
KeepAugment: A Simple Information-Preserving

Data Augmentation Approach

Chengyue Gong1, Dilin Wang2, Meng Li2, Vikas Chandra2, Qiang Liu1

1 University of Texas at Austin 2 Facebook

{cygong, lqiang}@cs.utexas.edu, {wdilin, meng.li, vchandra}@fb.com

Abstract

Data augmentation (DA) is an essential technique for

training state-of-the-art deep learning systems. In this pa-

per, we empirically show that the standard data augmen-

tation methods may introduce distribution shift and conse-

quently hurt the performance on unaugmented data during

inference. To alleviate this issue, we propose a simple yet

effective approach, dubbed KeepAugment, to increase the

fidelity of augmented images. The idea is to use the saliency

map to detect important regions on the original images and

preserve these informative regions during augmentation.

This information-preserving strategy allows us to generate

more faithful training examples. Empirically, we demon-

strate that our method significantly improves upon a num-

ber of prior art data augmentation schemes, e.g. AutoAug-

ment, Cutout, random erasing, achieving promising results

on image classification, semi-supervised image classifica-

tion, multi-view multi-camera tracking and object detection.

1. Introduction

Recently, data augmentation is proven to be a crucial

technique for solving various challenging deep learning

tasks, including image classification [e.g. 8, 39, 4, 5], natu-

ral language understanding [e.g. 7], speech recognition [25]

and semi-supervised learning [e.g. 36, 29, 1]. Notable ex-

amples include regional-level augmentation methods, such

as Cutout [8] and CutMix [39], which mask or modify

randomly selected rectangular regions of the images; and

image-level augmentation approaches, such as AutoAug-

ment [4] and Fast Augmentation [18]), which leverage re-

inforcement learning to find optimal policies for selecting

and combining different label-invariant transforms (e.g., ro-

tation, color-inverting, flipping).

Although data augmentation increases the effective data

size and promotes diversity in training examples, it in-

evitably introduces noise and ambiguity into the training

process. Hence the overall performance would deteriorate if

the augmentation is not properly modulated. For example,

as shown in Figure 1, random Cutout (Figure 1 (a2) and

(b2)) or RandAugment (Figure 1 (a3) and (b3)) may de-

stroy the key characteristic information of original images

that is responsible for classification, creating augmented im-

ages to have wrong or ambiguous labels.

In this work, we propose KeepAugment, a simple yet

powerful adaptive data augmentation approach that aims to

increase the fidelity of data augmentation by always keep-

ing important regions untouched during augmentation. The

idea is very simple: at each training step, we first score

the importance of different regions of the original images

using attribution methods such as saliency-map [28]; then

we perform data augmentation in an adaptive way, such

that regions with high importance scores always remain in-

tact. This is achieved by either avoiding cutting critical

high-score areas (see Figure 1(a5) and (b5)), or pasting the

patches with high importance scores to the augmented im-

ages (see Figure 1(a6) and (b6)).

Although KeepAugment is very simple and computa-

tionally efficient, the empirical results on a variety of vi-

sion tasks show that it can significantly improve the prior

art data augmentation (DA) baselines. Specifically, for im-

age classification, we achieve improvements on existing DA

techniques, including Cutout [8], AutoAugment [4],

and CutMix [39], boosting the performance on CIFAR-10

and ImageNet across various neural architectures. In par-

ticular, we achieve 98.7% test accuracy on CIFAR-10 us-

ing PyramidNet-ShakeDrop [38] by applying our method

on top of AutoAugment. When applied to multi-view

multi-camera tracking, we improve upon the recent state-of-

the-art results on the Market1501 [44] dataset. In addition,

we demonstrate that our method can be applied to semi-

supervised learning and the model trained on ImageNet us-

ing our method can be transferred to COCO 2017 objec-

tive detection tasks [21] and allows us to improve the strong

Detectron2 baselines [35].
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(a1) Red fox (a2) Cutout (a3) RandAugment (b1) Dog (b2) Cutout (b3) RandAugment

(a4) Saliency map (a5) Keep+Cutout (a6) Keep+RandAugment (b4) Saliency map (b5) Keep+Cutout (b6) Keep+RandAugment

Figure 1. KeepAugment improves existing data augmentation by always keeping the important regions (measured using saliency map)

of the image untouched during augmentation. This is achieved by either avoiding to cut important regions (see KeepCutout), or pasting

important regions on top of the transformed images (see KeepRandAugment). Images are from ImageNet [6].

2. Data Augmentation

In this work, we focus on label-invariant data augmen-

tation due to their popularity and significance in boosting

empirical performance in practice. Let x be an input im-

age, data augmentation techniques allow us to generate new

images x′ = A(x) that are expected to have the same la-

bel as x, where A denotes a label-invariant image trans-

form, which is typically a stochastic function. Two classes

of augmentation techniques are widely used for achieving

state-of-the-art results on computer vision tasks:

Region-Level Augmentation Region-level augmentation

schemes, including Cutout [8] and random erasing [45],

work by randomly masking out or modifying rectangu-

lar regions of the input images, thus creating partially

occluded data examples outside the span of the training

data. This procedure could be conveniently formulated as

applying randomly generated binary masks to the origi-

nal inputs. Precisely, consider an input image x of size

H × W , and a rectangular region S of the image domain.

Let M(S) = [Mij(S)]ij be the binary mask of S with

Mij(S) = I((i, j) ∈ S). Then the augmented data can

be generated by modifying the image on region S, yielding

images of form x′ = (1−M(S))⊙ x+M(S)⊙ δ, where

⊙ is element-wise multiplication, and δ can be either zeros

(for Cutout) or random numbers (for random erasing). See

Figure 1(a2) and (b2) for examples.

Image-Level Augmentation Exploiting the invariance

properties of natural images, image-level augmentation

methods apply label-invariant transformations on the whole

image, such as solarization, sharpness, posterization, and

color normalization. Traditionally, image-level transforma-

tions are often manually designed and heuristically chosen.

Recently, AutoAugment [4] applies reinforcement learning

to automatically search optimal compositions of transfor-

mations. Several subsequent works, including RandAug-

ment [5], Fast AutoAugment [18], alleviate the heavy com-

putational burden of searching on the space of transforma-

tion policies by designing more compact search spaces. See

Figure 1(b3) and Figure 1(a3) for examples of transforms

used by RandAugment.

Data Augmentation and its Trade-offs Although data

augmentation increases the effective size of data, it may in-

evitably cause loss of information and introduce noise and

ambiguity if the augmentation is not controlled properly

[e.g. 34, 12]. To study this phenomenon empirically, we

plot the train and testing accuracy on CIFAR-10 [16] when

we apply Cutout with increasingly large cutout length in

Figure 2(a), and RandAugment with increasing distortion

magnitude (see [5] for the definition) in Figure 2(b). As

typically expected, the generalization (the gap between the

training and testing accuracy on clean data) improves as the

magnitude of the transform increases in both cases. How-

ever, when the magnitudes of the transform are too large

(≥ 16 for Cutout and ≥ 12 for RandAugment ), the

training accuracy (blue line), and hence the testing accuracy

(red line), starts to degenerate, indicating that augmented

data no longer faithfully represent the clean training data in

this case, such that the training loss on augmented data no

longer forms a good surrogate of the training loss on the

clean data.

3. Our Method

We introduce our method for controlling the fidelity of

data augmentation and hence decreasing harmful misinfor-
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(a) Cutout length in CutOut (b) Distortion magnitude in RandAugment

Figure 2. The training and testing accuracy of Wide ResNet-28-10 trained on CIFAR-10 with Cutout and RandAugment, when we vary

the cutout length of Cutout (a), and the distortion magnitude of RandAugment (b). We follow the same implementation details as in [8]

and [5]. For RandAugment, we fix the number of transformations to be 3 as suggested in [5].

mation. Our idea is to measure the importance of the rectan-

gular regions in the image by saliency map, and ensure that

the regions with the highest scores are always presented af-

ter the data augmentation: for Cutout , we achieve this by

avoiding to cut the important regions (see Figure 1(a5) and

(b5)); for image-level transforms such as RandAugment, we

achieve this by pasting the important regions on the top of

the transformed images (see Figure 1 (a6) and (b6)).

Specifically, let gij(x, y) be saliency map of an image x

on pixel (i, j) with the given label y. For a region S on the

image, its importance score is defined by

I(S, x, y) =
∑

(ij)∈S

gij(x, y). (1)

In our work, we use the standard saliency map based on

vanilla gradient [28]. Specifically, given an image x and its

corresponding label logit value ℓy(x), we take gij(x, y) to

be the absolute value of vanilla gradients |∇xℓy(x)|. For

RBG-images, we take channel-wise maximum to get a sin-

gle saliency value for each pixel (i, j).

Selective-Cut For region-level (e.g. cutout-based) aug-

mentation that masks or modifies randomly selected rectan-

gle regions, we control the fidelity of data augmentation by

ensuring that the regions being cut can not have large impor-

tance scores. This is achieved in practice by Algorithm 1(a),

in which we randomly sample regions S to be cut until its

importance score I(S, x, y) is smaller than a given thresh-

old τ . The corresponding augmented example is defined as

follows,

x̃ = (1−M(S))⊙ x, (2)

where M(S) = [Mij(S)]ij is the binary mask for S, with

Mij = I((i, j) ∈ S).

Selective-Paste Because image-level transforms modify

the whole images jointly, we ensure the fidelity of the trans-

form by pasting a random region with high importance

Algorithm 1 KeepAugment: An information-preserving

data augmentation approach

Input: given a network, an input image and label pair

(x, y), threshold τ

(a) if use Selective-Cut

repeat randomly select a mask region S until region

score I(S, x, y) < τ

x̃ = (1−M(S))⊙ x (see Eq. 2)

(b) if use Selective-paste

x′ = A(x) //apply data augmentation

repeat randomly select a mask region S until region

score I(S, x, y) > τ

x̃ = M(S)⊙ x+ (1−M(S))⊙ x′ (see Eq. 3)

Return x̃

score (see Figure 1(a6) and (b6) for an example). Algo-

rithm 1(b) shows how we achieve this in practice, in which

we draw an image-level augmented data x′ = A(x), uni-

formly sample a region S that satisfies I(S, x, y) > τ for a

threshold τ , and and paste the region S of the original image

x to x′, which yields

x̃ = M(S)⊙ x+ (1−M(S))⊙ x′. (3)

Similarly, Mij(S) = I((i, j) ∈ S) is the binary mask of

region S.

Remark In practice, we choose our threshold τ in an

adaptive way. Technically, given an image and consider

an region size h × w of interest, we first calculate the im-

portance scores of all possible candidate regions, following

Eq. 1; then we set our threshold to be the τ -quantile value of

all the importance scores I(S, x, y) of all candidate regions.

For selective-cut, we uniformly keep sampling a mask re-

gion S until its corresponding score I(S, x, y) is smaller

than the threshold. For selective-paste, we uniformly sam-

ple a region S with importance score is greater than the

threshold.

We empirically study the effect of our threshold τ on

CIFAR-10, illustrated in Figure 3. Intuitively, for selective-
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(a) threshold τ in CutOut (b) threshold τ in RandAugment
Figure 3. Analysis of the effect of threshold τ of our algorithm for Cutout (a) and RandAugment (b). In (a), we fix the cutout length 20. In

(b), We fix the number of transformation to be 3 and distortion magnitude to be 15 and the paste back region size to be 8× 8. We plot how

the accuracy changes with respect to different choices of τ . We use Wide ResNet-28-10 and train on CIFAR-10. The dash line (baseline)

in (a) represents test accuracy achieved by CutOut without selective-cut; the dash line baseline in (b) is the test accuracy achieved by

RandAugment without selective-paste.

cut, it’s more likely to cut out important regions as we use

an increasingly larger threshold τ ; on the contrary, a larger τ

corresponds to copy back more critical regions for selective-

paste. As we can see from Figure 3, for Cutout (Figure 3

(a)), we improve on the standard Cutout baseline (dash

line) significantly when the threshold τ is relative small

(e.g. τ ≤ 0.6) since we would always avoid cutting impor-

tant regions. As expected, the performance drops sharply

when important regions are removed with a relative large

threshold τ (e.g. τ = 0.8); for RandAugment (Figure 3

(b)), using a lower threshold (e.g., τ = 0.2) tends to yield

similar performance as the standard RandAugment base-

line (dash line). Increasing the threshold τ ( τ= 0.6 or 0.8)

yields better results. We notice that further increasing τ

(τ = 0.8) may hurt the performance slightly, likely be-

cause a large threshold yields too restrictive selection and

may miss other informative regions. we further evaluated

τ = 0, such that the saliency map information would be

ignored. With τ = 0, we achieved 97.3% accuracy, which

is worse compared to the result of our default setting (i.e.,

97.8% accuracy with τ = 0.6).

3.1. Efficient Implementation of KeepAugment

Note that our KeepAugment requires to calculate the

saliency maps via back-propagation at each training step.

Naive implementation leads to roughy twice of the compu-

tational cost. In this part, we propose two computational

efficient strategies for calculating saliency maps that over-

come this weakness.

Low resolution based approximation we proceed as fol-

lows: a) for a given image x, we first generate a low-

resolution copy and then calculate its saliency map; b) we

map the low-resolution saliency maps to their correspond-

ing original resolution. This allows us to speed up the

saliency maps calculation significantly, e.g., on ImageNet,

we achieve roughly 3× computation cost reduction by re-

ducing the resolution from 224 to 112.

Early classification head based approximation Our sec-

Low-Resolution

Calculate Saliency Map

Loss

Original Augment

(a) Low resolution based approximation

Calculate Saliency Map

Loss

Original Augment

(b) Early classification head based approximation

Figure 4. We demonstrate two different approaches for using

KeepAugment with less training time. Using Cutout as an ex-

ample, Figure (a) shows that we can use a low resolution copy to

calculate the saliency map, and then generate the augmented im-

age. Figure (b) shows that when calculating the saliency map, we

can use an additional loss at early layer of a given neural network.

ond idea is to introduce an early loss head in the network,

then we approximate saliency maps with this loss. In prac-

tice, we add an additional average pooling layer and a lin-

ear head after the first block of our networks evaluated. Our

training objective is the same as the Inception Network [31].

The neural network is trained with the standard loss together

with the auxiliary loss. We achieve about 3× computation

cost reduction in computing saliency maps.

Furthermore, in section 4, we show that both approxi-

mation strategies do not lead to any performance drop. In

the following, we denote our low resolution based approxi-

mation as low resolution and early classification head based

approximation as early loss for presentation clarity.

4. Experiments

In this section, we show our adaptive augmentation

strategy KeepAugment significantly improves on exist-

ing state-of-the-art data augmentation baselines on a va-
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Model ResNet-18 ResNet-110 Wide ResNet-28-10

Cutout 95.6±0.1 94.8±0.1 96.9±0.1

KeepCutout 96.1±0.1 95.5±0.1 97.3±0.1

KeepCutout (low resolution) 96.2±0.1 95.5±0.1 97.3±0.1

KeepCutout (early loss) 96.0±0.1 95.3±0.1 97.2±0.1

Model Wide ResNet-28-10 Shake-Shake PyramidNet+ShakeDrop

AutoAugment 97.3±0.1 97.4±0.1 98.5

KeepAutoAugment 97.8±0.1 97.8±0.1 98.7±0.0

KeepAutoAugment (low resolution) 97.8±0.1 97.9±0.1 98.7±0.0

KeepAutoAugment (early loss) 97.8±0.1 97.7±0.1 98.6±0.0

Table 1. Test accuracy (%) on CIFAR-10 using various models architectures.

riety of challenging deep learning tasks, including image

classification, semi-supervised image classification, multi-

view multi-camera tracking, and object detection. For

semi-supervised image classification and multi-view multi-

camera tracking, we use low resolution images to calculate

saliency maps as discussed above.

Settings We apply our method to improve prior art

region-level augmentation methods, including [8], CutMix

[39], Random Erasing [45] and image-level augmentation

approach, such as AutoAugment [4]. To sample the re-

gion of interest, for each image, we rank the absolute

saliency values measured on all candidate regions and take

our threshold to be the τ -th percentile value. We set τ to

0.6 for all our experiments. Additionally, we set the cutout

paste-back length to be 16 on CIFAR-10 and 40 on Ima-

geNet, which is the default setting used by Cutout [8].

For our low resolution based efficient training strategy, we

reduce the image width and height by half with bicubic in-

terpolation. For the early loss based approach, we use an

additional head (linear transform and loss) with a coefficient

of 0.3 after the first block of each network.

4.1. CIFAR10 Classification

We apply of our adaptive selective strategy to improve

two state-of-the-art augmentation schemes, Cutout and

RandAugment , on the CIFAR-10 1 [15] dataset. We

experiment with various of backbone architectures, such

as ResNets [13], Wide ResNets [40], PyramidNet Shake-

Drop [38] and Shake-Shake [9]. We closely follow the

training settings suggested in [8] and [5]. Specifically, we

train 1,800 epochs with cosine learning rate deacy [22] for

PyramidNet-ShakeDrop and 300 epochs for all other net-

works, We report the test test accuracy in Table 1. All

results are averaged over three random trials, except for

PyramidNet-ShakeDrop [38], on which only one random

trial is reported.

1https://www.cs.toronto.edu/˜kriz/cifar.html

From Table 1, we observe a consistent improvement on

test accuracy by applying our information-preserving aug-

mentation strategy.

Improve on CutOut We study the relative improvements

on Cutout across various cutout lengths. We use ResNet-

18 and train on CIFAR-10. We experiment with a variety

of cutout length from 8 to 24. As shown in Table 2, we

observe that our KeepCutout achieves increasingly signifi-

cant improvements over Cutout when the cutout regions

become larger. This is likely because that with large cutout

length, Cutout is more likely to remove the most infor-

mative region and hence introducing misinformation, which

in turn hurts the network performance. On the other hand,

with a small cutout length, e.g. 8, those informative regions

are likely to be preserved during augmentation; standard

Cutout strategy achieves better performance by taking

advantage of more diversified training examples.

Cutout length Cutout KeepCutout

8 95.3±0.0 95.1±0.0

12 95.4±0.0 95.5±0.0

16 95.6±0.0 96.1±0.0

20 95.5±0.1 96.0±0.1

24 94.9±0.1 95.6±0.1

Table 2. Test accuracy (%) of ResNet-18 on CIFAR-10. All re-

sults are averaged over 5 random trials.

Improve on AutoAugment In this case, we use the Au-

toAugment policy space, apply our selective-paste and

study the empirical gain over AutoAugment for four dis-

tortion augmentation magnitude (6, 12, 18 and 24). We

train Wide ResNet-28-10 on CIFAR-10 and closely follow

the training setting suggested in [4]. As we can see from

Table 3, our method yields better performance in all set-

tings consistently, and our improvements is more significant

when the transformation distortion magnitude is large.

1059



Magnitude AutoAugment KeepAutoAugment

6 96.9±0.1 97.3±0.1

12 97.1±0.1 97.5±0.1

18 97.1±0.1 97.6±0.1

24 97.3±0.1 97.8±0.1

Table 3. Test accuracy (%) of wide ResNet-28-10 on CIFAR-10

across varying distortion augmentation magnitudes. All results are

averaged over 5 random trials.

Wide ResNet-28-10 Accuracy (%) Time (s)

GridMask 97.5±0.1 92

AugMix 97.5±0.0 92

Attentive CutMix 97.3±0.1 127

KeepAutoAugment+L 97.8±0.1 111

ShakeShake Accuracy (%) Time (s)

GridMask 97.4±0.1 124

AugMix 97.5±0.0 124

Attentive CutMix 97.4±0.1 166

KeepAutoAugment+L 97.9±0.1 142

Table 4. Results on CIFAR-10 using various models architectures

and various baselines. ‘Time’ reports the per epoch training time

on one TITAN X GPU. ‘Accuracy’ reports the accuracy on test

set, which is averaged over 5 trials. ‘L’ denotes low resolution.

We use Wide ResNet-28-10, and the corresponding AutoAugment

baseline result is presented above.

Additional Comparisons on CIFAR-10 Recently, some

researchers [3, 33, 14] also mix the clean image and aug-

mented image together to achieve higher performance.

Girdmask [3], AugMix [14] and Attentive CutMix are

popular methods among these approaches. Here, we con-

duct experiments on CIFAR-10 to show the accuracy and

training cost of each method. Note that we implement all

the baselines by ourselves, and the results of our imple-

mentation are comparable or even better than the results re-

ported in the original papers.

Table 4 shows that our proposed algorithm can achieve

clear improvements on accuracy over all other baselines.

Moreover, Gridmask only implements upon Cutout and

Attentive CutMix only implements upon CutMix by

pasting the most important region. But our approach is more

flexible and can be easily applied to improve a large variety

of data augmentation schemes.

4.2. ImageNet Classification

We conduct experiments on large-scale challenging Im-

ageNet dataset, on which our adaptive augmentation algo-

rithm again shows clear advantage over existing methods.

Dataset and Settings We use ILSVRC2012, a subset

of ImageNet classification dataset [6], which contains

Method
ResNet-50 ResNet-101

Top-1 Top-5 Top-1 Top-5

Vanilla [13] 76.3 92.9 77.4 93.6

Dropout [30] 76.8 93.4 77.7 93.9

DropPath [17] 77.1 93.5 - -

Manifold Mixup [32] 77.5 93.8 - -

Mixup [41] 77.9 93.9 79.2 94.4

DropBlock [10] 78.3 94.1 79.0 94.3

RandAugment [5] 77.6 93.8 79.2 94.4

Random Erasing [45] 77.3 93.3 79.6 94.7

AutoAugment [4] 77.6 93.8 79.3 94.4

KeepAutoAugment 78.0 93.9 79.7 94.6

+ low resolution 78.1 93.9 79.7 94.6

+ early loss 77.9 93.8 79.6 94.5

CutMix [39] 78.6 94.0 79.9 94.6

KeepCutMix 79.0 94.4 80.3 95.1

+ low resolution 79.1 94.4 80.3 95.2

+ early loss 79.0 94.3 80.2 95.1
Table 5. Validation accuracy (%) on ImageNet using ResNet-50

and ResNet-101.

around 1.28 million training images and 50,000 valida-

tion images from 1,000 classes. We apply our adaptive

data augmentation strategy to improve CutMix [39] and

AutoAugment [4], respectively.

CutMix randomly mixes images and labels. To aug-

ment an image x with label y, CutMix removes a ran-

domly selected region from x and replace it with a patch of

the same size copied from another random image x′ with la-

bel y′. Meanwhile, the new label is mixed as λy+(1−λ)y′,
where λ equals the uncorrupted percentage of image x. We

improve on CutMix by using selective-cut. In practice,

we found it is often quite effective to simply avoiding cut-

ting informative region from x. We denote our adaptive

CutMix method as KeepCutMix. We further improve on

AutoAugment by pasting-backing randomly selected re-

gions with important score greater than τ = 0.6.

For a fair comparison, we closely follow the training set-

tings in CutMix [39] and AutoAugment [5]. We test

our method on both ResNet50 and ResNet101 [13]. Our

models are trained for 300 epochs, and the experiment is

implemented based on the open-source code 2.

Results We report the single-crop top-1 and top-5 accu-

racy on the validation set in table 5. Compared to CutMix,

we method KeepCutMix achieves 0.5% improvements on

top1 accuracy using ResNet-50 and 0.4% higher top1 ac-

curacy using ResNet101; compared to AutoAugment [4],

our method improves top-1 accuracy from 77.6% to 78.1%

and 79.3% to 79.7% using ResNet-50 and ResNet-101, re-

spectively. Again, we also notice that our accelerated ap-

2https://github.com/clovaai/CutMix-PyTorch
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Model R-18 R-110 Wide ResNet

Cutout 19 28 92

KeepCutout 38 +100.0% 54 +92.8% 185 +101.1%

+ low resolution 24 +26.3% 35 +25.0% 111 +20.6%

+ early loss 23 +13.0% 34 +21.1% 104 +13.0%

Table 6. Per epoch training time (seconds) on CIFAR-10. Here R-

18 and R-110 represents ResNet-18 and ResNet-110, respectively.

Model ResNet-50 ResNet-101

CutMix 41.5 68.6

CutMix + low resolution 49.8 +20.0% 83.5 +21.7%

CutMix + early loss 49.1 +18.3% 82.7 +20.6 %

AutoAugment 41.1 68.2

AutoAugment + low resolution 49.5 +20.4% 83.2 +21.9%

AutoAugment + early loss 48.9 +19.0% 82.4 +20.8%

Table 7. Average training time (minutes) per epoch.

proaches do not hurt the performance of the model. We also

notice that, similar to the results on CIFAR-10, the proposed

accelerating approach can speed up KeepAugment without

loss of accuracy on ImageNet.

Training time cost We provide additional training cost

comparisons on both CIFAR-10 and ImageNet in Table 6

and Table 7, respectively. On CIFAR-10, all models are

trained on one TITAN X GPU with batch size 128; On

ImageNet, we train all models on 8 TITAN X GPUs with

batch size 384. As we can see from Figure 6, our low reso-

lution and early loss based approximation significantly ac-

celerates the computation of salience maps. Meanwhile, in

general, our KeepAugment equipped with low resolution or

early loss based saliency map approximation leads to ∼20%

increase in per epoch training time compared to the cor-

responding baselines. To factor in this training overhead,

in Table 8, we increase the training budget of CutMix and

AutoAgument for additional 20%, from 300 epochs to 360

epochs. Comparing with our results in Table 5, our method

still yields the best performance.

Method Epochs Top-1 Top-5

CutMix 360 78.72 94.15

AutoAugment 360 77.63 93.85
Table 8. Validation accuracy (%) on ImageNet using ResNet-50.

4.3. SemiSupervised Learning

Semi-supervised learning (SSL) is a key approach to-

ward more data-efficient machine learning by jointly lever-

age both labeled and unlabeled data. Recently, data aug-

mentation has been shown a powerful tool for developing

state-of-the-art SSL methods. Here, we apply the proposed

method to unsupervised data augmentation [37] (UDA) on

4000 labels 2500 labels

UDA + RandAug 95.1±0.2 91.2±1.0

UDA + KeepRandAug 95.4±0.2 92.4±0.8
Table 9. Result on CIFAR-10 semi-supervised learning. ‘4000 la-

bels’ denotes that 4,000 images have labels.

CIFAR-10 to verify whether our approach can be applied to

more general applications.

UDA minimizes the following loss on unlabelled data:

Ex∼Du, x′∼Px

[

KL(pθ(· | x) ‖ pθ(· | x
′))

]

, where P de-

notes the randomized augmentation distribution, x′ denotes

an augmented image and θ denotes the neural network pa-

rameters. Notice that for semi-supervised learning, we do

not have labels to calculate the saliency map. Instead, we

use the max logit of pθ(· | x) to calculate the saliency map.

We simply replace the RandAug [5] in UDA with our pro-

posed approach, and use the WideResNet-28-2.

In Table 9, we show that our approach improves on Ran-

dAug and leads to improved semi-supervised learning per-

formance on CIFAR-10.

4.4. MultiView MultiCamera Tracking

We apply our adaptive data augmentation to improve a

state-of-the-art multi-view multi-camera tracking approach

[23]. Recent works [e.g. 23, 45, 44] have shown that data

augmentation is an effective technique for improving the

performance on this task.

Settings [23] builds a strong baseline based on Random

Erasing [45] data augmentation. Random Erasing is

similar to Cutout , except filling the region dropped with

random values instead of zeros. We improve over [23] by

only cutting out regions with importance score smaller than

τ = 0.6. We denote the widely-used open-source baseline

open-ReID 3 as the standard baseline in table 10. To ab-

late the role of our selective cutting-out strategy, we pursue

minima changes made to the baseline code base. We follow

all the training settings reported in [23], except using our

adaptive data augmentation strategy. We use ResNet-101 as

the backbone network.

We evaluate our method on a benchmark dataset, Mar-

ket1501 [44]. Market1501 contains 32,668 bounding boxes

of 1,501 identities, in which images of each identity are cap-

tured by at most six cameras.

Results We report test accuracy and mean average preci-

sion (mAP) of different methods in Table 10. Our method

achieves the best performance. In particular, we achieve a

95.0% accuracy and 87.4 mAP on Market1501.

3https://github.com/Cysu/open-reid
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Method
Market1501

Accuracy mAP

Standard Baseline 88.1±0.2 74.6±0.2

+ Bag of Tricks [23] 94.5±0.1 87.1±0.0

+ Ours 95.0±0.1 87.4±0.0
Table 10. We compare our method with the standard and [23] on

two benchmark datasets. mAP represents mean average precision.

Model Backbone Detectron2 Ours

Faster R-CNN ResNet50-C4 38.4 39.5

Faster R-CNN ResNet50-FPN 40.2 40.7

RetinaNet ResNet50-FPN 37.9 39.1

Faster R-CNN ResNet101-C4 41.1 42.2

Faster R-CNN ResNet101-FPN 42.0 42.9

RetinaNet ResNet101-FPN 39.9 41.2
Table 11. Detection mean Average Precision (mAP) Results on

COCO 2017 validation set. (mAP%) is reported for comparsion.

4.5. Transfer Learning: Object Detection

We demonstrate the transferability of our ImageNet pre-

trained models on the COCO 2017 [21] object detection

task, on which we observe significant improvements over

strong Detectron2 [35] baselines by simply applying

our pre-trained models as backbones.

Dataset and Settings COCO 2017 consists of 118,000

training images and 5,000 validation images. To verify that

our trained models can be widely useful for different de-

tector systems, we test several popular structures, including

Faster RCNN [26], feature pyramid networks [19] (FPN)

and RetinaNet [20]. We use the codebase provided by

Detectron2 [35], follow almost all the hyper-parameters

except changing the backbone networks from PyTorch

provided models to our models. For our method, we test

the ResNet-50 and ResNet-101 models trained with our

KeepCutMix.

Results We report mean average precision (mAP) on

the COCO 2017 validation set [21]. As we can see from Ta-

ble 11, our method consistently improves over baseline ap-

proaches. Simply replacing the backbone network with our

pre-trained model gives performance gains for the COCO

2017 object detection tasks with no additional cost. In par-

ticular, on the single-stage detector RetinaNet, we improve

the 37.9 mAP to 39.1, and 39.9 mAP to 41.2 for ResNet-50

and ResNet-101, respectively.

5. Related Works

Our work is most related to [12], which studies the im-

pact of affinity (or fidelity) and diversity of data augmenta-

tion empirically, and finds out that a good data augmenta-

tion strategy should jointly optimize these two aspects. Re-

cently, many other works also show the importance of bal-

ancing between fidelity and diversity. For example, [11] and

[43] show that optimize the worst case or choose the most

difficult augmentation policy is helpful, which indicates the

importance of diversity. [34] considers to correct the label

of noisy augmented examples by using a teacher network,

thus increasing fidelity. This approach also needs additional

supervision and only focus on one typical data augmenta-

tion method. Compared to these works, our augmentation

improves on stronger data augmentation by preserving in-

formative regions, thus naturally achieve fidelity and diver-

sity. It allows us to train better models by leveraging more

diversified faithful examples.

Our work focus on improving label-invariant data aug-

mentation. Another line of data augmentation schemes cre-

ate augmented examples by mixing both images and their

corresponding labels, exemplified by mixup [41], Manifold

Mixup [32], CutMix [39]. It is not clear how to quantify

noisy examples for label-mixing augmentation since labels

are also mixed, nevertheless we show empirically that our

selective-cut also improves on CutMix and leave further

extensions as our future work.

The idea of using saliency map for improving computer

vision systems have been widely explored in the literature.

Saliency map can be applied to object detection [42], seg-

mentation [24], knowledge distillation [2] and many more

[e.g. 2, 27]. We propose to use the saliency map to measure

the relative importance of different regions, thus improving

regional-level cutting-based data augmentation by avoiding

informative regions; or improving image-level augmenta-

tion techniques by pasting-back discriminative regions.

6. Conclusion

In this work, we empirically show that prior art data

augmentation schemes might introduce noisy training ex-

amples and hence limit their ability in boosting the over-

all performance. Thus we use saliency map to measure

the importance of each region, and propose to avoid cut-

ting important regions for region-level data augmentation

approaches, such as Cutout ; or pasting back critical ar-

eas from the clean data for image-level data augmentation,

like RandAugment and AutoAugment . Throughout an

extensive evaluation, we have demonstrated that our adap-

tive augmentation approach helps to significantly improve

the performance of image classification, multi-view multi-

camera tracking and object detection.
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