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Abstract

Face recognition is known to exhibit bias - subjects in a

certain demographic group can be better recognized than

other groups. This work aims to learn a fair face representa-

tion, where faces of every group could be more equally rep-

resented. Our proposed group adaptive classifier mitigates

bias by using adaptive convolution kernels and attention

mechanisms on faces based on their demographic attributes.

The adaptive module comprises kernel masks and channel-

wise attention maps for each demographic group so as to

activate different facial regions for identification, leading to

more discriminative features pertinent to their demographics.

Our introduced automated adaptation strategy determines

whether to apply adaptation to a certain layer by iteratively

computing the dissimilarity among demographic-adaptive

parameters. A new de-biasing loss function is proposed to

mitigate the gap of average intra-class distance between de-

mographic groups. Experiments on face benchmarks (RFW,

LFW, IJB-A, and IJB-C) show that our work is able to miti-

gate face recognition bias across demographic groups while

maintaining the competitive accuracy.

1. Introduction

Face recognition (FR) systems are known to ex-

hibit discriminatory behaviors against certain demographic

groups [21, 28, 40]. The 2019 NIST Face Recognition Ven-

dor Test [21] shows that all 106 tested FR algorithms exhibit

varying biased performances on gender, race, and age groups

of a mugshot dataset. Deploying biased FR systems to law

enforcement is potentially unethical [11]. Given the im-

plication of automated FR-driven decisions, it is crucial to

develop fair and unbiased FR systems to avoid the negative

societal impact. Note that, differ from the inductive bias

in machine learning [15], we define FR bias as the uneven

recognition performance w.r.t. demographic groups.

State-of-the-art (SOTA) FR algorithms [13, 33, 34, 48, 69,

70] rely on convolutional neural networks (CNNs) trained

on large-scale face datasets. Biases in data are transmitted
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Figure 1: (a) Our proposed group adaptive classifier (GAC) auto-

matically chooses between non-adaptive (“N”) and adaptive (“A”)

layer in a multi-layer network, where the latter uses demographic-

group-specific kernel and attention. (b) Compared to the baseline

with the 50-layer ArcFace backbone, GAC improves face verifi-

cation accuracy in most groups of RFW dataset [72], especially

under-represented groups, leading to mitigated FR bias, e.g., GAC

reduces biasness from 1.11 to 0.60.

to the FR models through network learning. For example, to

minimize the overall loss, a network tends to learn a better

representation for faces in the majority group whose data

dominate the training set, resulting in unequal discriminabil-

ities. However, the imbalanced demographic distribution of

face data is not the only trigger of FR bias. Prior works have

shown that even using a demographic balanced dataset [71]

or training separate classifiers for each group [40], the per-

formance on some groups is still inferior to the others. By

studying non-trainable FR algorithms, [40] introduced the

notion of inherent bias, i.e., certain groups are inherently

more susceptible to errors in face matching.

To tackle the dataset-induced bias, traditional methods

re-weight either the data proportions [6] or cost values [1].

Such methods are limited when applied to large-scale imbal-

anced datasets. Recent imbalance learning methods focus

on novel objective functions for class-skewed datasets. For

instance, Dong et al. [18] propose a Class Rectification Loss

to incrementally optimize on hard samples of the classes

with under-represented attributes. Alternatively, researchers

strengthen the decision boundary to impede perturbation

from other classes by enforcing margins between hard clus-

ters via adaptive clustering [31], or between rare classes via

Bayesian uncertainty estimates [38]. To adapt the aforemen-

tioned methods to racial bias mitigation, Wang et al. [71]
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modify the large margin based loss functions by reinforce-

ment learning. However, [71] requires two auxiliary net-

works, an offline sampling network and a deep Q-learning

network, to generate adaptive margin policy for training the

FR network, which hinders the learning efficiency.

To mitigate FR bias, our main idea is to optimize the face

representation learning on every demographic group in a sin-

gle network, despite demographically imbalanced training

data. Conceptually, we may categorize face features into two

types of patterns: general pattern is shared by all faces; dif-

ferential pattern is relevant to demographic attributes. When

the differential pattern of one specific demographic group

dominates training data, the network learns to predict iden-

tities mainly based on that pattern as it is more convenient

to minimize the loss than using other patterns, leading to

bias towards that specific group. One mitigation is to give

the network more capacity to broaden its scope for multiple

face patterns from different groups. An unbiased FR model

shall rely on both unique patterns for recognition of differ-

ent groups, and general patterns of all faces for improved

generalizability. Accordingly, as in Fig. 1, we propose a

group adaptive classifier (GAC) to explicitly learn these

different feature patterns. GAC includes two modules: the

adaptive layer and automation module. The adaptive layer

comprises adaptive convolution kernels and channel-wise

attention maps where each kernel and map tackle faces in

one demographic group. We also introduce a new objective

function to GAC, which diminishes the variation of average

intra-class distance between demographic groups.

Prior work on dynamic CNNs introduce adaptive convolu-

tions to either every layer [36, 73, 79], or manually specified

layers [27, 51, 67]. In contrast, we propose an automation

module to choose which layers to apply adaptations. As

we observed, not all convolutional layers require adaptive

kernels for bias mitigation (see Fig. 4a). At any layer of

GAC, only kernels expressing high dissimilarity are consid-

ered as demographic-adaptive kernels. For those with low

dissimilarity, their average kernel is shared by all inputs in

that layer. Thus, the proposed network progressively learns

to select the optimal structure for the demographic-adaptive

learning. Both non-adaptive layers with shared kernels and

adaptive layers are jointly learned in a unified network.

The contributions of this work include:

• A new face recognition algorithm that reduces demo-

graphic bias and tailors representations for faces in

every demographic group by adopting adaptive convo-

lutions and attention techniques;

• A new adaptation mechanism that automatically de-

termines the layers to employ dynamic kernels and

attention maps;

• The proposed method achieves SOTA performance on

a demographic-balanced dataset and three benchmarks.

2. Related Work

Fairness Learning and De-biasing Algorithms. A vari-

ety of fairness techniques are proposed to prevent machine

learning models from utilizing statistical bias in training

data, including adversarial training [2, 26, 52, 74], subgroup

constraint optimization [37,75,86], data pre-processing (e.g.,

weighted sampling [22], and data transformation [4]), and

algorithm post-processing [39, 58]. Another promising ap-

proach learns a fair representation to preserve all discern-

ing information about the data attributes or task-related at-

tributes but eliminate the prejudicial effects from sensitive

factors [11, 24, 55, 65, 82]. Locatello et al. [50] show the fea-

ture disentanglement is consistently correlated with increas-

ing fairness of general purpose representations by analyzing

12, 600 SOTA models. Accordingly, a disentangled repre-

sentation is learned to de-bias both FR and demographic

attribute estimation [20]. Other studies address the bias

issue in FR by leveraging unlabeled faces to improve the

performance in minority groups [59, 72]. Wang et al. [71]

propose skewness-aware reinforcement learning to mitigate

racial bias. Unlike prior work, our GAC is designed to cus-

tomize the classifier for each demographic group, which, if

successful, would lead to mitigated bias.

Adaptive Neural Networks. Three types of CNN-based

adaptive learning techniques are related to our work: adap-

tive architectures, adaptive kernels, and attention mechanism.

Adaptive architectures design new performance-based neu-

ral functions or structures, e.g., neuron selection hidden lay-

ers [30] and automatic CNN expansion for FR [84]. As CNN

advances many fields, prior works propose dynamic kernels

to realize content-adaptive convolutions [19, 45, 78]. Li et

al. [43] propose a shape-driven kernel for facial trait recogni-

tion where each landmark-centered patch has a unique kernel.

The works of [17, 44] use a kernel selection scheme to auto-

matically adjust the receptive field size based on inputs. To

better suit input data, [16] splits training data into clusters

and learns an exclusive kernel per cluster. Alternatively, one

may feed input images into a kernel function to dynamically

generate kernels [35, 42, 66, 81]. Despite its effectiveness,

such individual adaptation may not be suitable given the

diversity of faces in demographic groups. Our work is most

related to the side information adaptive convolution [36],

where in each layer a sub-network inputs auxiliary infor-

mation to generate filter weights. We mainly differ in that

GAC automatically learns where to use adaptive kernels in a

multi-layer CNN (see Figs. 2a and 2c), thus more efficient

and capable in applying to a deeper CNN.

As the human perception naturally selects the most per-

tinent piece of information, attention mechanisms are de-

signed for many tasks, e.g., detection [83], recognition [9],

image captioning [8], tracking [7], pose estimation [67],

segmentation [51], and image forgery [12, 49]. Normally,

attention weights are estimated by feeding images or fea-
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Figure 2: A comparison of approaches in adaptive CNNs. In contrast to (a) and (b), the adaptive units in GAC are constructed by demographic

information and are automatically applied to corresponding layers.

tures into a shared network, composed of convolutional

and pooling layers [3, 9, 46, 64] or multi-layer perceptron

(MLP) [29, 47, 61, 76]. Apart from feature-based attention,

Hou et al. [27] propose a correlation-guided cross attention

map for few-shot classification where the correlation be-

tween the class feature and query feature generates attention

weights. The work of [79] introduces a cross-channel com-

munication block to encourage information exchange across

channels. To accelerate channel interaction, Wang et al. [73]

propose a 1D convolution across channels for attention pre-

diction. Different from prior work, our attention maps are

constructed by demographic information (see Figs. 2b, 2c),

which improves the robustness of face representations in

every demographic group.

3. Methodology

3.1. Overview

Our goal is to train a FR network that is impartial to

individuals in different demographic groups. Unlike image-

related variations, e.g., large-poses or low-resolution faces

are harder to be recognized, demographic attributes are

subject-related properties with no apparent impact in rec-

ognizability of identity, at least from a layman’s perspec-

tive. Thus, an unbiased FR system should be able to obtain

equally salient features for faces across demographic groups.

However, due to imbalanced demographic distributions and

inherent face differences between groups, it was shown that

certain groups achieve higher performance even with hand-

crafted features [40]. Thus, it is impractical to extract fea-

tures from different demographic groups that exhibit equal

discriminability. Despite such disparity, a FR algorithm can

still be designed to mitigate the difference in performance.

To this end, we propose a CNN-based group adaptive

classifier that utilizes dynamic kernels and attention maps to

boost FR performance in all demographic groups considered

here. Specifically, GAC has two main modules, an adaptive

layer and an automation module. In an adaptive layer, face

images or feature maps are convolved with a unique kernel

for each demographic group, and multiplied with adaptive

attention maps to obtain demographic-differential features

for faces in a certain group. The automation module deter-

mines in which layers of the network adaptive kernels and

attention maps should be applied. As shown in Fig. 3, given

an aligned face, and its identity label yID, a pre-trained de-

mographic classifier first estimates its demographic attribute

yDemo. With yDemo, the image is then fed into a recogni-

tion network with multiple demographic adaptive layers to

estimate its identity. In the following, we present these two

modules.

3.2. Adaptive Layer

Adaptive Convolution. For a standard convolution in

CNN, an image or feature map from the previous layer

X 2 R
c⇥hX⇥wX

is convolved with a single kernel ma-

trix K 2 R
k⇥c⇥hK⇥wK

, where c is the number of input

channels, k the number of filters, hX and wX the input size,

and hK and wK the filter size. Such an operation shares

the kernel with every input going through the layer, and is

thus agnostic to demographic content, resulting in limited

capacity to represent minority groups. To mitigate the bias

in convolution, we introduce a trainable matrix of kernel

masks KM 2 R
n⇥c⇥hK⇥wK

, where n is the number of de-

mographic groups. In the forward pass, the demographic

label yDemo and kernel matrix KM are fed into the adaptive

convolutional layer to generate demographic adaptive filters.

Let Ki 2 R
c⇥hK⇥wK

denote the ith channel of the shared

filter. The ith channel of adaptive filter for group yDemo is:

K
yDemo

i = Ki

N
KM

yDemo
, (1)

where KM
yDemo

2 R
c⇥hK⇥wK

is the yDemo
th kernel mask

for group yDemo, and
N

denotes element-wise multiplica-

tion. Then the ith channel of the output feature map is given

by Zi = f(X ⇤K
yDemo

i ), where * denotes convolution, and

f(·) is activation. Unlike conventional convolution, samples

in every demographic group have a unique kernel KyDemo .

Adaptive Attention. Each channel filter in a CNN plays an

important role in every dimension of the final representation,

which can be viewed as a semantic pattern detector [8]. In the

adaptive convolution, however, the values of a kernel mask

are broadcast along the channel dimension, indicating that

the weight selection is spatially varied but channel-wise joint.
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Figure 3: Overview of the proposed GAC for mitigating FR bias. GAC contains two major modules: the adaptive layer and the automation

module. The adaptive layer consists of adaptive kernels and attention maps. The automation module is employed to decide whether a layer

should be adaptive or not.

Hence, we introduce a channel-wise attention mechanism

to enhance the face features that are demographic-adaptive.

First, a trainable matrix of channel attention maps M 2

R
n⇥k is initialized in every adaptive attention layer. Given

yDemo and the current feature map Z 2 R
k⇥hZ⇥wZ

, where

hZ and wZ are the height and width of Z, the ith channel of

the new feature map is calculated by:

Z
yDemo

i = Sigmoid(MyDemoi) · Zi, (2)

where MyDemoi is the entry in the yDemo
th row of M for

the demographic group yDemo at ith column. In contrast to

the adaptive convolution, elements of each demographic at-

tention map MyDemo
diverge in channel-wise manner, while

the single attention weight MyDemoi is spatially shared by

the entire matrix Zi 2 R
hZ⇥wZ

. The two adaptive matrices,

KM and M , are jointly tuned with all the other parameters

supervised by the classification loss.

Unlike dynamic CNNs [36] where additional networks

are engaged to produce input-variant kernel or attention map,

our adaptiveness is yielded by a simple thresholding function

directly pointing to the demographic group with no auxiliary

networks. Although the kernel network in [36] can generate

continuous kernels without enlarging the parameter space,

further encoding is required if the side inputs for kernel

network are discrete variables. Our approach, in contrast,

divides kernels into clusters so that the branch parameter

learning can stick to a specific group without interference

from individual uncertainties, making it suitable for discrete

domain adaptation. Further, the adaptive kernel masks in

GAC are more efficient in terms of the number of additional

parameters. Compared to a non-adaptive layer, the number

of additional parameters of GAC is n⇥ c⇥hK ⇥wK , while

that of [36] is s⇥ k ⇥ c⇥ hK ⇥ wK if the kernel network

is a one-layer MLP, where s is the dimension of input side

information. Thus, for one adaptive layer, [36] has s⇥k
n

times more parameters than ours, which can be substantial

given the typical large value of k, the number of filters.

3.3. Automation Module

Though faces in different demographic groups are adap-

tively processed by various kernels and attention maps, it is

inefficient to use such adaptations in every layer of a deep

CNN. To relieve the burden of unnecessary parameters and

avoid empirical trimming, we adopt a similarity fusion pro-

cess to automatically determine the adaptive layers. Since

the same fusion scheme can be applied to both types of adap-

tation, we take the adaptive convolution as an example to

illustrate this automatic scheme.

First, a matrix composed of n kernel masks is initialized

in every convolutional layer. As training continues, each

kernel mask is updated independently to reduce classifica-

tion loss for each demographic group. Second, we reshape

the kernel masks into 1D vectors V = [v1,v2, . . . ,vn],
where vi 2 R

l, l = c⇥ wK ⇥ hK is the kernel mask of the

ith demographic group. Next, we compute Cosine similar-

ity between two kernel vectors, θij = vi

kvik
·

vj

kvjk
, where

1  i, j  n. The average similarity of all pair-wise sim-

ilarities is obtained by θ = 2
n(n�1)

P

i

P

j θij , i 6= j. If

the dissimilarity �θ is lower than a pre-defined threshold τ ,

the kernel parameters in this layer reveal the demographic-

agnostic property. Hence, we merge the n kernels into a

single kernel by averaging along the group dimension. By

definition, a lower τ implies more adaptive layers. Given an

array of {�θi}
t (t is the total number of convolutional lay-

ers), we first sort the elements from smallest to highest, and

this way, layers whose �θi values are larger than τ will be

adaptive. Thus, when τ decreases, more layers will be adap-

tive. In the subsequent training, this single kernel can still

be updated separately for each demographic group, as the
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kernel may become demographic-adaptive in later epochs.

We monitor the similarity trend of the adaptive kernels in

each layer until θ is stable.

3.4. De-biasing Objective Function

Apart from the objective function for face identity classi-

fication, we also adopt a regress loss function to narrow the

gap of the intra-class distance between demographic groups.

Let g(·) denote the inference function of GAC, and Iijg is

the ith image of subject j in group g. Thus, the feature

representation of image Iijg is given by rijg = g(Iijg,w),
where w denotes the GAC parameters. Assuming the fea-

ture distribution of each subject is a Gaussian distribution

with identity covariance matrix (hyper-sphere), we utilize

the average Euclidean distance to every subject center as the

intra-class distance of each subject. In particular, we first

compute the center point of each identity-sphere:

µjg =
1

N

N
X

i=1

g(Iijg,w), (3)

where N is the total number of face images of subject j. The

average intra-class distance of subject j is as follows:

Distjg =
1

N

N
X

i=1

(rijg � µjg)
T (rijg � µjg). (4)

We then compute the intra-class distance for all subjects

in group g as Distg = 1
Q

PQ

j=1 Distjg, where Q is the

number of total subjects in group g. This allows us to lower

the difference of intra-class distance by:

Lbias =
λ

Q⇥ n

n
X

g=1

Q
X

j=1

�

�

�
Distjg �

1

n

n
X

g=1

Distg

�

�

�
, (5)

where λ is the coefficient for the de-biasing objective.

4. Experiments

Datasets Our bias study uses RFW dataset [72] for test-

ing and BUPT-Balancedface dataset [71] for training. RFW

consists of faces in four race/ethnic groups: White, Black,

East Asian, and South Asian 1. Each group contains ⇠10K

images of 3K individuals for face verification. BUPT-

Balancedface contains 1.3M images of 28K celebrities and

is approximately race-balanced with 7K identities per race.

Other than race, we also study gender bias. We com-

bine IMDB [60], UTKFace [85], AgeDB [54], AAF [10],

AFAD [56] to train a gender classifier, which estimates gen-

der of faces in RFW and BUPT-Balancedface. All face

1RFW [72] uses Caucasian, African, Asian, and Indian to name demo-

graphic groups. We adopt these groups and accordingly rename to White,

Black, East Asian, and South Asian for clearer race/ethnicity definition.

images are cropped and resized to 112 ⇥ 112 pixels via

landmarks detected by RetinaFace [14].

Implementation Details We train a baseline network and

GAC on BUPT-Balancedface, using the 50-layer ArcFace

architecture [13]. The classification loss is an additive Co-

sine margin in Cosface [70], with the scale and margin of

s = 64 and m = 0.5. Training is optimized by SGD with a

batch size 256. The learning rate starts from 0.1 and drops

to 0.0001 following the schedule at 8, 13, 15 epochs for the

baseline, and 5, 17, 19 epochs for GAC. We set λ = 0.1
for the intra-distance de-biasing. τ = �0.2 is chosen for

automatic adaptation in GAC. Our FR models are trained to

extract a 512-dim representation. Our demographic classi-

fier uses a 18-layer ResNet [25]. Comparing GAC and the

baseline, the average feature extraction speed per image on

Nvidia 1080Ti GPU is 1.4ms and 1.1ms, and the number of

model parameters is 44.0M and 43.6M, respectively.

Performance Metrics The common group fairness criteria

like demographic parity distance [50] are improper to evalu-

ate fairness of learnt representations, since they are designed

to measure independence properties of random variables.

However, in FR the sensitive demographic characteristics

are tied to identities, making these two variables correlated.

The NIST report uses false negative and false positive for

each demographic group to measure the fairness [21]. In-

stead of plotting false negative vs. false positives, we adopt

a compact quantitative metric, i.e., the standard deviation

(STD) of the performance in different demographic groups,

previously introduced in [20, 71] and called “biasness”. As

bias is considered as systematic error of the estimated values

compared to the actual values, here, we assume the average

performance to be the actual value. For each demographic

group, its biasness is the error between the average and the

performance on demographic group. The overall biasness

is the expectation of all group errors, which is the STD of

performance across groups. We also report average accuracy

(Avg) to show the overall FR performance.

4.1. Results on RFW Protocol

We follow RFW face verification protocol with 6K

pairs per race/ethnicity. The models are trained on BUPT-

Balancedface with ground truth race and identity labels.

Compare with SOTA. We compare the GAC with four

SOTA algorithms on RFW protocol, namely, ACNN [36],

RL-RBN [71], PFE [63], and DebFace [20]. Since the ap-

proach in ACNN [36] is related to GAC, we re-implement

it and apply to the bias mitigation problem. First, we

train a race classifier with the cross-entropy loss on BUPT-

Balancedface. Then the softmax output of our race classifier

is fed to a filter manifold network (FMN) to generate adap-

tive filter weights. Here, FMN is a two-layer MLP with

a ReLU in between. Similar to GAC, race probabilities

are considered as auxiliary information for face representa-

tion learning. We also compare with the SOTA approach
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Method White Black East Asian South Asian Avg (") STD (#)

RL-RBN [71] 96.27 95.00 94.82 94.68 95.19 0.63
ACNN [36] 96.12 94.00 93.67 94.55 94.58 0.94

PFE [63] 96.38 95.17 94.27 94.60 95.11 0.93
ArcFace [13] 96.18⇤ 94.67⇤ 93.72⇤ 93.98⇤ 94.64 0.96
CosFace [70] 95.12⇤ 93.93⇤ 92.98⇤ 92.93⇤ 93.74 0.89
DebFace [20] 95.95 93.67 94.33 94.78 94.68 0.83

GAC 96.20 94.77 94.87 94.98 95.21 0.58

Table 1: Performance comparison with SOTA on the RFW proto-

col [72]. The results marked by (*) are directly copied from [71].

Method White Black East Asian South Asian Avg (") STD (#)

Baseline 96.18 93.98 93.72 94.67 94.64 1.11
GAC-Channel 95.95 93.67 94.33 94.78 94.68 0.83
GAC-Kernel 96.23 94.40 94.27 94.80 94.93 0.78
GAC-Spatial 95.97 93.20 93.67 93.93 94.19 1.06

GAC-CS 96.22 93.95 94.32 95.12 94.65 0.87
GAC-CSK 96.18 93.58 94.28 94.83 94.72 0.95

GAC-(τ = 0) 96.18 93.97 93.88 94.77 94.70 0.92
GAC-(τ = �0.1) 96.25 94.25 94.83 94.72 95.01 0.75
GAC-(τ = �0.2) 96.20 94.77 94.87 94.98 95.21 0.58

Table 2: Ablation of adaptive strategies on the RFW protocol [72].

PFE [63] by training it on BUPT-Balancedface. As shown in

Tab. 1, GAC is superior to SOTA w.r.t. average performance

and feature fairness. Compared to kernel masks in GAC,

the FMN in ACNN [36] contains more trainable parameters.

Applying it to each convolutional layer is prone to overfit-

ting. In fact, the layers that are adaptive in GAC (τ = �0.2)

are set to be the FMN based convolution in ACNN. As the

race data is a four-element input in our case, using extra

kernel networks adds complexity to the FR network, which

degrades the verification performance. Even though PFE

performs the best on standard benchmarks (Tab. 6), it still

exhibits high biasness. Our GAC outperforms PFE on RFW

in both biasness and average performance. Compared to

DebFace [20], in which demographic attributes are disentan-

gled from the identity representations, GAC achieves higher

verification performance by optimizing the classification for

each demographic group, with a lower biasness as well.

Ablation on Adaptive Strategies. To investigate the ef-

ficacy of our network design, we conduct three ablation

studies: adaptive mechanisms, number of convolutional lay-

ers, and demographic information. For adaptive mechanisms,

since deep feature maps contain both spatial and channel-

wise information, we study the relationship among adaptive

kernels, spatial and channel-wise attentions, and their im-

pact to bias mitigation. We also study the impact of τ in

our automation module. Apart from the baseline and GAC,

we ablate eight variants: (1) GAC-Channel: channel-wise

attention for race-differential feature; (2) GAC-Kernel: adap-

tive convolution with race-specific kernels; (3) GAC-Spatial:

only spatial attention is added to baseline; (4) GAC-CS: both

channel-wise and spatial attention; (5) GAC-CSK: combine

adaptive convolution with spatial and channel-wise attention;

(6,7,8) GAC-(τ = ⇤): set τ to ⇤.

From Tab. 2, we make several observations: (1) the base-

line model is the most biased across race groups. (2) spatial

Method White Black East Asian South Asian Avg (") STD (#)

Number of Layers

ArcFace-34 96.13 93.15 92.85 93.03 93.78 1.36
GAC-ArcFace-34 96.02 94.12 94.10 94.22 94.62 0.81

ArcFace-50 96.18 93.98 93.72 94.67 94.64 1.11
GAC-ArcFace-50 96.20 94.77 94.87 94.98 95.21 0.58

ArcFace-100 96.23 93.83 94.27 94.80 94.78 0.91
GAC-ArcFace-100 96.43 94.53 94.90 95.03 95.22 0.72

Race/Ethnicity Labels

Ground-truth 96.20 94.77 94.87 94.98 95.21 0.58
Estimated 96.27 94.40 94.32 94.77 94.94 0.79
Random 95.95 93.10 94.18 94.82 94.50 1.03

Table 3: Ablation of CNN depths and demographics on RFW

protocol [72].

λ White Black East Asian South Asian Avg (") STD (#)

0 96.23 94.65 94.93 95.12 95.23 0.60
0.1 96.20 94.77 94.87 94.98 95.21 0.58
0.5 94.89 94.00 93.67 94.55 94.28 0.47

Table 4: Ablations on λ on RFW protocol (%).

attention mitigates the race bias at the cost of verification

accuracy, and is less effective on learning fair features than

other adaptive techniques. This is probably because spatial

contents, especially local layout information, only reside

at earlier CNN layers, where the spatial dimensions are

gradually decreased by the later convolutions and poolings.

Thus, semantic details like demographic attributes are hardly

encoded spatially. (3) Compared to GAC, combining adap-

tive kernels with both spatial and channel-wise attention

increases the number of parameters, lowering the perfor-

mance. (4) As τ determines the number of adaptive layers

in GAC, it has a great impact on the performance. A small τ

may increase redundant adaptive layers, while the adaptation

layers may lack in capacity if too large.

Ablation on Depths and Demographic Labels. Both the

adaptive layers and de-biasing loss in GAC can be applied to

CNN in any depth. In this ablation, we train both the base-

line and GAC (λ = 0.1, τ = �0.2) in ArcFace architecture

with three different numbers of layers: 34, 50, and 100. As

the training of GAC relies on demographic information, the

error and bias in demographic labels might impact the bias

reduction of GAC. Thus, we also ablate with different de-

mographic information, (1) ground-truth: the race/ethnicity

labels provided by RFW; (2) estimated: the labels predicted

by a pre-trained race estimation model; (3) random: the

demographic label randomly assigned to each face.

As shown in Tab. 3, compared to the baselines, GAC suc-

cessfully reduces the STD at different number of layers. We

see that the model with least number of layers presents the

most bias, and the bias reduction by GAC is the most as well.

The noise and bias in demographic labels do, however, im-

pair the performance of GAC. With estimated demographics,

the biasness is higher than that of the model with ground-

truth supervision. Meanwhile, the model trained with ran-

dom demographics has the highest biasness. Even so, using

estimated attributes during testing still improves fairness in
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Method Gender White Black East Asian South Asian Avg (") STD (#)

Baseline
Male 97.49± 0.08 96.94± 0.26 97.29± 0.09 97.03± 0.13

96.96± 0.03 0.69± 0.04
Female 97.19± 0.10 97.93± 0.11 95.71± 0.11 96.01± 0.08

AL+Manual
Male 98.57± 0.10 98.05± 0.17 98.50± 0.12 98.36± 0.02

98.09± 0.05 0.66± 0.07
Female 98.12± 0.18 98.97± 0.13 96.83± 0.19 97.33± 0.13

GAC
Male 98.75± 0.04 98.18± 0.20 98.55± 0.07 98.31± 0.12

98.19± 0.06 0.56± 0.05
Female 98.26± 0.16 98.80± 0.15 97.09± 0.12 97.56± 0.10

Table 5: Verification Accuracy (%) of 5-fold cross-validation on 8 groups of RFW [72].

(a) (b)

Figure 4: (a) For each of the three τ in automatic adaptation, we show the average similarities of pair-wise demographic kernel masks,

i.e., θ, at 1-48 layers (y-axis), and 1-15K training steps (x-axis). The number of adaptive layers in three cases, i.e.,
P

48

1
(θ > τ) at 15Kth

step, are 12, 8, and 2, respectively. (b) With two race groups (White, Black in PCSO [40]) and two models (baseline, GAC), for each of the

four combinations, we compute pair-wise correlation of face representations using any two of 1K subjects in the same race, and plot the

histogram of correlations. GAC reduces the difference/bias of two distributions.

face recognition compared to baseline. This indicates the

efficacy of GAC even in the absence of ground-truth labels.

Ablation on λ. We use λ to control the weight of de-biasing

loss. Tab. 4 reports the results of GAC trained with differ-

ent values of λ. When λ = 0, de-biasing loss is removed

in training. The results indicate a larger λ leads to lower

biasness at the cost of overall accuracy.

4.2. Results on Gender and Race Groups

We now extend demographic attributes to both gender and

race. First, we train two classifiers that predict gender and

race/ethnicity of a face image. The classification accuracy

of gender and race/ethnicity is 85% and 81%2, respectively.

Then, these fixed classifiers are affiliated with GAC to pro-

vide demographic information for learning adaptive kernels

and attention maps. We merge BUPT-Balancedface and

RFW, and split the subjects into 5 sets for each of 8 demo-

graphic groups. In 5-fold cross-validation, each time a model

is trained on 4 sets and tested on the remaining set.

Here we demonstrate the efficacy of the automation mod-

ule for GAC. We compare to the scheme of manually design

(AL+Manual) that adds adaptive kernels and attention maps

to a subset of layers. Specifically, the first block in every

residual unit is chosen to be the adaptive convolution layer,

and channel-wise attentions are applied to the feature map

2This seemingly low accuracy is mainly due to the large dataset we

assembled for training and testing gender/race classifiers. Our demographic

classifier has been shown to perform comparably as SOTA on common

benchmarks. While demographic estimation errors impact the training,

testing, and evaluation of bias mitigation algorithms, the evaluation is of the

most concern as demographic label errors may greatly impact the biasness

calculation. Thus, future development may include either manually cleaning

the labels, or designing a biasness metric robust to label errors.

Method LFW (%) Method
IJB-A (%) IJB-C @ FAR (%)

0.1% FAR 0.001% 0.01% 0.1%

DeepFace+ [68] 97.35 Yin et al. [80] 73.9± 4.2 - - 69.3

CosFace [70] 99.73 Cao et al. [5] 90.4± 1.4 74.7 84.0 91.0
ArcFace [13] 99.83 Multicolumn [77] 92 .0 ± 1 .3 77.1 86.2 92.7
PFE [63] 99 .82 PFE [63] 95.3± 0.9 89.6 93.3 95.5

Baseline 99.75 Baseline 90.2± 1.1 80.2 88.0 92.9
GAC 99.78 GAC 91.3± 1.2 83 .5 89 .2 93 .7

Table 6: Verification performance on LFW, IJB-A, and IJB-C. [Key:

Best, Second, Third Best]

output by the last block in each residual unit. As we use

4 residual units and each block has 2 convolutional layers,

the manual scheme involves 8 adaptive convolutional layers

and 4 groups of channel-wise attention maps. As in Tab. 5,

automatic adaptation is more effective in enhancing the dis-

cirminability and fairness of face representations. Figure 4a

shows the dissimilarity of kernel masks in the convolutional

layers changes during training epochs under three thresholds

τ . A lower τ results in more adaptive layers. We see the

layers that are determined to be adaptive do vary across both

layers (vertically) and training time (horizontally), which

shows the importance of our automatic mechanism.

4.3. Results on Standard Benchmark Datasets

While our GAC mitigates bias, we also hope it can per-

form well on standard benchmarks. Therefore, we evaluate

GAC on standard benchmarks without considering demo-

graphic impacts, including LFW [32], IJB-A [41], and IJB-

C [53]. These datasets exhibit imbalanced distribution in

demographics. For a fair comparison with SOTA, instead

of using ground truth demographics, we train GAC on Ms-

Celeb-1M [23] with the demographic attributes estimated

by the classifier pre-trained in Sec. 4.2. As in Tab. 6, GAC
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Figure 5: The first row shows the average faces of different groups in RFW. The next two rows show gradient-weighted class activation

heatmaps [62] at the 43th convolutional layer of the GAC and baseline. The higher diversity of heatmaps in GAC shows the variability of

parameters in GAC across groups.

outperforms the baseline and performs comparable to SOTA.

4.4. Visualization and Analysis on Bias of FR

Visualization To understand the adaptive kernels in GAC,

we visualize the feature maps at an adaptive layer for faces of

various demographics, via a Pytorch visualization tool [57].

We visualize important face regions pertaining to the FR de-

cision by using a gradient-weighted class activation mapping

(Grad-CAM) [62]. Grad-CAM uses the gradients back from

the final layer corresponding to an input identity, and guides

the target feature map to highlight import regions for identity

predicting. Figure 5 shows that, compared to the baseline,

the salient regions of GAC demonstrate more diversity on

faces from different groups. This illustrates the variability

of network parameters in GAC across different groups.

Bias via Local Geometry In addition to STD, we explain

the bias phenomenon via the local geometry of a given face

representation in each demographic group. We assume that

the statistics of neighbors of a given point (representation)

reflects certain properties of its manifold (local geometry).

Thus, we illustrate the pair-wise correlation of face repre-

sentations. To minimize variations caused by other vari-

ables, we use constrained frontal faces of a mug shot dataset,

PCSO [40]. We randomly select 1K White and 1K Black

subjects from PCSO, and compute their pair-wise correla-

tion within each race. In Fig. 4b, Base-White representa-

tions show lower inter-class correlation than Base-Black, i.e.,

faces in the White group are over-represented by the baseline

than the Black group. In contrast, GAC-White and GAC-

Black shows more similarity in their correlation histograms.

As PCSO has few Asian subjects, we use RFW for an-

other examination of the local geometry in 4 groups. That is,

after normalizing the representations, we compute the pair-

wise Euclidean distance and measure the ratio between the

minimum distance of inter-subjects pairs and the maximum

distance of intra-subject pairs. We compute the mean and

Race
Mean StaD Relative Entropy

Baseline GAC Baseline GAC Baseline GAC

White 1.15 1.17 0.30 0.31 0.0 0.0
Black 1.07 1.10 0.27 0.28 0.61 0.43

East Asian 1.08 1.10 0.31 0.32 0.65 0.58
South Asian 1.15 1.18 0.31 0.32 0.19 0.13

Table 7: Distribution of ratios between minimum inter-class dis-

tance and maximum intra-class distance of face features in 4 race

groups of RFW. GAC exhibits higher ratios, and more similar

distributions to the reference.

standard deviation (StaD) of ratio distributions in 4 groups,

by two models. Also, we gauge the relative entropy to mea-

sure the deviation of distributions from each other. For sim-

plicity, we choose White group as the reference distribution.

As shown in Tab. 7, while GAC has minor improvement over

baseline in the mean, it gives smaller relative entropy in the

other 3 groups, indicating that the ratio distributions of other

races in GAC are more similar, i.e., less biased, to the refer-

ence distribution. These results demonstrate the capability

of GAC to increase fairness of face representations.

5. Conclusion

This paper tackles the issue of demographic bias in face

recognition by learning a fair face representation. A group

adaptive classifier (GAC) is proposed to improve robustness

of representations for every demographic group. Both adap-

tive convolution kernels and channel-wise attention maps are

introduced to GAC. We further add an automation module to

determine whether to use adaptations in a given layer. Our

findings suggest that faces can be better represented by using

layers adaptive to different demographic groups, leading to

more balanced performance gain for all groups.
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