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Abstract

Existing 3D human pose estimators suffer poor gener-

alization performance to new datasets, largely due to the

limited diversity of 2D-3D pose pairs in the training data.

To address this problem, we present PoseAug, a new auto-

augmentation framework that learns to augment the avail-

able training poses towards a greater diversity and thus im-

prove generalization of the trained 2D-to-3D pose estima-

tor. Specifically, PoseAug introduces a novel pose augmen-

tor that learns to adjust various geometry factors (e.g., pos-

ture, body size, view point and position) of a pose through

differentiable operations. With such differentiable capacity,

the augmentor can be jointly optimized with the 3D pose

estimator and take the estimation error as feedback to gen-

erate more diverse and harder poses in an online manner.

Moreover, PoseAug introduces a novel part-aware Kine-

matic Chain Space for evaluating local joint-angle plausi-

bility and develops a discriminative module accordingly to

ensure the plausibility of the augmented poses. These elab-

orate designs enable PoseAug to generate more diverse yet

plausible poses than existing offline augmentation methods,

and thus yield better generalization of the pose estimator.

PoseAug is generic and easy to be applied to various 3D

pose estimators. Extensive experiments demonstrate that

PoseAug brings clear improvements on both intra-scenario

and cross-scenario datasets. Notably, it achieves 88.6%

3D PCK on MPI-INF-3DHP under cross-dataset evalua-

tion setup, improving upon the previous best data augmen-

tation based method [22] by 9.1%. Code can be found at:

https://github.com/jfzhang95/PoseAug.

1. Introduction

3D human pose estimation aims to estimate 3D body

joints in images or videos. It is a fundamental task with

broad applications in action recognition [48, 40], human-
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Figure 1: Estimation error (in MPJPE) on H36M (intra-

dataset evaluation) and 3DHP (cross-dataset evaluation) of

four well established models [53, 26, 34, 3] trained with

and without PoseAug. PoseAug significantly improves their

performance for both the intra- and cross-dataset settings.

robot interaction [11], human tracking [29], etc. This task

is typically solved using learning-based methods [26, 53, 3,

32] with ground truth annotations that are collected in the

laboratorial environments [16]. Despite their success in in-

door scenarios, these methods are hardly generalizable to

cross-scenario datasets (e.g., an in-the-wild dataset). We ar-

gue that their poor generalization is mainly due to the lim-

ited diversity of training data, such as limited variations in

human posture, body size, camera view point and position.

Recent works explore data augmentation to improve the

training data diversity and enhance the generalization of

their trained models. They either generate data through im-

age composition [38, 29, 28] and synthesis [5, 43], or di-

rectly generate 2D-3D pose pairs from the available training

data by applying pre-defined transformations [22]. How-

ever, all of these works regard data augmentation and model

training as two separate phases, and conduct data augmen-

tation in an offline manner without interaction with model

training. Consequently, they tend to generate ineffective

augmented data that are too easy for model training, lead-

ing to marginal boost to the model generalization. More-

over, these methods heavily rely on pre-defined rules such

as joint angle limitations [1] and kinematics constraints [38]
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for data augmentation, which limit the diversity of the gen-

erated data and make the resulting model hardly generalize

to more challenging in-the-wild scenes.

To improve the diversity of augmented data, we propose

PoseAug, a novel auto-augmentation framework for 3D hu-

man pose estimation. Instead of conducting data augmenta-

tion and network training separately, PoseAug jointly opti-

mizes the augmentation process with network training end-

to-end in an online manner. Our main insight is that the

feedback from the training process can be used as effec-

tive guidance signals to adapt and improve the data aug-

mentation. Specifically, PoseAug exploits a differentiable

augmentation module (the ‘augmentor’) implemented by a

neural network to directly augment 2D-3D pose pairs in the

training data. Considering the potential domain shift with

respective to geometry in pose pairs (e.g., postures, view

points) [37, 22, 51], the augmentor learns to perform three

types of augmentation operations to respectively control 1)

the skeleton joint angle, 2) the body size, and 3) the view

point and human position. In this way, the augmentor is

able to produce augmented poses with more diverse geo-

metric features and thus relieves the diversity limitation is-

sue. With its differentiable capacity, the augmentor can be

optimized together with the pose estimator end-to-end via

an error feedback strategy. Concretely, by taking increasing

training loss of the estimator as the learning target, the aug-

mentor can learn to enrich the input pose pairs via enlarging

data variations and difficulties; in turn, through combating

such increasing difficulties, the pose estimator can become

increasingly more powerful during the training process.

To ensure the plausibility of the augmented poses, we use

a pose discriminator module to guide the augmentation, to

avoid generating implausible joint angles [1], unreasonable

positions or view points that may hamper model training.

In particular, the module consists of a 3D pose discrimina-

tor for enhancing the joint angle plausibility and a 2D pose

discriminator for guiding the body size, view point and po-

sition plausibility. The 3D pose discriminator adopts the

Kinematic Chain Space (KCS) [45] representation and ex-

tends it into a part-aware KCS for local-wise supervision.

More concretely, it splits skeleton joints into several parts

and focuses on joint angles in each part separately instead

of the whole body pose, which yields greater flexibility of

the augmented poses. By jointly training the pose augmen-

tor, estimator and discriminator in an end-to-end manner

(Fig. 2), PoseAug can largely improve the training data di-

versity, and thus boost model performance on both source

and more challenging cross-scenario datasets.

Our PoseAug framework is flexible regarding the choice

of the 3D human pose estimator. This is demonstrated by

the clear improvements made with PoseAug on four rep-

resentative 3D pose estimation models [53, 26, 34, 3] over

both source (H36M) [16] and cross-scenario (3DHP) [29]

Figure 2: Overview of our PoseAug framework. The aug-

mentor, estimator and discriminator are jointly trained end-

to-end with an error-feedback training strategy. As such,

the augmentor learns to augment data with guidance from

the estimator and discriminator.

datasets (Fig. 1). Remarkably, it brings more than 13.1%

average improvement w.r.t. MPJPE for all models on 3DHP.

Moreover, it achieves 88.6% 3D PCK on 3DHP under

cross-dataset evaluation setup, improving upon the previous

best data augmentation based method [22] by 9.1%.

Our contributions are three-fold. 1) To the best of our

knowledge, we are the first to investigate differentiable data

augmentation on 3D human pose estimation. 2) We pro-

pose a differentiable pose augmentor, together with the er-

ror feedback design, which generates diverse and realistic

2D-3D pose pairs for training the 3D pose estimator, and

largely enhances the model’s generalization ability. 3) We

propose a new part-aware 3D discriminator, which enlarges

the feasible region of augmented poses via local-wise super-

vision, ensuring both data plausibility and diversity.

2. Related Work

3D human pose estimation Recent progress of 3D human

pose estimation is largely driven by the deployment of var-

ious deep neural network models [42, 26, 12, 53, 31, 3,

39, 54]. However, they all highly rely on well-annotated

data for fully-supervised model training and hardly gener-

alize to the new scenarios that present unseen patterns in

the training dataset, such as new camera views and subject

poses. Thus some recent works explore to leverage exter-

nal information to improve their generalization ability. For

example, some methods [55, 49, 9, 45, 14, 46, 6, 34, 20]

utilize 2D pose data collected in the wild for model train-

ing, e.g., through exploring kinematics priors for regular-

ization or post-processing [55, 9, 34], and adversarial train-

ing [49, 45]. More recently, geometry-based self-supervised

learning [37, 10, 4, 19, 35, 23, 36] has been used to train

models with unlabeled data. Though effective, applying

these methods is largely constrained by the availability of

suitable external datasets. Instead of focusing on complex

network architectures and learning schemes, we explore a

learnable pose augmentation framework to enrich the 3D

pose data at hand directly. Specifically, the proposed frame-
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work can generate 2D-3D pose pairs with both diversity and

plausibility for training pose estimation models. In addition,

our framework is generic and can adapt to those methods to

further improve their performance.

Data augmentation on 3D human poses Data augmen-

tation is widely used to alleviate the bottleneck of train-

ing data diversity and improve model generalization ability.

Some works augment data by stitching image patches [38,

29, 52], and some generate new data with graphics en-

gines [5, 43]. More recently, Li et al., [22] directly augment

2D-3D pose pairs through randomly applying partial skele-

ton recombination and joint angle perturbation on source

datasets. To ensure data plausibility, several constraints are

imposed, including joint angle limitation [1] and fixed aug-

mentation range on view point and human position. De-

spite the good results on source data, these pre-defined rules

limit the data diversity expansion and harm the model ap-

plicability to more challenging in-the-wild scenarios. Un-

like all these methods, we make the first attempt to explore

learnable data augmentation on 3D human pose estimation,

which is shown effective for improving model generaliza-

tion ability.

3. Method

3.1. Problem Definition

Let x ∈ R
2×J denote 2D spatial coordinates of J key-

points of the human in the image, and X ∈ R
3×J de-

note the corresponding 3D joint position in the camera co-

ordinate system. We aim to obtain a 3D pose estimator

P : x 7→ X to recover the 3D pose information from

the input 2D pose. Conventionally, the estimator P , with

parameters θ, is trained on a well-annotated source dataset

(e.g., well-controlled indoor environment [16]) by solving

the following optimization problem:

min
θ

LP(Pθ,X ) = LP(Pθ(x),X), (1)

where X = {x,X} denotes paired 2D-3D poses from the

source training dataset, and the loss function LP is typically

defined as mean square errors (MSE) between predicted and

ground truth 3D poses. However, it is often observed that

the pose estimator P trained on such an indoor dataset can

hardly generalize to a new dataset (e.g., in-the-wild sce-

nario) which features more diverse poses, body sizes, view

points or human positions [14, 51, 47].

To improve generalization ability of the model, we pro-

pose to design a pose augmentor A : X 7→ X ′, to aug-

ment the training pose pair X into a more diverse one

X ′ = {x′,X ′} for training the model P:

min
θ

LP(Pθ,A(X )). (2)

There are several strategies to construct the augmentor in an

offline manner, e.g., random [5, 29, 43] or evolution-based

augmentations [22]. Differently, we propose to implement

the augmentor A via a neural network with parameters θA
and train it jointly with the estimator in an online manner,

such that the pose estimator loss can be fully exploited as

a surrogate for the augmentation diversity and effectively

guide the augmentor learning. In particular, the augmentor

is trained to generate harder augmented samples that could

increase the training loss of the current pose estimator:

min
θ

max
θA

LP(Pθ,AθA(X )). (3)

3.2. PoseAug Formulation

Our proposed framework aims to generate diverse train-

ing data, with proper difficulties for the pose estimator,

to improve model generalization performance. Two chal-

lenges thus need to be tackled: how to make the augmented

data diverse and beneficial for model training; and how to

make them natural and realistic. To address them, we pro-

pose two novel ideas in training the augmentor.

Error feedback learning for online pose augmentation

Instead of performing random pose augmentation in an

offline manner [38, 5, 22], the proposed pose augmenta-

tor A deploys a differentiable design which enables on-

line joint-training with the pose estimator P . Using the

training error from the pose estimator P as feedback (see

Eqn. (3)), the pose augmentor A learns to generate poses

that are most suitable for the current pose estimator—the

augmented poses present proper difficulties and diversity

due to online augmentation, thus maximally benefiting gen-

eralization of the trained 3D pose estimation model.

Discriminative learning for plausible pose augmenta-

tion Purely pursuing error-maximized augmentations may

result in implausible training poses that violate the bio-

mechanical structure of human body and may hurt model

performance. Previous augmentation methods [38, 5, 22]

mostly rely on pre-defined rules for ensuring plausibil-

ity (e.g., joint angle constraint [1]), which however would

severely limit the diversity of generated poses. For example,

some harder yet plausible poses may fail to pass their rule-

based plausibility check [22] and will not be adopted for

model training. To address this issue, we deploy a pose dis-

criminator module over the local relation of body joints [45]

to assist training the augmentor, thus ensuring the plausibil-

ity of augmented poses without sacrificing the diversity.

3.3. Architecture

Fig. 2 summarizes our PoseAug architecture design. It

includes 1) a pose augmentor that augments the input pose

pair {x,X} to an augmented one {x′,X ′} for pose esti-

mator P training; 2) a pose discriminator module with two

discriminators in 3D and 2D spaces, to ensure the plausibil-

ity of the augmented data; and 3) a 3D pose estimator, that

provides pose estimation error feedback.
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Augmentor Given a 3D pose X ∈ R
3×J , the augmentor

first obtains its bone vector B ∈ R
3×(J−1) via a hierar-

chical transformation1 B = H(X) [45, 22], which can be

further decomposed into a bone direction vector B̂ (repre-

senting the joint angle) and a bone length vector ‖B‖ (rep-

resenting the body size).

Then the augmentor applies multi-layer perceptron

(MLP) for feature extraction from the input 3D pose X .

Additionally, a noise vector based on Gaussian distribution

is concatenated with X in the feature extraction process to

incur sufficient randomness for enhancing the feature di-

versity. The extracted features are then used for regressing

three operation parameters (γba, γbl and (R, t)) to change

the joint angles, body size, as well as view point and posi-

tion as illustrated in Fig. 3. Among these parameters,

1) γba ∈ R
3×(J−1) is the bone angle residual vector that is

used for adjusting the Bone Angle (BA) as follows:

B̂′ = B̂ + γba, (BA operation). (4)

Specifically, BA operation will rotate the input bone di-

rection vector B̂ by γba, generating a new bone direc-

tion vector B̂′.

2) γbl ∈ R
1×(J−1) represents the bone length ratio vector

that is used for adjusting the Bone Length (BL):

‖B′‖ = ‖B‖ × (1 + γbl), (BL operation). (5)

BL operation modifies the input bone length vector ‖B‖
by γbl to adjust the body size. Notably, to ensure bio-

mechanical symmetry, the left and right body parts share

the same parameters.

3) R ∈ R
3×3 and t ∈ R

3×1 denote the rotation and trans-

lation parameters respectively for Rigid Transformation

(RT) operation to control pose view point and position:

X ′ = R[H−1(B′)] + t, (RT operation), (6)

where B′ = ‖B′‖ × B̂′ is the augmented bone vector

from the above BA and BL operations. H−1 is the in-

verse hierarchical conversion to transform B′ back to a

3D pose [45, 22].

By applying these operations, the augmentor can generate

the augmented 3D pose X ′ with more challenging pose,

body size, view point and position from the original 3D pose

X (Fig. 3). The augmented pose is then re-projected to 2D

with x′ = Π(X ′), where Π : R3 → R
2 denotes perspective

projection [15] via the camera parameters from the original

data. The augmented 2D-3D pair {x′,X ′} is then used for

further training the pose estimator.

1The hierarchical transformation converts the J joints of X into J − 1

column vectors of B, each of which represents a line segment connecting

two adjacent joints.

Figure 3: Augmentation operations with PoseAug. A

source 3D pose is augmented by modifying its posture (via

BA operation), body size (via BL operation) and view point

and position (via RT operation).

Figure 4: Illustrations of the difference between original

and part-aware KCS based discriminator. Given a novel

and valid augmented pose, the original KCS based discrimi-

nator would wrongly classify it as fake as it does not appear

in source data (H36M), while the part-aware KCS based dis-

criminator would recognize is as real and approve it, since

it inspects local joint relations. It can be seen the part-aware

KCS based discriminator can help the augmentor generate

more diverse and plausible pose augmentation.

Discriminator Due to lacking priors in the augmentation

procedure, the augmented poses may present implausible

joint angles that violate the bio-mechanical structure [1], or

unreasonable positions and view points. Though such poses

are indeed harder cases for the estimator, training on them

would not benefit the model generalization ability.

To ensure the plausibility of the augmented poses, we

introduce a pose discriminator module to guide the aug-

mentation. Specifically, the module consists of a 3D pose

discriminator D3d for evaluating the joint angle plausibility

and a 2D discriminator D2d for evaluating the body size,

viewpoint and position plausibility.

The key to the 3D pose discriminator design is to ensure

the pose plausibility without sacrificing the diversity. In-

spired by the Kinematic Chain Space (KCS) [45], we design

a part-aware KCS as input to the discriminator. Instead of

taking the whole body pose into consideration as in the orig-

inal KCS, our part-aware KCS only focuses on local joint

angle and thus enlarges the feasible region of the augmented
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pose, ensuring both plausibility and diversity (Fig. 4).

Specifically, to compute the part-aware KCS of an input

pose, either X or its augmentation X ′, we convert the pose

to its bone direction vector B̂ as above and separate it into

5 parts (torso and left/right arm/leg) [1], denoted as B̂i, i =
1, . . . , 5, respectively. We then calculate the following local

joint angle matrix KCSi
local for the i-th part:

KCSi
local = B̂⊤

i B̂i, (7)

which encapsulates the inter joint angle information within

the i-th part. Based on the above local KCS representation,

a 3D pose discriminator D3d is constructed which takes the

KCSi
local as input and is trained for distinguishing the orig-

inal and augmented 3D poses.

Besides the 3D discriminator, we also introduce a 2D

discriminator to guide the augmentor to generate real body

size, view points and positions. As the 2D poses contain

information such as view point (rotation), position (trans-

lation), and body size (bone length), the 2D discriminator

can learn such information through adversarial training and

guide the pose augmentor in generating realistic rotation R,

translation t, and bone length ratio γbl.

Estimator The pose estimator P estimates 3D poses from

2D poses. We use the original and augmented 2D-3D pose

pair {x,X} and {x′,X ′} to train the pose estimator. The

pose estimator contains a feature extractor to capture inter-

nal features from 2D poses, and a regression layer to es-

timate the corresponding 3D poses. Moreover, any exist-

ing effective estimator can be implemented in our PoseAug

framework. In Sec. 4.3, we conduct experiments to check

robustness of PoseAug with different estimators, and the re-

sults show PoseAug can bring noticeable improvements on

both source and cross-scenario datasets for all models.

3.4. Training Loss

Pose estimation loss We adopt the mean squared errors

(MSE) of the ground truth (GT) X and predicted poses X̃

as the pose estimation loss, which is formulated as

LP = ‖X − X̃‖22. (8)

We train the pose estimator using LP with both original and

augmented pose pairs jointly, which can significantly boost

performance for the challenging in-the-wild scenes.

Pose augmentation loss To facilitate model training, aug-

mented data should harder than the original one, i.e.,

LP(X
′) > LP(X), but not too hard to hurt the training

process. A simple way to design the loss function is to

let the difference between the pose estimation loss on aug-

mented and original data within a proper range. Inspired

by [25, 21], we implement a controllable feedback loss as

Lfb = |1.0− exp[LP(X
′)− βLP(X)]|, (9)

where β > 1 controls the difficulty level for the generated

poses, making the value of LP(X
′) stay within a certain

range w.r.t. LP(X). During training, as the pose estima-

tor becomes increasingly more powerful, we accordingly

increase β value to generate more challenging augmenta-

tion data for training it.

Additionally, to prevent extremely hard cases from caus-

ing training collapse, we introduce a rectified L2 loss for

regularizing the augmentation parameters γba and γbl:

Lreg(γ) =

{
0, if γ̄ < threshold,

‖γ‖2, otherwise,
(10)

where γ denotes γba and γbl, and γ̄ denotes the mean value

over all of its elements. Combining Eqn. (9) and Eqn. (10),

the overall augmentation loss LA is formulated as

LA = Lfb + Lreg. (11)

Pose discrimination loss For the discrimination loss LD,

we adopt the LS-GAN loss [25] for both 3D and 2D spaces:

LD = E[(D3d(X)− 1)2] + E[D3d(X
′)2]

+E[(D2d(x)− 1)2] + E[D2d(x
′)2],

(12)

where {x,X} and {x′,X ′} denote the original (real) and

the augmented (fake) pose pairs, respectively.

End-to-end training strategy With the differentiable de-

sign, the pose augmentor, discriminator and estimator can

be jointly trained end-to-end. We update them alternatively

by minimizing losses Eqn. (11), Eqn. (12) and Eqn. (8). In

addition, we first pre-train the pose estimator P before train-

ing the whole framework end-to-end, which ensures stable

training and produces better performance.

4. Experiments

We study four questions in experiments. 1) Is PoseAug

able to improve performance of 3D pose estimator for both

intra-dataset and cross-dataset scenarios? 2) Is PoseAug

effective at enhancing diversity of training data? 3) Is

PoseAug consistently effective for different pose estima-

tors and cases with limited training data? 4) How does

each component of PoseAug take effect? We experiment

on H36M, 3DHP and 3DPW. Throughout the experiments,

unless otherwise stated we adopt single-frame version of

VPose [34] as pose estimator.

4.1. Datasets

Human3.6M (H36M) [16] Following previous works [26,

53], we train our model on subjects S1, 5, 6, 7, 8 of H36M

and evaluate on subjects S9 and S11. We use two evalu-

ation metrics: Mean Per Joint Position Error (MPJPE) in

millimeters and MPJPE over aligned predictions with GT

3D poses by a rigid transformation (PA-MPJPE).
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MPI-INF-3DHP (3DHP) [29] It is a large 3D pose dataset

with 1.3 million frames, presenting more diverse motions

than H36M. We use its test set to evaluate the model’s gen-

eralization ability to unseen environments, using metrics of

MPJPE, Percentage of Correct Keypoints (PCK) and Area

Under the Curve (AUC).

3DPW [44] It is an in-the-wild dataset with more compli-

cated motions and scenes. To verify generalization of the

proposed method to challenging in-the-wild scenarios, we

use its test set for evaluation with PA-MPJPE as metric.

MPII [2] and LSP [17] They are in-the-wild datasets with

only 2D body joint annotations and used for qualitatively

evaluating model generalization for unseen poses.

4.2. Results

Results on H36M We compare PoseAug with state-of-the-

art methods [53, 39, 34, 30, 22] on H36M. Similar to [22],

we use 2D poses from HR-Net [41] as inputs. As shown

in Table 1, our method outperforms SOTA methods [53,

39, 34, 30] by a large margin, indicating its effectiveness.

Notably, compared with the previous best augmentation

method [22], our PoseAug achieves lower MPJPE even

though it uses external bone length data for data augmenta-

tion and nearly 3× more data than ours for model training.

This clearly verifies advantages of PoseAug’s online aug-

mentation scheme—it can generate more diverse and infor-

mative data that better benefit model training.

Table 1: Results on H36M in terms of MPJPE and PA-

MPJPE. Best results are shown in bold.

Method MPJPE (↓) PA-MPJPE (↓)

SemGCN (CVPR’19) [53] 57.6 -

Sharma et al.(CVPR’19) [39] 58.0 40.9

VPose (CVPR’19) [34] (1-frame) 52.7 40.9

Moon et al.(ICCV’19) [30] 54.4 -

Li et al.(CVPR’20) [22] 50.9 38.0

Ours 50.2 39.1

Table 2: Results on 3DHP. CE denotes cross-scenario eval-

uation. PCK, AUC and MPJPE are used for evaluation.

Method CE PCK (↑) AUC (↑) MPJPE (↓)

Mehta et al. [27] 76.5 40.8 117.6

VNect [29] 76.6 40.4 124.7

Multi Person [28] 75.2 37.8 122.2

OriNet [24] 81.8 45.2 89.4

LCN [8] X 74.0 36.7 -

HMR [18] X 77.1 40.7 113.2

SRNet [50] X 77.6 43.8 -

Li et al. [22] X 81.2 46.1 99.7

RepNet [45] X 81.8 54.8 92.5

Ours X 88.6 57.3 73.0

Ours(+Extra2D) X 89.2 57.9 71.1

Results on 3DHP (cross-scenario) We then evaluate how

PoseAug facilitates model generalization to cross-scenario

datasets. We compare PoseAug against various state-of-the-

art methods, including the latest one using offline data aug-

mentation [22], the ones exploiting complex network archi-

tecture [8, 50] and weakly-supervised learning [18, 45] and

the ones trained on the training set of 3DHP [27, 29, 28, 24].

From Table 2, we can observe our method achieves the best

performance w.r.t. all the metrics, outperforming previous

approaches by a large margin. This verifies the effective-

ness of PoseAug in improving model generalization to un-

seen scenarios. Moreover, PoseAug can further improve the

performance (from 73.0 to 71.1 in MPJPE) by using addi-

tional in-the-wild 2D poses (MPII) to train the 2D discrimi-

nator. This demonstrates its extensibility in leveraging extra

2D poses to further enrich the diversity of augmented data.

Results on 3DPW (cross-scenario) We train four 3D pose

estimators [26, 53, 3, 33] without and with PoseAug on

H36M and compare their generalization performance on

3DPW. As shown in Table 4, on average, PoseAug brings

10.8% improvements for all the models.

Table 3: Results in PA-MPJPE for four estimators on 3DPW.

Method PA-MPJPE (↓)

SemGCN [53] 152.3

+ PoseAug 140.0 (-12.3)

SimpleBaseline [26] 145.2

+ PoseAug 130.3 (-14.9)

ST-GCN [3](1-frame) 154.3

+ PoseAug 129.7 (-24.6)

VPose [34] (1-frame) 146.3

+ PoseAug 132.8 (-13.4)

Qualitative results For subjective evaluation, we choose

four challenging datasets, i.e., LSP, MPII, 3DHP and

3DPW, with large varieties of postures, body sizes, and view

points between their data and the data from H36M. Results

are shown in Fig. 5. We can see our method performs fairly

well, even for those unseen difficult poses.

4.3. Analysis on PoseAug

Applicability to different estimators Our PoseAug frame-

work is generic and applicable to different 3D pose estima-

tors. To demonstrate this, we employ four representative 3D

pose estimators as backbones: 1) SemGCN [53], a graph-

based 3D pose estimation network; 2) SimpleBaseline [26],

an effective MLP-based network; 3) ST-GCN [3] (1-frame),

a pioneer network that uses GCN-based architecture to en-

code global and local joint relations; and 4) VPose [34] (1-

frame), a fully-convolutional network with SOTA perfor-

mance. We train these models on the H36M dataset using

2D poses from four different 2D pose detectors, including

CPN [7], DET [13], HR-Net [41] and groundtruth (GT). We

evaluate these models on the test set of H36M and 3DHP
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Figure 5: Example 3D pose estimations from LSP, MPII, 3DHP and 3DPW. Our results are shown in the left four columns.

The rightmost column shows results of Baseline—VPose [34] trained w/o PoseAug. Errors are highlighted by black arrows.

Table 4: Performance comparison in MPJPE for various pose estimators trained w/o and with PoseAug on H36M and 3DHP

datasets. DET, CPN, HR and GT denote 3D pose estimation model trained on different 2D pose sources, respectively. We

evaluate the model on H36M test set with the corresponding 2D pose sources. On 3DHP test set, we use GT 2D poses as input

for evaluating model’s generalization. We can observe PoseAug consistently decreases errors for all datasets and estimators.

H36M 3DHP

Method DET CPN HR GT DET CPN HR GT

SemGCN [53] 67.5 64.7 57.5 44.4 101.9 98.7 95.6 97.4

+ PoseAug 65.2 (-2.3) 60.0 (-4.8) 55.0 (-2.5) 41.5 (-2.8) 89.9 (-11.9) 89.3 (-9.4) 89.1 (-6.5) 86.1 (-11.2)

SimpleBaseline [26] 60.5 55.6 53.0 43.3 91.1 88.8 86.4 85.3

+ PoseAug 58.0 (-2.5) 53.4 (-2.2) 51.3 (-1.7) 39.4 (-3.9) 78.7 (-12.4) 78.7 (-10.1) 76.4 (-10.1) 76.2 (-9.1)

ST-GCN [3] (1-frame) 61.3 56.9 52.2 41.7 95.5 91.3 87.9 87.8

+ PoseAug 59.8 (-1.5) 54.5 (-2.4) 50.8 (-1.5) 36.9 (-4.8) 83.5 (-12.1) 77.7 (-13.6) 76.6 (-11.3) 74.9 (-12.9)

VPose [34] (1-frame) 60.0 55.2 52.7 41.8 92.6 89.8 85.6 86.6

+ PoseAug 57.8 (-2.2) 52.9 (-2.3) 50.2 (-2.5) 38.2 (-3.6) 78.3 (-14.4) 78.4 (-11.4) 73.2 (-12.4) 73.0 (-13.6)

w.r.t. MPJPE metric. On H36M, we use the correspond-

ing 2D poses for evaluation; while on 3DHP, we evaluate

these models with GT 2D poses to filter out the influence of

2D pose detectors. The results are shown in Table 4. We

can see PoseAug brings clear improvements to all models

on both H36M and more challenging 3DHP datasets. No-

tably, they obtain more than 13.1% average improvement

on 3DHP when trained with PoseAug.

Source dataset: H36M
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Cross dataset: 3DHP
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Figure 6: Ablation study on limited data setup. We report

MPJPE for evaluation. Best viewed in color.

Effectiveness for limited training data cases 3D pose an-

notations are expensive to collect, making limited training

data a common challenge. To demonstrate the effective-

ness of our method on addressing such cases, we use pose

data from H36M S1 and S1+S5 for model training which

only contain 16% and 41% training samples, respectively.

The results in Fig. 6 show PoseAug consistently improves

model performance with varying amounts of training data,

on both H36M and 3DHP. Meanwhile, the improvements

brought by our method are more significant for cases with

less training data (e.g., MPJPE in 3DHP, S1: 116.4 → 90.3,

Full: 86.6 → 73.0). Moreover, in cross-scenario general-

ization, our method trained with only S1 achieves the com-

parable result (MPJPE: 90.3) to baseline trained using full

dataset (MPJPE: 86.6), and our method trained with S1+S5

can outperform baseline trained using full dataset by a large

margin (77.9 vs 86.6 in MPJPE).

Analysis on the augmentor We then check the effective-

ness of each module in augmentor. Table 5 summarizes

the results. By gradually adding the BA, RT and BL op-

erations, the pose estimation error can be monotonically

decreased from 41.8/86.6 to 38.8/73.5 (on H36M/3DHP).

Moreover, incorporating the error feedback guidance can

further improve performance to 38.2 for H36M and 73.0

for 3DHP. These verify the effectiveness of each module

of the augmentor in producing more effective augmented
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Figure 7: Distribution on view point (top row) and position

(bottom row) for original data H36M, and augmented data

from Li et al. [22], PoseAug (3rd column) and PoseAug

with extra 2D poses. This distribution shows PoseAug sig-

nificantly improves diversity of view point and position.

samples. Among these modules, RT contributes the most to

cross-scenario performance, which implies it benefits data

diversity most effectively.

Table 5: Ablation study on components of the augmentor.

We report MPJPE on H36M and 3DHP datasets.

Method BA RT BL Feedback H36M (↓) 3DHP (↓)

Baseline 41.8 86.6

Variant A X 39.7 (-2.1) 85.2 (-1.4)

Variant B X 39.2 (-2.6) 75.9 (-10.7)

Variant C X X 39.1 (-2.7) 75.5 (-11.1)

Variant D X X X 38.8 (-3.0) 73.5 (-13.1)

PoseAug X X X X 38.2 (-3.6) 73.0 (-13.6)

Analysis on diversity improvement To demonstrate effec-

tiveness of PoseAug in enhancing data diversity, consider-

ing RT operation which augments the view point and po-

sition contributes the most to cross-scenario performance,

as shown in Table 5, we make diversity analysis on view

point and position distribution. Fig. 7 demonstrates the dis-

tributions of view point and position of H36M and the aug-

mented data generated by Li et al. [22] and our method. For

H36M data, one can observe their view points concentrate

near to the xz-plane with a limited diversity along the y-

axis; and their positions form a small and concentrated clus-

ter, also showing a limited diversity. This explains why the

model trained on H36M hardly generalizes to in-the-wild

scenarios. Similarly, we observe small divergence for the

view point and position distribution of augmented data from

Li et al. [22]. This implies the diversity improvement from

the handcrafted rule is limited. Comparably, our PoseAug

can offer more plausible view points and positions using the

learnable augmentor, with a much greater diversity. In ad-

dition, the diversity on human positions can be further im-

proved with extra 2D poses, which also explains its resulted

improved generalization ability in Table 2.

Analysis on the discriminator We here demonstrate the ef-

fectiveness of plausibility guidance from the 2D and 3D dis-

criminators. Table 6 summarizes the results. By adding one

of the 2D or 3D discriminators, the performance of base-

line can be boosted by 2.2/5.8 and 2.2/7.0 on H36M/3DHP,

respectively. Including both discriminators into PoseAug

training can further boost the performance by 3.6/13.6 on

H36M/3DHP, which clearly verify the effectiveness of both

discriminators and also the importance of plausibility (in

augmented poses) for estimator performance.

Table 6: Ablation study on the discriminators D2D and D3D

on H36M and 3DHP. MPJPE is used for evaluation.

Method D2D D3D H36M (↓) 3DHP (↓)

Baseline 41.8 86.6

Variant A X 39.6 (-2.2) 80.8 (-5.8)

Variant B X 39.6 (-2.2) 79.6 (-7.0)

PoseAug X X 38.2 (-3.6) 73.0 (-13.6)

Analysis on part-aware KCS (PA-KCS) To verify its ef-

fectiveness, we replace it in PoseAug with KCS [45]. Ta-

ble 7 summarizes the results. PA-KCS clearly outperforms

KCS on both 3DHP and 3DPW. This verifies our PA-KCS

provides better guidance than KCS during training.

Table 7: Ablation study on part-aware KCS (PA-KCS). We report

MPJPE on 3DHP and PA-MPJPE on 3DPW.

Method KCS PA-KCS 3DHP (↓) 3DPW (↓)

Baseline 86.6 145.2

Variant A X 77.7 (-8.9) 133.9 (-11.3)

PoseAug X 73.0 (-13.6) 130.3 (-14.9)

5. Conclusion

In this paper, we develop an auto-augmentation frame-

work, PoseAug, that learns to enrich the diversity of training

data and improves performance of the trained pose estima-

tion models. The PoseAug effectively integrates three com-

ponents including the augmentor, estimator and discrimina-

tor and makes them fully interacted with each other. Specif-

ically, the augmentor is designed to be differentiable and

thus can learn to change major geometry factors of the 2D-

3D pose pair to suit the estimator better by taking its training

error as feedback. The discriminator can ensure the plausi-

bility of augmented data based on a novel part-aware KCS

representation. Extensive experiments justify PoseAug can

augment diverse and informative data to boost estimation

performance for various 3D pose estimators.
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