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Abstract

Siamese network based trackers formulate the visual

tracking task as a similarity matching problem. Almost

all popular Siamese trackers realize the similarity learning

via convolutional feature cross-correlation between a tar-

get branch and a search branch. However, since the size

of target feature region needs to be pre-fixed, these cross-

correlation base methods suffer from either reserving much

adverse background information or missing a great deal of

foreground information. Moreover, the global matching be-

tween the target and search region also largely neglects the

target structure and part-level information.

In this paper, to solve the above issues, we propose a

simple target-aware Siamese graph attention network for

general object tracking. We propose to establish part-to-

part correspondence between the target and the search re-

gion with a complete bipartite graph, and apply the graph

attention mechanism to propagate target information from

the template feature to the search feature. Further, instead

of using the pre-fixed region cropping for template-feature-

area selection, we investigate a target-aware area selection

mechanism to fit the size and aspect ratio variations of dif-

ferent objects. Experiments on challenging benchmarks in-

cluding GOT-10k, UAV123, OTB-100 and LaSOT demon-

strate that the proposed SiamGAT outperforms many state-

of-the-art trackers and achieves leading performance. Code

is available at: https: // git. io/ SiamGAT

1. Introduction

General object tracking is a fundamental but challeng-

ing task in computer vision. In recent years, mainstream

trackers focus on Siamese network based architectures

[10, 15, 16, 33], which achieve state-of-the-art performance

as well as a good balance between tracking accuracy and

efficiency. These trackers first employ a Siamese network

for feature extraction. Then they develop a tracking-head
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#63 #73 #92

Figure 1 – Comparisons of our SiamGAT with state-of-the-art

trackers on three challenging sequences from GOT-10k. Ben-

efiting from the effective target information propagating, our

SiamGAT successsfully handles the challenges such as shape de-

formation, similar distractors and extreme aspect-ratio changes.

Compared with the baseline SiamCAR (green), our SiamGAT

(red) remarkably improves the tracking accuracy (zoom in for a

better view).

network for object information decoding from one or more

similarity maps (or so-called response maps) obtained by

information embedding between the template-branch and

the search-branch. How to embed the information of the

two branches to obtain informative response maps is a key

issue, since information passed from the template to the

search region is critical to the accurate localization of the

object. Almost all current state-of-the-art Siamese trackers

like SiamRPN [16], SiamRPN++ [15], SiamFC++ [33] and

SiamCAR [10] utilize a cross-correlation based layer for

information embedding, which takes convolution on deep

features as the basic operation. Despite their great success,

some important drawbacks exist with such cross-correlation

based trackers: 1) The size of convolution kernel is pre-

fixed. As shown in Figure 2, a common processing is crop-
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CNN
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Figure 2 – Illustration of traditional cross-correlation based sim-

ilarity learning methods. The target is marked by red boxes. The

CNN features of the target, the background and the search region

correspond to green, white and blue cycles respectively. An impor-

tant problem is that the template feature obtained by fixed-region

cropping (labeled by the yellow box) may introduce much back-

ground information or miss a great deal of foreground informa-

tion, especially when the aspect ratio of the target changes dras-

tically. Moreover, during tracking, the target shape and pose are

constantly changing, but the global matching fails to consider the

invariant part-level information and the transforming body shape.

ping the central m×m region on the template feature map

to generate the target feature, which is treated as the con-

volution kernel. However, when solving tracking tasks with

different object scales or aspect ratios, this pre-fixed fea-

ture region may suffer from either reserving lots of back-

ground information or missing a great deal of foreground

information, which consequently leads to inaccurate infor-

mation embedding. 2) The target feature is treated as a

whole for similarity computation with the search region.

However, during tracking the target often yields large ro-

tation, pose variation and heavy occlusions, and performing

such a global matching with variable target is not robust.

3) Because of 2), the information embedding between the

template and search region is a global information propa-

gating process, in which the information transmitted from

the template to the search region is limited and the infor-

mation compression is excessive. Our key observations are

as follows: 1) The information embedding should be target-

aware, that is, adaptive to the size and aspect ratio varia-

tions of targets during tracking. 2) The information embed-

ding should be performed by learning the part-level rela-

tions (instead of global matching), as part features tend to

be invariant against shape and pose variations, thus being

more robust.

Aiming at solving these issues, we leverage graph atten-

tion networks [28, 34] to design an part-to-part informa-

tion embedding network for object tracking. We demon-

strate that the information embedding between template and

search region can be modeled with a complete bipartite

graph, which encodes the relations between template nodes

and search nodes by applying a graph attention mechanism

[28]. With learned attentive scores, each search node can

effectively aggregate target information from the template.

All search nodes then yield a response map with rich in-

formation for the subsequent decoding task. With such de-

signs, we propose a graph attention module (GAM) to re-

alize part-to-part information propagating instead of global

information propagating between the template and search

region. Instead of using the whole template as a convolu-

tion kernel, this part-to-part similarity matching can greatly

alleviate the effect of shape-and-pose variations of targets.

Further, instead of using the pre-fixed region cropping, we

investigate a target-aware template computing mechanism

to fit the size and aspect-ratio variations of different ob-

jects. With the introduced GAM that enables the target-

aware strategy for information embedding, we present a

novel tracking framework, termed Siamese Graph Attention

Tracking (SiamGAT) network, for general object tracking.

Since this work mainly argues that an effective infor-

mation embedding algorithm can enhance the performance

of the tracking head, the proposed SiamGAT simply con-

sists of three essential blocks, without using any feature fu-

sion, data enhancement or other strategies to enhance the

performance. We evaluate our SiamGAT on several chal-

lenge benchmarks, including GOT-10k [14], OTB-100 [31],

UAV123 [21] and LaSOT [7]. Without bells and whistles,

the proposed tracker achieves leading performance com-

pared with state-of-the-art trackers. Our main contributions

are as follows.

• We propose a graph attention module (GAM) to real-

ize part-to-part matching for information embedding.

Compared with the traditional cross-correlation based

approaches, the proposed GAM can greatly eliminate

their drawbacks and effectively pass target information

from template to search region.

• We propose a target-aware Siamese Graph Attention

Tracking (SiamGAT) network with GAM for general

object tracking. The framework is simple yet effective.

Compared with previous works using pre-fixed global

feature matching, the proposed model is adaptive to the

size and aspect-ratio variations of different objects.

• Experiments on multiple challenging benchmarks in-

cluding GOT-10k, UAV123, OTB-100 and LaSOT

demonstrate that the proposed SiamGAT outperforms

many state-of-the-art trackers and achieves leading

performance.

9544



2. Related Work

In recent years, Siamese based trackers have drawn great

attention for their superior performance. The main struc-

ture of these trackers can be summarized as three parts: a

Siamese network for feature extraction of the template and

search region, a similarity matching module for informa-

tion embedding of the two Siamese branches, and a tracking

head for feature decoding from the similarity maps. Many

researchers devote to optimizing the Siamese model for bet-

ter feature representation, or designing new tracking head

for more effective bounding box regression. However, few

work has been done on information embedding.

The pioneering method SiamFC [2] constructs a Siamese

network model for feature extraction and utilizes a cross-

correlation layer (Xcorr) to embed the two branches. It

takes the template features as kernels to directly perform

convolution operation on the search region and obtains a

single channel response map. In essence, the correlation

here can be regarded as a similarity calculation between the

template and the search region, and the obtained response

map is a similarity map for target location prediction. Fol-

lowing this similarity-learning work, many researchers try

to enhance the Siamese model for feature representation but

still leverage the cross-correlation for information embed-

ding [11, 12, 30, 9]. DSiam [11] adds online learning mod-

ules to address the target appearance variation and back-

ground suppression transformation to improve feature rep-

resentation. It focuses on enhancing the model updating

ability, while the location of object is still computed based

on the single channel response map. SA-Siam [12] utilizes

a twofold Siamese network to train a semantic branch and

an appearance branch. Each branch is a similarity-learning

Siamese network, trained separately but combined at the

testing time to complement each other. RASNet [30] in-

troduces the spatial attention and channel attention mech-

anisms to enhance the discriminative capacity of the deep

model. GCT [9] adopts a spatial-temporal graph convolu-

tional network for target modeling. Since multiple scales

are searched during test to handle the scale-variation of ob-

jects, these Siamese trackers are time-consuming.

Leveraging the region proposal network (RPN) [24]

(proposed for object detection), Li et al. [16] propose the

Siamese region proposal network SiamRPN. They add two

branches for region proposal at the end of the Siamese

feature extraction network: one classification branch for

background-foreground classification of anchors, and one

regression branch for proposal refinement. To embed

the information of anchors, SiamRPN [16] conducts an

up-channel cross-correlation-layer (Up-Xcorr) by cascad-

ing multiple independent cross-correlation layers to output

multi-channel response maps. Based on SiamRPN [16],

DaSiamRPN [37] designs a distractor-aware module to per-

form incremental learning and obtains much more discrim-

inative features against semantic distractors. To tackle data

imbalance, C-RPN [8] proposes to cascade a sequence of

RPNs from deep high-level to shallow low-level layers in

a Siamese network. Easy negative anchors can be filtered

out in earlier cascade stage and hard samples are preserved

across stages. Both SiamRPN++ [15] and SiamDW [35]

investigate to deepen neural networks to improve the track-

ing performance. These RPN based trackers have achieved

great success on performance as well as discarding tradi-

tional multi-scale tests. The chief drawback is that they are

sensitive to hyper-parameters associated with anchors.

Apart from deepening the Siamese network,

SiamRPN++ [15] also presents a depth-wise cross-

correlation layer (DW-Xcorr) to embed information of the

target template and the search region branches. Specifically,

it performs a channel-by-channel correlation operation

with the feature maps of the two branches. By replacing

the up-channel cross correlation with the depth-wise cross

correlation, imbalance of parameter distribution of the two

branches is resolved, which makes the training procedure

more stable and the information association more efficient

for the prediction of bounding box. Later works in this

vein devote to eliminate the negative effects of anchors.

A number of anchor-free trackers, such as SiamFC++

[33], SiamCAR [10], SiamBAN [3] and Ocean [36] are

proposed, which achieve state-of-the-art tracking perfor-

mance. They share the general idea tackling the tracking

task as a joint classification and regression problem, and

take one or multiple heads to directly predict objectiveness

and regress bounding boxes from response maps in a

per-pixel-prediction manner. Ocean [36] further applies an

online-updating module to dynamically adapt the tracker.

By discarding anchors and proposals, these anchor-free

trackers extricate from the tedious hyper-parameter-tuning

and the requirement of providing prior information (e.g.,

data scale and ratio distribution) for the dataset.

Liao et al. [18] observed that traditional cross-correlation

operation brings much background information, which may

overwhelm the target feature and results in sensitivity to

similar distracters. To solve this issue, they propose a pixel-

to-global matching method to suppress the interference of

background. However, similar to cross-correlation, this PG-

correlation still takes a fixed-scale cropped region as the

template feature.

3. Method

In this section, we present a detailed description for the

proposed SiamGAT framework. The most important inves-

tigation of this work is that the performance of the Siamese

trackers can be significantly improved with much effective

information propagating from the target template to search

region. In the following, we first introduce our Graph Atten-

tion Module which establishes the part-to-part correspon-
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Figure 3 – Overview of the proposed method. (a) The network architecture of SiamGAT. It consists of three primary blocks: a Siamese

sub-network for feature extraction, a graph attention module for target information embedding, and a classification-regression sub-network

for target localization. (b) Illustration of the proposed graph attention module. The representation of each search node is reconstructed by

aggregating information from all neighboring target nodes with attention mechanism. Note that the number of target nodes is not fixed but

varies with different target templates via a target-aware area selection mechanism.

dence between the Siamese branches. Then we present the

target-aware graph attention tracker. An overview of our

framework is illustrated in Figure 3.

3.1. Graph Attention Information Embedding

Existing correlation based information embedding meth-

ods [2, 16, 15] take the whole target feature as a unity

to match with the search features. As this operation ne-

glects the part-level correspondence between the target and

the search regions, the matching is inaccurate under shape-

and-pose variances of targets. Besides, this global matching

manner may greatly compress the target information propa-

gating to the search feature. In order to address these prob-

lems, we establish the part-to-part correspondence between

the target template and the search region with a complete bi-

partite graph.

Given two images of a template patch T and a search

region S, we first employ a Siamese feature extraction net-

work to obtain two feature maps Ft and Fs. To generate

a graph, we consider each 1 × 1 × c grid of the feature

map as a node (part), where c represents the number of

feature channels. Let Vt be a node set including all nodes

of Ft, and let Vs be another node set of Fs. Inspired by

the graph attention networks [28], we use a complete bi-

partite graph G = (V,E) to model the part-level relations

between the target and search region, where V = Vs ∪ Vt

and E = {(u, v)|∀u ∈ Vs, ∀v ∈ Vt}. We further define two

sub-graphs of G by Gt = (Vt, ∅) and Gs = (Vs, ∅).
For each (i, j) ∈ E, let eij denote the correlation score

of node i ∈ Vs and node j ∈ Vt:

eij = f(hi
s,h

j
t ), (1)

where h
i
s ∈ R

c and h
j
t ∈ R

c are feature vectors of node i

and node j. Since the more similar is a location in the search

region to the local features of the template, the more likely

it is the foreground, and more target information should be

passed to there. For this reason, we hope that the score eij
is proportional to the similarity of the two node features.

We can simply use the inner product between features as

the similarity measurement. In order to adaptively learn a

better representation between the nodes, we first apply lin-

ear transformations to the node features and then take the

inner product between transformed feature vectors to calcu-

late the correlation score. Formally,

f(hi
s,h

j
t ) = (Wsh

i
s)

T (Wth
j
t ), (2)

where Ws and Wt are the linear transformation matrices.

In order to balance the amount of information sent to the

search region, we normalize eij with the softmax function:

aij =
exp(eij)

∑

k∈Vt

exp(eik)
. (3)

Intuitively, aij measures how much attention the tracker

should pay to part i, according to the viewpoint of part j.

Leveraging the attentions that passed from all nodes in

Gt to the i-th node in Gs, we compute the aggregated rep-

resentation for node i with

vi =
∑

j∈Vt

aijWvh
j
t , (4)

where Wv is a matrix for linear transformation.

Finally, we can fuse the aggregated feature with the node

feature h
i
s to obtain a more powerful feature representation

empowered by target information:

ĥ
i
s = ReLU

(

vi‖(Wvh
i
s)
)

, (5)

where ‖ represents vector concatenation.

We compute all ĥi
s ∀i ∈ Vs in parallel, which yields a

response map for subsequent task.
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3.2. Target­Aware Graph Attention Tracking

Traditional Cross-correlation based methods are con-

strained by pre-fixed kernel sizes. They simply crop the

center region of template Ft as the target feature to match

with the search region Fs, which delivers much background

information to the response map, especially when the tem-

plate target is given in extreme aspect ratios. As a new in-

formation embedding method to replace Cross-correlation,

the proposed graph attention module (GAM) can be unre-

stricted to the constraint and meanwhile operated with a

variable template. In the following, we present our target-

aware visual tracking framework.

In order to produce a variable template which adaptively

fits different object scales and aspect-ratios, we investigate a

target-aware template-feature-area selection mechanism un-

der the supervision of labeled bounding box Bt in the tem-

plate patch. By projecting Bt onto the feature map Ft, we

can attain a region of interest Rt. Only the pixels in Rt are

taken as the template feature:

F̂t =

[

Ft(i, j, :)

]

(i,j)∈Rt

. (6)

Through this simple operation, the obtained feature map F̂t

is a tensor of dimensions (w, h, c), where w and h corre-

spond to the width and height of the template bounding box

Bt, and c is the number of channels of Ft.

Each element F̂t(i, j, :) is considered as a node in the

template subgraph Gt. Meanwhile, each element Fs(m,n, :
) is considered as a node in the search subgraph Gs. These

two subgraphs serve as inputs to the Graph Attention Mod-

ule for information embedding. As elements in Gt are ar-

ranged in a grid pattern on the feature map F̂t, we can im-

plement the linear transformations in Section 3.1 with 1×1
convolutions. Then all correlation scores could be calcu-

lated by matrix multiplication, which is expected to greatly

improve the efficiency.

In experiments, we observe that applying a batch nor-

malization after each convolution can effectively improve

the performance. However, the dimensions w and h cor-

responding to different tracking objects cannot be pre-

determined, thus we cannot directly apply the batch nor-

malization operation with the scale variable F̂t. To solve

the problem, we recompute F̂t as follows:

F̂t(i, j, :) =

{

Ft(i, j, :) if (i, j) ∈ Rt,

0 otherwise.
(7)

Besides keeping the scale invariant, this target-aware idea

renders the proposed method extendable to tasks which re-

quire non-rectangular ROIs (e.g., instance-segmentation in

videos) .

Incorporating the target-aware region selection, we con-

struct our tracking network with the proposed GAM for ef-

fective information embedding. As shown in Figure 3(a),

our SiamGAT simply consists of three blocks: a Siamese

network for feature extraction, a tracking head for target

bounding box prediction and a GAM block to bridge them.

Numerous works demonstrated that trackers can greatly

benefit from better feature extraction method [20, 15]. By

replacing the classical HOG features and color features with

deep CNN features, tracking accuracy has seen significant

improvement [20]. Later, deepening the backbone networks

and fusing features of multiple layers have further improved

the tracking performance [15]. Since GoogLeNet [26] is

able to learn multi-scale feature representations with much

fewer parameter and faster reasoning speed, here we adopt

GoogLeNet as our backbone (an ablation is performed as

well to study the performance of SiamGAT using different

backbones).

Encouraged by the success of anchor-free trackers, we

leverage the classification-regression head network from

SiamCAR [10] to be the tracking head. It contains two

branches: a classification branch predicting the category in-

formation for each location, and a regression branch com-

puting the target bounding box at this location. The two

branches share the same response map output by GAM.

4. Experiment

4.1. Implementation Details

The proposed SiamGAT is implemented in Pytorch

on 4 RTX-2080Ti cards. Unless specified, the modified

GoogLeNet( Inception v3) [26] is adopted as the backbone

network for feature extraction. The backbone is initialized

with the weights that pretrained on ImageNet [25]. The

training batch size is set as 76 and totally 20 epochs are

trained with stochastic gradient descent (SGD). We use a

learning rate that linearly increased from 0.005 to 0.01 for

the first 5 warmup epoches and then exponentially decayed

to 0.0005 for the rest 15 epoches. For the first 10 epoches,

we freeze the parameters in the backbone to train the graph

attention network and the head network. For the rest 10

epoches, we freeze stage 1 and 2 of GoogLeNet, and fine-

tune stage 3 and 4.

We adopt COCO [19], ImageNet DET [25], ImageNet

VID [25], YouTube-BB [23] and GOT-10k [14] as the train-

ing set for experiments on OTB100 [31] and UAV123 [21].

Specifically, for experiments on GOT-10k [14] and LaSOT

[7], the model is respectively trained with only the speci-

fied training set provided by their official websites for fair

comparison. In both training and testing processes, we use

pre-fixed scales with 127×127 pixels for the template patch

and 287×287 pixels for search regions. During testing, only

the object in the initial frame of a sequence is adopted as
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Dataset Backbone Target-aware Embedding Type Success Precision FPS

UAV123

AlexNet X GAM 0.592 0.779 165

GoogLeNet X GAM 0.646 0.843 70

GoogLeNet × GAM 0.626 0.822 71

GoogLeNet × DW-Xcorr 0.615 0.815 74

Table 1 – Ablation study on UAV123. Target-aware represents whether the template feature area is pre-fixed or adptively selected with the

object aspect ratio.
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Figure 4 – Comparisions with state-of-the-art tracker on UAV123 [21] in terms of precision plots of OPE and success plots of OPE.

the template patch and fixed for the whole tracking period

of this sequence. The search region in the current frame is

adopted as the input of the search branch.

4.2. Ablation Study

Backbone architecture. We evaluate our network with

both shallow and deep backbone architectures for visual

tracking. Table 1 shows the tracking performance with

AlexNet and GoogLeNet as backbones. Different back-

bones greatly affect the speed and performance of the

tracker. By replacing AlexNet with GoogLeNet, the suc-

cess is improved by 5.4% from 59.2% to 64.6%, the preci-

sion is increased by 6.4% from 77.9% to 84.3%. While the

tracking speed decreases from 165 FPS to 70 FPS, which

still meets the real-time requirement. It is worth point-

ing out that, the SiamGAT using AlexNet as the backbone

also achieves a competitive performance while its precision

and success are 1.1% and 3.5% higher than SiamRPN [16],

whose results are shown in Figure 4. Clearly, the proposed

approach can achieve a trade-off between accuracy and ef-

ficiency with different backbones.

Target-aware vs. pre-fixed template area selection. To

investigate the impact of template area selection, we train

two models with GAM on GoogLeNet. One is trained with

the traditional fixed-region cropping target features (Center-

cropped), and another is trained with the target-aware se-

lected features. As shown in Table 1, the proposed target-

aware feature area selecting mechanism brings 2.0% and

2.1% performance gains respectively on success and pre-

cision. The main reason is that the target-aware mecha-

nism is able to effectively eliminate the background infor-

mation and enhance the foreground representation, which

helps to obtain more accurate target feature area than fixed-

region cropping. As a new way to replace X-corr for infor-

mation embedding, GAM enables the target-aware strategy

and they are complementary to improve the tracking perfor-

mance.

Comparison with DW-Xcorr. To conduct a compari-

son with cross-correlation based methods, here we replace

the target-aware GAM with the popular DW-Xcorr layer

[15], which achieves the best performance among cross-

correlation based methods. Since the target feature area

needs to be pre-fixed in the cross-correlation based meth-

ods, target-aware feature area selection cannot be applied

with these methods. Here DW-Xcorr takes the center-

cropped feature of the template. As shown in Table 1, com-

pared with DW-Xcorr, the GAM with target-aware mecha-

nism brings 3.1% and 2.8% performance gains respectively

on success and precision, while the GAM with pre-fixed re-

gion only brings 1.1% and 0.7% performance gains. The
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Tracker AO SR0.5 SR0.75

CFNet [27] 0.293 0.265 0.087

MDNet [22] 0.299 0.303 0.099

ECO [4] 0.316 0.309 0.111

CCOT [6] 0.325 0.328 0.107

GOTURN [13] 0.347 0.375 0.124

SiamFC [2] 0.348 0.353 0.098

SiamRPN R18 [16] 0.483 0.581 0.270

SPM [29] 0.513 0.593 0.359

SiamRPN++ [15] 0.517 0.615 0.329

ATOM [5] 0.556 0.634 0.402

SiamCAR [10] 0.579 0.677 0.437

SiamFC++ [33] 0.595 0.695 0.479

D3S [1] 0.597 0.676 0.462

Ocean-offline [36] 0.592 0.695 0.473

Ocean-online [36] 0.611 0.721 0.473

SiamGAT (ours) 0.627 0.743 0.488

Table 2 – Evaluation on GOT-10k [14] in terms of average overlap

and success rate.

results further demonstrate that the pre-fixed region of tar-

get features has become the bottleneck for accurate target-

information-propagating. Benefiting from the GAM archi-

tecture, our method enables the target-aware region selec-

tion, which is adaptive to different aspect ratios of objects.

4.3. Evaluation on UAV123

The UAV123 dataset contains a total of 123 video se-

quences and all sequences are fully annotated with upright

bounding boxes. Objects in the dataset suffer from occlu-

sions, fast motion, illumination and large scale variations,

which pose challenges to the trackers. A comparison with

state-of-the-art trackers is shown in Figure 4 in terms of

the precision and success plots of OPE. Our tracker outper-

forms all other trackers for both metrics. Compared with the

baseline SiamCAR, our tracker improves the performance

by 3.0% in precision and 2.3% in success.

4.4. Evaluation on GOT­10k

To evaluate the generalization of our tracker, we test

it on the GOT-10k (Generic Object Tracking Benchmark)

and compare it with state-of-the-art trackers. GOT-10k is

a challenging large-scale dataset which contains more than

10,000 videos of moving objects in real-world. It is also

challenging in terms of zero-class-overlap between the pro-

vided training subset and testing subset. For fair com-

parison, we follow the the protocol of GOT-10k that only

training our model with its training subset. We evaluate

SiamGAT on GOT-10k and compare it with state-of-the-art

trackers including SiamCAR [10], Ocean [36], SiamFC++

[33], D3S [1], SiamRPN++ [15], SPM [29], SiamRPN [16]
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Figure 5 – Comparision with state-of-the-art trackers on OTB-100

[32] in terms of success plots of OPE.
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Figure 6 – Evaluation with each single attribute on OTB-100 [32]

in terms of success.

and other baselines. As shown in Table 2, the proposed

SiamGAT performs best in term of all metrics. Compared

with the baseline SiamCAR, our tracker improves by 4.8%,

6.6% and 5.1% respectively in terms of AO, SR0.5 and

SR0.75. Impressively, it even outperforms the online up-

date tracker ‘Ocean’ and improves the scores respectively

by 1.6%, 2.2% and 1.5% with a much simple network ar-

chitecture, which validates the generalization ability of our

tracker on unseen classes. Some qualitative results and

comparisons are provided by Figure 1, which demonstrates

that our SiamGAT is able to predict more accurate bounding

boxes of targets.
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Figure 7 – Comparision with state-of-the-art trackers on LaSOT [7] in terms of the normalized precision, precision and success plots of

OPE.

4.5. Evaluation on OTB­100

OTB-100 is one of the most classical benchmarks that

provides a fair test-bed on robustness. All sequences in

the dataset are labeled with 11 interference attributes, in-

cluding illumination variation (IV), scale variation (SV),

occlusion (OCC), deformation (DEF), motion blur (MB),

fast motion (FM), in-plane rotation (IPR), out-of-plane ro-

tation (OPR), out-of-view (OV), low resolution (LR) and

background clutter (BC). A comparison with state-of-the-

art trackers is shown in Figure 5 in terms of success plots of

OPE. Our SiamGAT reaches a success score of 71.0% that

surpasses all other trackers. An evaluation on different at-

tributes is shown by Figure 6. Our tracker can better handle

the challenges like deformation (DEF), out-of-plane rota-

tion (OPR), occlusion (OCC), illumination variation (IV),

in-plane rotation (IPR) and scale variation (SV), which may

cause large shape and pose variations of the object. Re-

garding to fast motion (FM), out-of-view (OV), low resolu-

tion (LR) which may cause extreme appearance variations,

the proposed tracker obtains a lower score than the base-

line SiamCAR. The results demonstrate that the proposed

tracker can achieve robust performance against shape and

pose variations.

4.6. Evaluation on LaSOT

To further evaluate the proposed approach on a more

challenging dataset, we conduct experiments on LaSOT [7],

which is a large-scale, high-quality, and densely annotated

dataset for long-term tracking. To mitigate potential class

bias, it provides the same number of sequences for each

category. The results on LaSOT are shown in Figure 7. Our

SiamGAT is the second best only behind the online tracker

Ocean-online [36] but surpasses the long-term tracker Glob-

alTrack [17] by 3.6% in normalized precision, 0.2% in pre-

cision and 1.8% in success. Compared with Ocean-offline

[36] which is much more complex than SiamGAT in terms

of network architecture, SiamGAT performs 2.3 points bet-

ter in normalized precision, 0.4 in precision and 1.3 in suc-

cess. The results indicate that the proposed tracker is com-

petitive for long-term tracking tasks. Moreover, up to our

investigation, both attentive and target-aware properties of

the proposed tracker allow more efficient online tracking

without model updating. Online tracking modules can be

easily integrated in future.

5. Conclusion

In this paper, we have presented a novel target-aware

Siamese Graph Attention network, termed SiamGAT, for

general object tracking. The proposed method explores

information embedding for the object tracking task via a

graph attention module (GAM). We provide theoretical and

empirical evidences that how GAM establishes part-to-part

correspondence and enables each part of the search region

to aggregate information from the target. Instead of us-

ing the traditional cross-correlation based information em-

bedding method, our GAM realizes part-level information

propagating between the two Siamese branches and yields

a much effective information embedding map. By incor-

porating a target-aware template region selection mecha-

nism that can adaptively fit with different object scales

and aspect ratios, the proposed approach enables more

generalizable visual tracking. Without bells and whistles,

our SiamGAT outperforms state-of-the-art trackers by clear

margins on multiple main-stream benchmarks including

GOT-10k, UAV123, OTB-100 and LaSOT.
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