance relationship to facilitate

object segmentation.

Effectiveness of Global Embedding. Next, we assess the

impact of global embedding according to the segmentation

results. From the third row of Table 1, it clearly shows that

global embedding learning also helps to improve the seg-

mentation performance. This suggests that leveraging the

Davis17
Aspects Module

mean J ∆J mean F ∆F

Reference Full model (5 Support Images) 80.2 - 85.3 -

Embedding

Learning

w/o. Instance Embedding 76.4 -3.8 81.8 -3.5

w/o. Global Embedding 79.0 -1.2 83.8 -1.5

Multi-Variants

Analysis

w/o. Temporal Attention 78.9 -1.3 84.2 -1.1

w/o. Refine Decoder 78.7 -1.5 83.7 -1.6

Support Set

Size (T )

First 69.8 -10.4 76.5 -8.8

Previous 69.4 -10.8 74.6 -10.7

2 79.9 -0.3 85.0 -0.3

3 79.9 -0.3 84.9 -0.4

4 79.8 -0.4 85.0 -0.3

5 80.2 0.0 85.3 0.0

6 80.0 -0.2 85.2 -0.1

Table 1: Ablation study on DAVIS17 [34] val set (§4.2). The

mean J and mean F are adapted.

global context information in objects granularity provides a

prior knowledge for the instance-level discrimination.

Temporal Attention Mechanism. It is also of interest to

verify the effectiveness of the proposed temporal attention

mechanism. We can see that removing this module also

leads to the performance degradation (-1.0 and -0.8 in terms

of mean J and F). This observation suggests that assigning

various weights for the support images adaptively leads to

a balance between target appearance variation and object

re-identification when compared to fixed weight.

Support Set Size. Finally, we investigate the influence of

support set size on the final performance in-depth. With

more reference images in the support set (1→5), better per-

formance can be obtained. However, more support images

(5→6) has a slight influence on the final performance. The

reason is that most videos in these datasets are short-term

sequences, and five support images are enough for captur-

ing global information. In addition, performances that cor-

respond to the first frame and previous frame are inferior to

all other cases. This further proves the importance of the

proposed temporal attention.

4.3. Quantitative Results

We compare the proposed method with several strong

baselines on the three aforementioned challenging datasets.

DAVIS17 [34] val set and test-dev set: The performance of

our network on DAVIS17 is shown in Table2 and Table3 in

comparison with more than eighteen VOS methods. Overal-

l, our model outperforms all the contemporary methods and

achieves better performance in terms of mean J&F (82.7),

mean J (80.2) and mean F (85.3) on val set. Notably,

our method obtains a much higher score for both region

similarity and contour accuracy compared to several repre-

sentative divide-and-rule scheme methods that handle each

instance independently, such as RGMP [55], RANet [53],

STM [30] and GC [22]. Meanwhile, compared to region

proposal based methods: PReMVOS [27], CFBI [61] and

DMMNet [63], our method outperforms these methods by
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Table 2: Evaluation of O-VOS on DAVIS17 val set (§4.3), with region similarity J , boundary accuracy F and average of J&F . Speed

is also reported.

Method OSMN[60] SIMMASK[46] FAVOS[9] RVOS[42] OSVOS[5] AGAME[18] OnAVOS[44] RGMP[55] OSVOS-S[28] RANet[53] FEELVOS[43]

J&F Mean ↑ 54.8 65.4 58.2 60.6 60.3 71.0 65.4 66.7 68.0 65.7 71.5

J

Mean ↑ 52.5 54.3 54.6 57.5 56.6 68.5 61.6 64.8 64.7 63.2 69.1

Recall↑ 60.9 62.8 61.1 65.2 63.8 78.4 67.4 74.1 74.2 73.7 79.1

Decay↓ 21.5 19.3 14.1 24.9 26.1 14.0 27.9 18.9 15.1 18.6 17.5

F

Mean ↑ 57.1 58.5 61.8 63.6 63.9 73.6 69.1 68.6 71.3 68.2 74.0

Recall↑ 66.1 67.5 72.3 73.2 73.8 83.4 75.4 77.7 80.7 78.8 83.8

Decay↓ 24.3 21.0 18.0 28.2 27.0 15.8 26.6 19.6 18.5 19.7 20.1

Times (s) 0.13 0.028 1.8 1.8 7.0 0.07 13 0.13 4.5 0.13 0.5

Method CINM[2] PReMVO[27] DMMNet[63] STM[30] AGSS[23] TVOS[65] FRTM[35] GC[22] CFBI [61] Ours fast Ours

J&F Mean ↑ 70.6 77.8 70.7 81.8 67.4 72.3 76.9 71.4 81.9 81.2 82.7

J

Mean ↑ 67.2 73.9 68.1 79.2 69.9 69.9 74.0 69.3 79.1 78.7 80.2

Recall↑ 74.5 83.1 77.3 88.7 - 83.7 85.9 - - 89.0 90.0

Decay↓ 24.6 16.2 16.8 8.0 - 13.9 8.8 - - 5.8 6.3

F

Mean ↑ 74.0 81.8 73.3 84.3 64.9 74.7 79.8 73.5 84.6 83.7 85.3

Recall↑ 81.6 88.9 82.7 91.8 - 86.6 92.1 - - 93.0 93.9

Decay↓ 26.2 19.5 23.5 10.5 - 18.4 13.1 - - 8.0 8.6

Times (s) 38 70 2.7 0.18 0.10 0.03 0.11 - 0.45 0.11 0.15

Table 3: Evaluation of O-VOS on DAVIS17 test-dev set (§4.3), with region similarity J , boundary accuracy F and average of J&F .

Speed is also reported.

Method OSMN[60] FAVOS[9] OSVOS[5] OnAVOS[44] OSV OSS [28] RGMP[55] FEELVOS[43] Lucid[19]

J&F Mean ↑ 41.3 43.6 50.9 52.8 57.5 52.9 57.8 66.7

J Mean ↑ 37.7 42.9 47.0 49.9 52.9 51.3 55.1 63.4

F Mean ↑ 44.9 44.2 54.8 55.7 62.1 54.4 60.4 69.9

Times (s) 0.13 1.8 7.0 13 1.8 0.13 0.5 >10000

Method CINM[2] DyeNet[21] PReMVOs[27] STM[30] AGSS[23] TVOS[65] Ours fast Ours

J&F Mean ↑ 67.5 68.2 71.6 72.3 57.2 63.1 73.4 75.2

J Mean ↑ 64.5 65.8 67.5 69.3 54.8 58.8 70.0 72.0

F Mean ↑ 70.5 70.5 75.7 75.2 59.7 67.4 76.8 78.3

Times (s) 38 0.5 70 0.18 0.11 0.03 0.11 0.15

a large margin (82.7 vs 77.8 and 82.7 vs 70.7). Final-

ly, our approach outperforms all embedding based meth-

ods: FEELVOS [43], TVOS [65] and AGSS [65]. We at-

tribute our performance improvement to the consideration

of the instance relation during network learning. Further-

more, we report the segmentation speed by averaging the

inference times for all instances. We can see that our fast

version yields better performance than recent higher frame-

rates methods (e.g., FRTM[35] and TVOS[65]) meanwhile

maintains the favorable speed.

For completeness, we also evaluate our approach on

DAVIS17 test-dev set. This subset is much more challeng-

ing than val set due to that the heavy and long-term oc-

clusions among instances belonging to the same category

are more frequent. The performance of all the compared

methods degrade on this dataset, however, our method still

outperforms all compared methods. We attribute the per-

formance advances to the help of the proposed temporal at-

tention mechanism, which plays the role of re-identification

function. Ours outperforms these methods with a J & F
score of 75.2. In addition, our fast version is faster than all

previous approaches, maintaining a J & F score of 73.4.

Youtube-VOS18 [57]: Moreover, we report the segmenta-

tion results on Youtube-VOS18 in Table 4. Our approach

obtains a final score of 80.6, significantly outperforming re-

cent state-of-the-arts models: STM [30], TVOS [65], FRT-

M [35] and EGMP [25]. Considering Youtube-VOS18 con-

tains more multiple-instances sequences, the performance

promotion over STM on this dataset is more significan-

t than that on DAVIS17 (79.4→80.6). Notably that there

are 507 sequences with more than 12,576 frames in total,

such average promotion over STM is remarkable. Com-

pared to memory-based methods: S2S[57] and FRTM[35],

our model achieves much higher performance (i.e., 80.6 vs

64.4, 80.6 vs 71.3), which verifies the effectiveness of our

two-stream embedding learning mechanism. Our method

again outperforms other embedding learning based VOS

competitors (e.g., FEELVOS[43] and AGSS[65]) across all

the metrics. Moreover, our method performs favorably on

both seen and unseen categories (mean J : 80.7 and 75.0).

4.4. Qualitative Results

Fig. 4 shows some visual results at different time step-

s (uniformly sampled percentage w.r.t. the whole video

length) with the main counterpart: STM [30]. Benefit

from taking the instance relation into account during the
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Table 4: Evaluation of O-VOS on Youtube-VOS18 val set (§4.3), with region similarity J and boundary accuracy F . “Overall”:

averaged over the four metrics.

MSK OSMN RGMP OnAVOS RVOS OSVOS S2S AGAME PreMVOS DMMNet STM AGSS TVOS FRTM EGMPMethod
[32] [60] [55] [44] [42] [5] [57] [18] [27] [63] [30] [23] [65] [35] [25]

Ours fast Ours

Overall 53.1 51.2 53.8 55.2 56.8 58.8 64.4 66.1 66.9 58.0 79.4 71.3 67.8 71.3 80.2 79.0 80.6

se
en MeanJ ↑ 59.9 60.0 59.5 60.1 63.6 59.8 71.0 67.8 71.4 60.3 79.7 71.3 67.1 72.2 80.7 79.4 80.7

MeanF ↑ 59.5 60.1 - 62.7 67.2 60.5 70.0 - 75.9 63.5 84.2 75.2 69.4 76.1 85.1 83.9 85.0

u
n
se

en MeanJ ↑ 45.0 40.6 45.2 46.6 45.5 54.2 55.5 60.8 56.5 50.6 72.8 65.5 63.0 64.5 74.0 72.6 75.0

MeanF ↑ 47.9 44.0 - 51.4 51.0 60.7 61.2 - 63.7 57.4 80.9 73.1 71.6 72.7 80.9 80.1 81.9
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Figure 4: Qualitative comparison between STM [30] and ours on DAVIS17 val, DAVIS17 test-dev and Youtube-VOS18

(§4.4). For the case in Youtube-VOS18, the annotations of bike and human are provided in different frames separately.

instance embedding learning, our method yields more pre-

cise segmentation compared to STM. In the first sequence

(i.e., soapbox), while STM can segment out the primary in-

stances, they predict a confusion label for the cart body.

In the second video (i.e., aerobatics), it can be observed

that STM quickly fails to segment out helicopter part. By

comparison, equipped with temporal attention mechanism,

our method can capture the temporal coherence and suc-

ceed in tracking the whole body. On the third video (i.e.,

9c81364fc6), we can see that STM can not capture the ac-

curate boundary between the objects while our method can

discriminate the detailed boundary well by considering the

instance relation. On these challenging videos, STM can

not tackle the scenario well, by using the relation to facil-

itate embedding learning, our method can handle different

targets successfully. Overall, both quantitative and qualita-

tive results verify the effectiveness of the proposed embed-

ding based VOS approach.

5. Conclusion

In this paper, we have proposed a semi-supervised VOS

method from the embedding learning view. We started with

the observation that most current VOS methods omit the

underlying relationship between different instances during

network learning. Based on this insight, we proposed to

learn a global feature embedding for capturing the saliency

information and local instance-specific embedding to distin-

guish each instance in an end-to-end way. Corresponding-

ly, both objects-level and instance-level supervisions from

instance annotation are sufficiently exploited to guide net-

work learning. Besides, to balance the demand trade-off

between target appearance variation and re-detection for oc-

clusion, we introduced a temporal attention mechanism for

support images. Experiment showed that each componen-

t of our method is highly effective and achieved satisfying

results on DAVIS17 and Youtube-VOS18.
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beláez, Alex Sorkine-Hornung, and Luc Van Gool. The 2017

davis challenge on video object segmentation. arXiv preprint

arXiv:1704.00675, 2017. 1, 2, 5, 6
[35] Andreas Robinson, Felix Jaremo Lawin, Martin Danelljan,

Fahad Shahbaz Khan, and Michael Felsberg. Learning fast

and robust target models for video object segmentation. In

CVPR, 2020. 2, 3, 7, 8
[36] Hongje Seong, Junhyuk Hyun, and Euntai Kim. Kernelized

memory network for video object segmentation. In ECCV,

2020. 2
[37] Hongmei Song, Wenguan Wang, Sanyuan Zhao, Jianbing

16844



Shen, and Kin-Man Lam. Pyramid dilated deeper convlst-

m for video salient object detection. In ECCV, 2018. 2
[38] Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston, and Rob

Fergus. End-to-end memory networks. In NIPS, 2015. 2, 3
[39] Zhi Tian, Chunhua Shen, and Hao Chen. Conditional convo-

lutions for instance segmentation. ECCV, 2020. 3
[40] David Tsai, Matthew Flagg, Atsushi Nakazawa, and

James M Rehg. Motion coherent tracking using multi-label

mrf optimization. International Journal of Computer Vision,

100(2):190–202, 2012. 2
[41] Yi-Hsuan Tsai, Ming-Hsuan Yang, and Michael J Black.

Video segmentation via object flow. In CVPR, 2016. 2
[42] Carles Ventura, Miriam Bellver, Andreu Girbau, Amaia Sal-

vador, Ferran Marques, and Xavier Giro-i Nieto. Rvos: End-

to-end recurrent network for video object segmentation. In

CVPR, 2019. 1, 2, 7, 8
[43] Paul Voigtlaender, Yuning Chai, Florian Schroff, Hartwig

Adam, Bastian Leibe, and Liang-Chieh Chen. Feelvos: Fast

end-to-end embedding learning for video object segmenta-

tion. In CVPR, 2019. 2, 5, 7
[44] Paul Voigtlaender and Bastian Leibe. Online adaptation of

convolutional neural networks for video object segmenta-

tion. In BMVC, 2017. 2, 7, 8
[45] Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua

Lin, Xiaoou Tang, and Luc Van Gool. Temporal segment

networks: Towards good practices for deep action recogni-

tion. In ECCV, 2016. 6
[46] Qiang Wang, Li Zhang, Luca Bertinetto, Weiming Hu, and

Philip HS Torr. Fast online object tracking and segmentation:

A unifying approach. In CVPR, 2019. 7
[47] Wenguan Wang, Xiankai Lu, Jianbing Shen, David J Cran-

dall, and Ling Shao. Zero-shot video object segmentation

via attentive graph neural networks. In ICCV, 2019. 2
[48] Wenguan Wang, Jianbing Shen, Xiankai Lu, Steven CH Hoi,

and Haibin Ling. Paying attention to video object pattern

understanding. IEEE TPAMI, 2020. 2
[49] Wenguan Wang, Jianbing Shen, Fatih Porikli, and Ruigang

Yang. Semi-supervised video object segmentation with

super-trajectories. IEEE TPAMI, 41(4):985–998, 2018. 2
[50] Wenguan Wang, Jianbing Shen, Ruigang Yang, and Fatih

Porikli. Saliency-aware video object segmentation. IEEE

TPAMI, 40(1):20–33, 2017. 2
[51] Xinlong Wang, Tao Kong, Chunhua Shen, Yuning Jiang, and

Lei Li. Solo: Segmenting objects by locations. In ECCV,

2020. 3
[52] Yuqing Wang, Zhaoliang Xu, Hao Shen, Baoshan Cheng,

and Lirong Yang. Centermask: single shot instance segmen-

tation with point representation. In CVPR, 2020. 1, 3, 4
[53] Ziqin Wang, Jun Xu, Li Liu, Fan Zhu, and Ling Shao. Ranet:

Ranking attention network for fast video object segmenta-

tion. In ICCV, 2019. 6, 7
[54] Jason Weston, Sumit Chopra, and Antoine Bordes. Memory

networks. ICLR, 2015. 2, 3
[55] Seoung Wug Oh, Joon-Young Lee, Kalyan Sunkavalli, and

Seon Joo Kim. Fast video object segmentation by reference-

guided mask propagation. In CVPR, 2018. 1, 2, 3, 4, 5, 6, 7,

8
[56] Enze Xie, Peize Sun, Xiaoge Song, Wenhai Wang, Xuebo

Liu, Ding Liang, Chunhua Shen, and Ping Luo. Polarmask:

Single shot instance segmentation with polar representation.

In CVPR, 2020. 3
[57] Ning Xu, Linjie Yang, Yuchen Fan, Jianchao Yang, D-

ingcheng Yue, Yuchen Liang, Brian Price, Scott Cohen, and

Thomas Huang. Youtube-vos: Sequence-to-sequence video

object segmentation. In ECCV, 2018. 1, 2, 5, 6, 7, 8
[58] Shuangjie Xu, Daizong Liu, Linchao Bao, Wei Liu, and Pan

Zhou. Mhp-vos: Multiple hypotheses propagation for video

object segmentation. In CVPR, 2019. 1, 3
[59] Brandon Yang, Gabriel Bender, Quoc V Le, and Jiquan N-

giam. Condconv: Conditionally parameterized convolutions

for efficient inference. In NIPS, 2019. 3
[60] Linjie Yang, Yanran Wang, Xuehan Xiong, Jianchao Yang,

and Aggelos K Katsaggelos. Efficient video object segmen-

tation via network modulation. In CVPR, 2018. 2, 7, 8
[61] Zongxin Yang, Yunchao Wei, and Yi Yang. Collaborative

video object segmentation by foreground-background inte-

gration. In ECCV, 2020. 4, 6, 7
[62] Hui Ying, Zhaojin Huang, Shu Liu, Tianjia Shao, and Kun

Zhou. Embedmask: Embedding coupling for one-stage in-

stance segmentation. arXiv, 2019. 3
[63] Xiaohui Zeng, Renjie Liao, Li Gu, Yuwen Xiong, Sanja Fi-

dler, and Raquel Urtasun. Dmm-net: Differentiable mask-

matching network for video object segmentation. In ICCV,

2019. 1, 2, 6, 7, 8
[64] Lu Zhang, Jianming Zhang, Zhe Lin, Radomr Mch, Huchuan

Lu, and You He. Unsupervised video object segmentation

with joint hotspot tracking. In ECCV, 2020. 1
[65] Yizhuo Zhang, Zhirong Wu, Houwen Peng, and Stephen Lin.

A transductive approach for video object segmentation. In

CVPR, 2020. 3, 7, 8

16845


