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Abstract

Estimating scene geometry from data obtained with cost-

effective sensors is key for robots and self-driving cars. In

this paper, we study the problem of predicting dense depth

from a single RGB image (monodepth) with optional sparse

measurements from low-cost active depth sensors. We in-

troduce Sparse Auxiliary Networks (SANs), a new module

enabling monodepth networks to perform both the tasks

of depth prediction and completion, depending on whether

only RGB images or also sparse point clouds are available

at inference time. First, we decouple the image and depth

map encoding stages using sparse convolutions to process

only the valid depth map pixels. Second, we inject this in-

formation, when available, into the skip connections of the

depth prediction network, augmenting its features. Through

extensive experimental analysis on one indoor (NYUv2) and

two outdoor (KITTI and DDAD) benchmarks, we demon-

strate that our proposed SAN architecture is able to simul-

taneously learn both tasks, while achieving a new state of

the art in depth prediction by a significant margin.

1. Introduction

Dense scene geometry can be directly measured using

active sensors (e.g., LiDAR, structured light) or estimated

from RGB cameras (e.g., via stereo matching, structure

from motion, monocular depth networks). Both approaches

have complementary strengths and failure modes (e.g., rain

or low light). Consequently, a robust perception system

must leverage both modalities while still retaining function-

ality when only one is available. In this paper, we propose a

learning algorithm and model that can satisfy these desider-

ata with a simple sensor suite: a single monocular RGB

camera combined with any low-cost active depth sensor re-

turning only a few 3D points per scene.

Monocular depth prediction is becoming a cornerstone

capability for a wide range of robotic applications where

RGB cameras are ubiquitous [23, 49, 51]. Recently, self-

Figure 1: Our proposed joint task learning SAN archi-

tecture produces state of the art monocular depth estimates

from a single image (prediction), which can be further im-

proved by also providing a sparse depth map (completion)

without changing the model.

supervised methods trained only on raw videos demon-

strated that robots with a single camera can learn and predict

dense depth information [2, 14, 15, 17, 58, 60], especially

as the quantity of data increases [18]. However, in prac-

tice an active range sensor is often available, and can be

used to either provide further supervision at training time

[7, 9, 10, 30, 53] or also during inference [24, 33, 39], in a

task known as depth completion. Even though sparse, re-

cent works [20] have shown that even a few pixels contain-

ing valid depth information is enough to boost performance,

and therefore should not be discarded. Importantly, these

two tasks, depth prediction and completion, are treated as

separate problems with different architectures. No method

to date tackles the issue of using all the information avail-

able from both modalities at both training and inference

time, including if only partially available (e.g., due to sensor

blackout, occlusion, or environmental conditions).

Our main contribution is a novel architecture, Sparse

Auxiliary Networks (SANs, cf. Fig. 2), that enables a

monocular depth prediction network to also perform depth

completion in the presence of optional sparse 3D measure-

ments at inference time. Note that the same architecture
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and weights can dynamically perform either task at infer-

ence time, depending on the presence or not of sparse depth

measurements. Our model relies on a sparse depth convo-

lutional encoder to inject depth information, when avail-

able, into the skip connections of state-of-the-art encoder-

decoder networks for depth prediction. Our second contri-

bution is a thorough experimental evaluation on three chal-

lenging outdoor (KITTI [12] and DDAD [18]) and indoor

(NYUv2 [40]) datasets, demonstrating that our SAN archi-

tecture boosts monocular depth prediction performance and

sets a new state of the art in this task.

2. Related Work

2.1. Depth Prediction

Monocular depth prediction has been gaining in popu-

larity in the robotics community, with methods generally

falling into different categories depending on the data used

to derive the learning signal. Self-supervised learning meth-

ods aim to predict depth directly from monocular images,

by imposing a photometric loss on temporally adjacent

frames [59] or on corresponding stereo images [14]. Owing

to its simplicity and wide availability of raw data, a wide

range of body of work has addressed this topic, combining

it with optical flow [54, 57], uncertainty estimation [37],

semantic segmentation [19, 44], instance segmentation [2],

keypoint estimation [41] and visual odometry [51, 52].

By contrast, supervised learning methods apply a regres-

sion loss using ground truth depth supervision, either by

minimizing mean squared error [7] or through ordinal re-

gression [9]. In addition to the standard regression loss,

methods additionally use planar patches as guidance [30],

impose 3D geometric constraints [53], use surfasce nor-

mals as regularization [38, 50], exploit task consistency

constraints between depth, normals and semantic segmen-

tation [56], or use semantic guidance [26, 35]. A number

of methods use Structure-from-Motion [27] or distil stereo

information [21] to use as supervisory signal during train-

ing. Our method is conceptually similar to [19], where the

authors use pixel-adaptive convolutions to distill features

from a semantic segmentation network. Instead, we propose

novel Sparse Residual Blocks which leverage Minkowski

convolutions [4] and are specifically designed to account

for the sparse nature of our supervisory signal.

2.2. Depth Completion

While a high number of methods exists that focus purely

on depth data, ranging from bilateral filters [43] to recent

CNN densification methods [45], we will focus on methods

that rely on RGB images as additional information. In the

case when the depth signal is sparse (e.g., LiDAR), methods

typically rely on RGB-based appearance as guidance and

additionally devise custom convolutions and propagate con-

fidence to consecutive layers [8], or use content-dependent

and spatially-variant guiding convolutions [42]. Alternative

sources of information including confidence masks and ob-

ject cues [47] as well as exploiting cross-attention between

the RGB and depth encoders [31] can also be used.

To avoid depth mixing typically induced by the stan-

dard MSE loss a binned depth representation trained using

a cross-entropy loss has been shown to work [24]. When

additional temporally-adjacent frames are available a proxy

photometric loss can be derived to further constrain densi-

fication [33, 55], while in this setting as little as 4 LiDAR

beams are enough to provide a meaningful supervisory sig-

nal [20]. Note that our proposed method does not explicitly

model any relationship between the two input modalities

(RGB and depth), but rather learns these at a feature level.

3. Methodology

3.1. Monocular Depth Estimation

Prediction. The aim of monocular depth prediction is to

learn a function fP : I → D that takes as input image I and

recovers a predicted depth D̂P = fP (I(p)) for every pixel

p ∈ I (i.e., a dense depth map). In a supervised setting, we

have access to sparse ground truth depth D at training time,

as acquired by an independent sensor and projected back

onto the camera’s image plane. Thus we treat monocular

depth estimation purely as a regression problem, and learn

an estimator fP parameterized by θP = {θI} by solving:

θ̂P = argmin
θP

Lsup (fP (I; θP ), D) . (1)

Completion. In the monocular depth completion task,

we also have access to sparse ground truth depth D̃ dur-

ing inference (usually a subset of D [40], or collected by

noisier/sparser sensors [11]). This information can be used

in conjunction with I to generate a completed dense depth

map D̂C = fC(I(p), D̃(p)), where fC is an estimator pa-

rameterized by θC = {θI , θD} learned by solving:

θ̂C = argmin
θC

Lsup

(

fC(I, D̃; θC), D
)

. (2)

Note that fC contains fP , in the sense that it uses the same

parameters θI to process the input image I , while incorpo-

rating θD to process the input depth map D̃. This design

choice is one of the core insights of this paper, as it enables

feature sharing between the tasks of depth prediction and

completion (see Fig. 2).

Training Loss. Our supervised objective is the Scale-

Invariant Logarithmic loss (SILog) [7], composed by the

sum of the variance and the weighted squared mean of the

error in log space ∆d = log d− log d̂:

L(D, D̂) =
1

N

∑

d∈D

∆d
2 −

λ

N2

(

∑

d∈D

∆d

)

2

, (3)
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(a) Proposed PackNet-SAN architecture. Residual, packing, unpacking and convolutional blocks,

as well as the inverse depth layer, are detailed in [18]. The sparse residual block is detailed in Fig.

2b, the sparsification and densification layers are defined in Eqs. 6 and 7, and w and b are learnable

parameters defined in Eq. 8.

(b) Sparse residual block (SRB). Each Spar-

seConv2D layer is a Minkowski 2D Convolu-

tion [4], BN is Batch Normalization [25] and

ReLU are Rectified Linear Units [13].

Figure 2: Our proposed SAN architecture for the joint learning of monocular depth prediction and completion, using

PackNet [18] as the depth prediction network (best visualized in color).

where N is the number of valid pixels in D (invalid pix-

els are masked out and not considered during optimization).

The coefficient λ determines the emphasis in minimizing

the variance of the error. Following previous works [30],

we use λ = 0.85 in all experiments. In order to train both

tasks simultaneously, we add the losses generated by both

output depth maps relative to the same ground truth, so that

L(D, D̂P , D̂C) = L(D, D̂P ) + L(D, D̂C). (4)

3.2. Sparse Auxiliary Networks (SANs)

Images are dense 2D representations of the information

captured by a camera, which makes convolutions a natural

choice in most computer vision tasks [29]. Depth maps,

however, are very sparse, often containing less than 1%
valid pixels with useful information [20], thus making con-

volutions a sub-optimal choice as: (i) significant computa-

tional power is wasted on uninformative areas; (ii) spatial

dependencies will include spurious information from these

uninformative areas; and (iii) shared filters will still average

loss gradients from the entire input depth map.

To avoid these shortcomings, we propose the use of

sparse convolutions to process input depth maps, while

RGB images are still processed using standard convolu-

tions. More specifically, we use Minkowski convolu-

tions [4], a highly efficient generalized sparse convolu-

tion recently introduced to address high-dimensional prob-

lems. In this work we focus on the 2D application of

Minkowski convolutions (image processing), and leave po-

tential higher-dimension applications (i.e., multi-view [16]

or spatio-temporal reasoning [4]) to future work. Within

this framework, a sparse tensor S is written as a coordinate

matrix C and a feature matrix F :

C =







u1 v1 s1
...

uN vN sN






, F =







f1
...

fN






, (5)

where {un, vn} are pixel coordinates, sn is the sample in-

dex in the batch, and fn ∈ R
Q is the corresponding feature

vector. For simplicity and without loss of generality, we as-

sume a batch size of 1 and disregard the batch index. An

input W × H × 1 depth map D̃ is sparsified by gathering

its valid pixels (i.e., with positive values) as coordinates and

depth values as features, such that:

S̃ =
{{

(u, v) , D̃(u, v)
}

∀ u, v ∈ D̃ | D̃(u, v) > 0
}

(6)

Similarly, a sparse tensor S̃ = {C̃, F̃} can be densified

by scattering its pixel coordinates and feature values into

a dense W ×H ×Q matrix P̃ , such that:

P̃ (un, vn) =

{

fn, if {un, vn} ∈ C̃.

0, otherwise.
(7)

Once the input depth map is sparsified, its information is

encoded through a series of novel Sparse Residual Blocks

(SRB), detailed in Fig. 2b. Each SRB is composed of three

parallel branches that process the same input after an initial

max pooling stage, each with a different number of sparse
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convolutional blocks. The output of these branches is added

and serves as input to the next SRB at a lower spatial res-

olution. Note that this entire chain of operations is sparse,

and thus can be performed efficiently given the usually high

sparsity of projected [7] or sampled [40] depth maps. After

each block, a densification layer (Eq. 7) is used in parallel

to generate a dense representation of these sparse features,

that are then injected into the skip connections of the RGB

module as detailed in the next section.

3.3. Proposed Architecture

Our proposed architecture for the joint learning of

monocular depth prediction and completion is depicted in

Fig. 2. It is composed of two modules, one for the pro-

cessing of dense images (RGB) and one for the processing

of sparse depth maps (SAN). The dense RGB module can

be any encoder-decoder depth prediction network that uses

skip connections [9, 15, 18, 30]. In our work we consider

two baseline state-of-the-art network architectures: Pack-

Net [18, 20] and BTS [30]. The sparse depth module uses

our novel Sparse Residual Blocks described in Section 3.2

to encode sparsified depth maps used as input in conjunc-

tion with RGB images. Following the notation introduced

in Section 3.1, the RGB module is defined by the parame-

ters θI and the depth module is defined by θD.

If a single image I is used, only the RGB module is

activated and the output will be a predicted depth map

fP (I; θI) = D̂P . Alternatively, if sparse depth measure-

ments D̃ are also provided, they serve as input to the SAN

module, where they are encoded through a series of SRBs

(Fig. 2b) to produce sparse depth features at increasingly

lower resolutions. These resolutions are designed to match

those of the RGB encoder, in such a way that the sparse

depth features can be injected into the dense RGB features

by simply adding the two feature maps, after densification.

Because the network utilizes this sparse depth information

in addition to the dense RGB image, its output will be a

completed depth map fC(I, D̃; θI , θD) = D̂C .

Empirically, we have determined that injecting this infor-

mation at the skip connection level is optimal to ensure that

both tasks can still be performed by the same network with-

out degradation. In this configuration, the RGB encoder

only processes image features, while the RGB decoder pro-

cesses features from the RGB encoder augmented with the

sparse features from the depth encoder. To further condi-

tion the skip connections and enable the switching between

tasks, we also introduce learnable parameters w and b as

part of the SAN module. Assuming Ki as the feature map

from the RGB encoder used as skip connection at scale res-

olution i, the augmented skip connection after introducing

sparse depth information from P̃i is defined as:

K̃i = wi ×Ki + bi + P̃i (8)

Note that if no sparse depth information is available these

parameters are not used. This enables the skip connections

to be conditioned on the task being performed, and can bet-

ter adapt to the introduction of additional information from

the SAN module, minimizing gradient interference. A de-

tailed study to determine the contribution of each compo-

nent of our proposed architecture can be found in Tab. 3.

4. Experimental Protocol

4.1. Implementation Details

Our models1 were implemented using Pytorch [36] and

trained across eight V100 GPUs, with batch size b = 4 per

GPU. We use the AdamW optimizer [32], with β1 = 0.9,

β2 = 0.999, starting learning rate lr = 10−4 and weight de-

cay wd = 10−2. Our training schedule includes 30 epochs

where only the depth prediction network is trained, fol-

lowed by 20 epochs where the depth prediction encoder is

frozen and only the depth completion encoder and shared

decoder are trained. As training proceeds, the learning rate

is decayed by a factor of 2 after every 20 epochs.

As the baseline depth prediction networks we consid-

ered BTS [30] and PackNet [18], using their official Py-

torch implementations. With BTS we evaluate our archi-

tecture’s ability to improve upon the current state of the art

in monocular depth prediction; and with PackNet we inves-

tigate whether a more complex architecture is better suited

to simultaneously learn both tasks. Please note that our pro-

posed Sparse Auxiliary Networks (SANs) can be equally

applied to any other architecture, to benefit from potential

improvements in speed, memory usage and performance.

4.2. Datasets

KITTI. We use the KITTI benchmark [11] and train on

the Eigen split, composed of 23,488 training, 888 valida-

tion and 697 testing images (from which only 652 contain

accumulated ground-truth depth maps [46]). Additionally,

we present results on the KITTI public leaderboard, which

consists of and 500 and 1,000 frames respectively for test-

ing depth prediction and completion methods. Following

standard procedure [30], at training time a random crop of

352×704 was used, with the addition of random horizontal

flipping and color jittering.

DDAD. The Dense Depth for Automated Driving

(DDAD) [18] is an urban driving dataset containing mul-

tiple synchronized cameras and depth ranges of up to 250

meters. It has a total of 12,560 training samples, from which

we selected cameras 1/5/6/9 for a total of 50,600 images and

ground-truth depth maps. The validation set contains 3,950

samples (15,800 images) and ground-truth depth maps. Fol-

lowing standard procedure [18], input images were down-

sampled to a 640 × 384 resolution, and for evaluation we

1Code available at: https://github.com/TRI-ML/packnet-sfm
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Method Input
Lower is better ↓ Higher is better ↑

Abs.Rel Sqr.Rel RMSE RMSElog SILog δ < 1.25 δ < 1.252 δ < 1.253

Kuznietsov et al. [28] RGB 0.113 0.741 4.621 0.189 — 0.862 0.960 0.986

Gan et al. [10] RGB 0.098 0.666 3.933 0.173 — 0.890 0.964 0.985

Guizilini et al. [20] RGB 0.078 0.378 3.330 0.121 — 0.927 — —

Fu et al. [9] RGB 0.072 0.307 2.727 0.120 — 0.932 0.984 0.994

Yin et al. [53] RGB 0.072 — 3.258 0.117 — 0.938 0.990 0.998

Lee et al. [30] RGB 0.059 0.245 2.756 0.096 — 0.956 0.993 0.998

BTS-SAN
RGB 0.057 0.229 2.704 0.092 8.926 0.961 0.994 0.999

RGB+D 0.021 0.038 1.094 0.037 3.749 0.996 0.999 1.000

PackNet-SAN
RGB 0.052 0.175 2.233 0.083 7.618 0.970 0.996 0.999

RGB+D 0.015 0.028 0.909 0.032 3.149 0.997 0.999 1.000

Improvement RGB 11.9% 28.5% 18.9% 13.5% — 1.4% 0.0% 0.0%

Table 1: Depth estimation results on the KITTI dataset, for the Eigen test split [7] and distances up to 80m. The Improve-

ments row indicate the percentual improvement between our best model (PackNet-SAN) and the current state of the art (BTS,

by Lee et al. [30], underlined).

considered distances up to 200m without any cropping. A

single model was trained using all four cameras, and evalu-

ated individually on each one.

NYUv2. To evaluate our proposed methodology on

other domains, we also provide results on the NYUv2

dataset [40]. It consists of RGB+D data collected from 464

scenes, with 249 used for training and 215 for testing. We

follow [30] and sample frames evenly from the training se-

quences, generating roughly 36k training RGB+D images.

For depth prediction we train on images of size 640× 480,

while for depth completion we first downsample the origi-

nal frames by half and center-crop to 304 × 228, so as to

be consistent with the protocol followed by related meth-

ods [33]. Additionally, for depth completion we use in-

put depth maps with 200 or 500 valid points respectively,

randomly sampled from the original depth images, follow-

ing the standard training protocol on this dataset [33]. We

upsample each test prediction to the original test image

resolution and evaluate on a center crop following related

work [1, 9, 30], using the official test split of 654 frames.

KITTI3D. To further analyze the accuracy of the depth

maps predicted by our proposed SAN architecture, we

also evaluated their performance in the downstream task

of monocular 3D object detection as pseudo-LiDAR point-

clouds. Specifically, we use the KITTI3D dataset [12], com-

posed of 3,712 training and 3,712 validation images.

Pretraining. Following related work [30, 33, 47], we

found pre-training to improve network performance. For

our KITTI experiments we pre-train on a larger split of

DDAD, while for the NYU experiments we pre-train on

the Scannet dataset [5] by sampling approximately 250k
RGB+D frames without any additional cropping or filter-

ing. We ablate the effect of pretraining in Tab. 3.

P
re

d
ic

ti
o

n

Method SILog SqRel AbsRel iRMSE

SGDepth [26] 15.30 5.00% 13.29% 15.80

SDNet [35] 14.68 3.90% 12.31% 15.96

VGG26-UNet [21] 13.41 2.86% 10.60% 15.06

PAP [56] 13.08 2.72% 10.27% 13.95

VNL [50] 12.65 2.46% 10.15% 13.02

SORD [6] 12.39 2.49% 10.10% 13.48

RefinedMPL [48] 11.80 2.31% 10.09% 13.39

DORN [9] 11.77 2.23% 8.78% 12.98

BTS [30] 11.67 2.21% 9.04% 12.23

PackNet-SAN 11.54 2.35% 9.12% 12.38

C
o

m
p

le
ti

o
n

Method RMSE iRMSE MAE iMAE

DCDC [24] 1109.04 2.95 234.01 1.07

CSPN [3] 1019.64 2.93 279.46 1.15

Conf-Net [22] 962.28 3.10 257.54 1.09

Sparse-to-Dense [33] 954.36 3.21 288.64 1.35

DFineNet [55] 943.89 1.39 304.17 1.39

CrossGuidance [31] 807.42 2.73 253.98 1.33

FusionNet [47] 772.87 2.19 215.02 0.93

GuideNet [42] 736.24 2.25 218.83 0.99

PackNet-SAN 914.35 2.78 298.04 1.36

Table 2: Depth estimation results on the official KITTI

testset benchmark relative to other published methods, for

both prediction and completion tasks (bold metrics are used

for leaderboard scoring). Note that the same model was

used in both submissions, only modifying the input infor-

mation (RGB for prediction and RGB+D for completion).

5. Experimental Results

5.1. Depth Prediction and Completion

KITTI. In Tab. 1 we present quantitative results for the

tasks of depth prediction and completion, considering the

Eigen test split. We note that BTS-SAN, i.e. the BTS archi-
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(a) Prediction

(b) Completion

Figure 3: Qualitative depth prediction and completion

results on the KITTI benchmark, using PackNet-SAN.

tecture [30] with our proposed SAN module improves over

the baseline numbers for the task of depth prediction, while

at the same time enabling depth completion if sparse depth

maps are also provided as additional input. These results

are further improved by using PackNet [18] as the under-

lying depth prediction network, establishing a new state of

the art for this task by a significant margin. We also eval-

uated our proposed PackNet-SAN architecture on the offi-

cial KITTI test set benchmark, submitting results from the

same model to both depth prediction and completion leader-

boards (see Tab. 2). Despite operating in this challenging

setting, at the time of publication our method ranked first

amongst all published methods for the task of depth pre-

diction for the SILog metric (used to determine ranking),

while at the same time showing good depth completion per-

formance. We show qualitative results obtained from the

KITTI leaderboard in Fig. 3.

DDAD. In Tab. 5 we show results on the DDAD dataset

obtained using our baseline depth prediction network (Pack-

Net) and its extension using our proposed SAN architec-

ture, to enable the joint-task learning of depth prediction

and completion. From these results we note that the in-

troduction of joint-task learning boosted depth prediction

results by a significant margin, similarly to what was ob-

served in the KITTI experiments (for qualitative results, see

Fig. 4). Additionally, if sparse depth maps are available

as input they can also be used to generate depth comple-

tion results, further improving performance. We note that

the RGB+D experiments on DDAD were performed with a

sparsity level of 20% for the input depth maps - we provide

a detailed analysis of how the sparsity level affects perfor-

mance in the ablative section (see Fig. 6).

Method Input Abs.Rel↓ RMSE↓ SILog↓ δ < 1.25↑

SRB x1
RGB 0.057 2.483 8.064 0.966

RGB+D 0.019 0.994 3.343 0.997

SRB x2
RGB 0.055 2.328 7.862 0.966

RGB+D 0.017 0.949 3.287 0.997

Unfreeze RGB 0.055 2.306 7.978 0.967
Pred. Encoder RGB+D 0.021 0.965 3.333 0.996

Freeze RGB 0.054 2.318 7.901 0.968
Pred. Decoder RGB+D 0.024 1.070 3.805 0.995

W/o Wi and RGB 0.056 2.374 8.324 0.962
Bi parameters RGB+D 0.019 0.958 3.395 0.995

Train from RGB 0.062 2.888 9.579 0.955
Scratch RGB+D 0.019 1.049 3.631 0.996

Prediction RGB 0.054 2.476 8.081 0.966

Completion RGB+D 0.015 0.878 3.238 0.997

PackNet-SAN
RGB 0.052 2.233 7.618 0.970

RGB+D 0.015 0.909 3.149 0.997

Table 3: Ablation analysis on the KITTI dataset, consid-

ering the Eigen test split [7] and PackNet [18] as the depth

prediction network. SRB xX uses Sparse Residual Blocks

with fewer branches; Unfreeze Pred. Encoder also updates

the prediction encoder during the second stage of training;

Freeze Pred. Decoder also freezes the prediction decoder

during the second stage of training; w/o Wi and Bi removes

the shared parameters for each skip connection; Train from

scratch does not use a pre-trained model; and Prediction

and Completion are trained only for that particular task.

NYUv2. Our NYUv2 results are summarized in Tab. 6,

observing the same trend as on the other datasets. The pro-

posed architecture PackNet-SAN improves over the baseline

PackNet [18], achieving new state-of-the-art performance

for depth prediction on this dataset. When using RGB+D

data at inference time, our method is competitive with state-

of-the-art methods, achieving similar numbers on most met-

rics. We show qualitative results on NYUv2 in Fig. 5.

5.2. Monocular 3D Object Detection

To further analyze the accuracy of the depth maps pre-

dicted by our proposed SAN architecture, we evaluated

their performance in the downstream task of monocular 3D

Method AP3D@easy AP3D@medium AP3D@hard

DORN [9] 34.8/35.1 22.0/22.0 19.5/19.6

PackNet-SAN 35.5/35.7 22.6/22.8 19.9/20.1

Table 4: 3D object detection results on the validation set

of KITI3D for the Car category, using PatchNet [34] and

different monocular pointclouds (no input sparse depth), for

the validation split. The same detection architecture and

learning hyperparameters were used in both cases.

611083



Input Camera
Lower is better ↓ Higher is better ↑

Abs.Rel Sqr.Rel RMSE RMSElog SILog δ < 1.25 δ < 1.252 δ < 1.253

P
a

ck
N

et

RGB

01 0.088 1.760 11.331 0.195 18.499 0.899 0.960 0.981
05 0.130 2.025 10.472 0.268 25.273 0.832 0.927 0.960
06 0.151 2.485 10.680 0.307 28.007 0.791 0.904 0.944
09 0.132 2.362 12.497 0.261 24.551 0.821 0.925 0.962

P
a

ck
N

et
-S

A
N RGB

01 0.083 1.575 10.693 0.185 17.767 0.911 0.967 0.987
05 0.127 1.863 10.210 0.263 24.966 0.841 0.931 0.973
06 0.145 2.307 10.493 0.298 27.491 0.804 0.911 0.968
09 0.119 1.979 12.010 0.256 24.295 0.844 0.936 0.978

Avg. Improv. 5.45% 10.47% 3.44% 2.96% 2.01% 1.71% 0.78% 1.54%

RGB+D

01 0.052 0.933 8.683 0.153 14.920 0.955 0.978 0.987
05 0.072 1.097 7.950 0.207 20.375 0.928 0.958 0.973
06 0.081 1.255 7.994 0.232 22.675 0.922 0.955 0.969
09 0.067 1.131 9.052 0.189 18.481 0.934 0.966 0.979

Table 5: Depth estimation results on DDAD using PackNet-SAN, with the same model trained on four cameras considering

distances up to 200m. For the RGB+D experiments, a sparsity level of 20% was used for input depth maps (see Fig. 6).
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Figure 4: Qualitative depth results on DDAD, using PackNet-SAN. A single sample is shown, each column corresponding

to an individual camera. The same model was trained on all four cameras both for the task of depth prediction (middle row)

and completion (bottom row), as shown in Tab. 5.

object detection, using the recently proposed PatchNet ar-

chitecture [34]. The depth maps predicted by PackNet-SAN

were projected into 3D as pseudo-LiDAR pointclouds us-

ing ground-truth camera intrinsics, and then used as input

to PatchNet without any other modifications. In Tab. 4 we

present results on the KITTI3D dataset and show that by

operating on our pointclouds we increase object detection

performance in all difficulty thresholds relative to the pre-

vious state of the art when using the DORN [9] depth esti-

mator. Note that, for a fair comparison, the two depth net-

works (DORN and PackNet-SAN) were trained using the

same Eigen split of KITTI.

5.3. Ablative Analysis

In Tab. 3 we perform a comprehensive ablation study

showing the effects of each design choice of our proposed

architecture, and how they contribute to these improve-

ments. In particular we show that the joint learning of both

tasks actually improves depth prediction performance rela-

tive to single task learning, without degrading depth com-

pletion performance. We also demonstrate that increasing

the complexity of the sparse encoder (i.e. introducing more

sparse residual blocks) benefits both tasks, since it facil-

itates the decoupling of RGB and depth features without

overloading the shared decoder. We also experimented with

different schedules for parameter freezing, and determined

that freezing the dense encoder after the initial depth pre-

diction learning stage leads to optimal results.

Additionally, in Fig. 6 we analyze the impact of sparsity

in the input depth maps on the DDAD dataset. Specifically,

we sparsify the input depth maps by randomly sampling

a percentage of valid input depth pixels (depth maps used
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(a) Input (b) Predicted (c) Completed

Figure 5: Qualitative depth results on NYUv2, using

PackNet-SAN. Our joint-task learning methodology en-

ables the generation of state-of-the-art predicted depth

maps, that can be further improved by using sparse depth

maps as additional input without changing the architecture.

Figure 6: Sparsity analysis on the DDAD dataset, using

PackNet-SAN. We show depth prediction (red) and comple-

tion (blue) results with different levels of sparsity, compared

to the baseline prediction-only network (black).

for supervision and evaluation were not modified). As ex-

pected, performance increases with the percentage of avail-

able input depth points, showing that our proposed SAN

architecture is able to leverage different levels of sparsity

to consistently improve results. Interestingly, we observe

a similar trend for depth prediction results as well, as fur-

ther evidence that joint-task learning of depth prediction

and completion is able to further improve results even when

only RGB images are utilized at test time.

Depth Prediction

Method AbsRel RMSE δ < 1.25 δ < 1.252 δ < 1.253

Qi et al. [38] 0.128 0.569 0.834 0.960 0.990

Alhashim et al. [1] 0.123 0.465 0.846 0.974 0.994

Fu et al. [9] 0.115 0.509 0.828 0.965 0.992

Yin et al. [53] 0.108 0.416 0.875 0.976 0.994

Lee et al. [30] 0.110 0.392 0.885 0.978 0.994

PackNet [18] 0.110 0.397 0.886 0.979 0.995

PackNet-SAN 0.106 0.393 0.892 0.979 0.995

Depth Completion - 200 samples

Ma et al. [33]† 0.044 0.230 0.971 0.994 0.998

NConv-CNN [8]† 0.027 0.173 0.982 0.996 0.999

Tang et al. [42] 0.024 0.142 0.988 0.998 1.000

PackNet-SAN 0.027 0.155 0.989 0.998 0.999

Depth Completion - 500 samples

Ma et al. [33] 0.043 0.204 0.978 0.996 0.999

DeepLidar [39] 0.022 0.115 0.993 0.999 1.000

EncDec-Net[EF] [8] 0.017 0.123 0.991 0.998 1.000

CSPN [3] 0.016 0.117 0.992 0.999 1.000

Tang et al. [42] 0.015 0.101 0.995 0.999 1.000

PackNet-SAN 0.019 0.120 0.994 0.999 1.000

Table 6: Depth estimation results on the test split of the

NYUv2 dataset. relative to other published methods, for

both depth prediction and completion tasks. Note that the

same model was used in both submissions, the only modifi-

cation being the input information (RGB for prediction and

RGB+D for completion). † - results from [42].

6. Conclusion

This paper describes a novel methodology for monocular

depth estimation that combines the tasks of depth predic-

tion and completion into a single architecture. We propose

a mid-level fusion approach for the joint learning of both

tasks, using a standard depth prediction network with the

addition of a sparse encoder to process input depth maps.

The sparse depth features are added to the skip connections

of the image encoder at each layer, before they are fed into

a shared dense decoder. The resulting architecture can be

used to perform both tasks without any further training, sim-

ply by modifying the input information between RGB and

RGB+D or controlling the sparsity level of the input depth

maps. Through an extensive analysis on different bench-

marks, we demonstrate that our proposed unified SAN ar-

chitecture achieves a new state of the art in monocular depth

prediction by a significant margin. As future work, we will

explore multi-frame extensions (e.g., stereo pairs or tempo-

ral context), as well as developing ways to further improve

depth completion performance in the SAN setting.
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