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Abstract

Unsupervised domain adaptation (UDA) aims to trans-

fer the knowledge from the labeled source domain to the

unlabeled target domain. Existing self-training based UDA

approaches assign pseudo labels for target data and treat

them as ground truth labels to fully leverage unlabeled tar-

get data for model adaptation. However, the generated

pseudo labels from the model optimized on the source do-

main inevitably contain noise due to the domain gap. To

tackle this issue, we advance a MetaCorrection framework,

where a Domain-aware Meta-learning strategy is devised

to benefit Loss Correction (DMLC) for UDA semantic seg-

mentation. In particular, we model the noise distribution

of pseudo labels in target domain by introducing a noise

transition matrix (NTM) and construct meta data set with

domain-invariant source data to guide the estimation of

NTM. Through the risk minimization on the meta data set,

the optimized NTM thus can correct the noisy issues in

pseudo labels and enhance the generalization ability of the

model on the target data. Considering the capacity gap

between shallow and deep features, we further employ the

proposed DMLC strategy to provide matched and compat-

ible supervision signals for different level features, thereby

ensuring deep adaptation. Extensive experimental results

highlight the effectiveness of our methoda against existing

state-of-the-art methods on three benchmarks.

1. Introduction
Unsupervised domain adaptation (UDA) aims to adapt

a model for the unlabeled target domain through transfer-

ring the knowledge from a labeled source domain with the

same label space. UDA for semantic segmentation is a cru-

cial practical problem since it may be beneficial for various

real-world applications, such as simulation for robots [18]

and autonomous driving [44]. The main challenge of UDA
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Figure 1. Sample of the noisy pseudo labels on Cityscapes [10].

The generated pseudo labels suffer from the data distribution bi-

ases in comparison to the ground truth.

semantic segmentation lies in the divergence of data dis-

tribution between two domains [5, 48]. Such domain gap

often results in significant performance degradation if the

model learned on the labeled source data is directly applied

to the target samples [46, 51].

There exist two major lines of approaches to tackle the

domain gap problem. On one hand, adversarial learning

based UDA methods as a dominant stream have been de-

vised to bridge the domain gap by aligning the distribu-

tions of two domains in the appearance [6, 7, 9, 22], feature

[2, 11, 39, 45] or output spaces [20, 26, 40, 41]. Despite

the significant progress of domain alignment, these works

ignored the domain-specific knowledge and could not guar-

antee the sufficient discriminative capability of the classifier

for the specific task. On the other hand, self-training based

methods [4, 5, 17, 23, 24, 28, 30, 35, 42, 46, 48, 49, 50,

51] have emerged as promising alternatives towards UDA,

which enhanced the discrimination property of target fea-

tures and implicitly encouraged cross-domain alignment by

simultaneously training with pseudo-labeled target data and

labeled source data. Specifically, self-training methods as-

sign pixel-wise pseudo labels according to confidence score

[17, 23, 30, 51] or uncertainty [24, 48], providing extra su-

pervision for target data to optimize the model.

However, one issue with self-training based UDA meth-

ods is that the generated pseudo labels usually suffer from
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the noise problem, as illustrated in Figure 1 (b). The pres-

ence of noisy pseudo labels may severely hamper the gen-

eralization ability of the adapted models, because deep neu-

ral networks (DNN) may overfit due to these noisy labeled

data. Although some existing works [14, 23, 51] manually

define a threshold to eliminate the low-confidence pseudo-

labeled samples, it is still challenging in several aspects.

First, the threshold value is hard to predefine manually. It

may depend on many factors such as the stage of training

procedure, the degree of discrepancy between two domains,

the number of pixels in each class, the location of the pixel,

etc. Secondly, those selected training samples may be mis-

classified with high confidence, leading to accumulated er-

rors. In fact, the noisy pseudo labels tend to appear in under-

represented minor classes or ambiguous classes. For in-

stance, the minor category ‘traffic sign’ is overwhelmed by

major category ‘building’, and ‘road’ is usually connected

to ‘sidewalk’, yielding noisy labels, as in Figure 1 (c). In

this scenario, noisy pseudo labels can be theoretically con-

verted from the ground truth labels via a NTM [37, 47],

which encodes the inter-class misclassification relationship.

To heuristically discover intrinsic inter-class noise tran-

sition probabilities underlying target data, we model the

noise distribution of pseudo labels by a NTM and devise a

domain-aware meta-learning strategy to estimate the NTM

in a learning-to-learn fashion. The key idea of domain-

aware meta-learning is to obtain the meta-knowledge of un-

derlying label distribution of clean data in the target domain,

and we introduce a domain predictor to adaptively select

domain-invariant source data with ground truth labels as

meta data set, so as to guide the derivation of NTM. The

domain-aware meta-learning strategy enables the gradient

of empirical risk measured on meta data to update the NTM,

thereby boosting the generalization capacity. Then the ap-

proximated noise distribution can be utilized to explicitly

correct the supervision signal for target data, aiming at solv-

ing the noisy pseudo label problem in a self-training based

UDA method. An alternating optimization approach is fur-

ther adopted to mutually improve the estimation of NTM

and the UDA segmentation model. For simplicity, we re-

fer to the whole Domain-aware Meta-learning strategy for

Loss Correction in the above process as DMLC. Moreover,

we devise a MetaCorrection framework, which incorporates

DMLC to provide matched supervision signals for outputs

of different levels, thereby enhancing the deep adaptation

of model. In particular, we introduce the learnable NTMs

for different layers, and adopt the proposed domain-aware

meta-learning to estimate the corresponding noise distribu-

tions and benefit the loss correction.

We summarize our contributions in four aspects.

• We present a MetaCorrection framework, which incor-

porates the proposed DMLC strategy for UDA seman-

tic segmentation. To our best knowledge, it represents

the first effort to formally model the noise distribution

of pseudo labels in target domain by a learnable NTM

and further solve it in a meta-learning strategy.
• In the DMLC strategy, we formulate the misclassifi-

cation probability of inter-classes to model noise dis-

tribution in target domain and devise a domain-aware

meta-learning algorithm to estimate NTM for loss cor-

rection in a data driven manner.
• Our MetaCorrection framework aims to provide

matched and compatible supervision signals for differ-

ent layers with the proposed DMLC strategy, boosting

the adaptation performance of model.
• We conduct extensive comparison experiments and ab-

lation studies to thoroughly verify the impact and ef-

fect of the proposed MetaCorrection framework.

2. Related Work
2.1. UDA in Semantic Segmentation

Unsupervised domain adaptation (UDA) aims to bridge

the distribution gap between the labeled source domain and

unlabeled target domain, thus improving the generalization

capability of the learned models on the target data. The

general idea of UDA semantic segmentation methods is to

perform domain alignment through adversarial learning [2,

6, 7, 9, 11, 20, 22, 26, 40, 41] or utilize self-training strategy

on target samples to adapt the segmentation models [4, 17,

23, 28, 30, 35, 46, 48, 49, 50, 51]. We briefly review some

typical works in the following parts.

Adversarial Learning based UDA semantic segmenta-

tion models usually contain two networks [40]. One net-

work behaves as a generator to obtain the segmentation

maps for source and target inputs, while the other net-

work serves as a discriminator to derive domain predic-

tions. The generator intends to fool the discriminator to en-

sure the cross-domain alignment of feature [2, 11] or output

[20, 26, 40, 41] levels. Other methods tried to narrow down

the domain gap at the input level via image style transforma-

tion [6, 7, 9, 22]. However, these domain alignment meth-

ods induced by adversarial learning ignored the domain-

specific information and could not guarantee the discrim-

inative ability for semantic segmentation [42, 48].

Self-training. Another line of work for UDA seman-

tic segmentation leverages the idea of self-training to adapt

the segmentation model and learn the domain specific infor-

mation [28, 46, 49]. Previous methods [4, 50] introduced

entropy minimization to fully leverage the unlabeled target

data for model training and encouraged the model to pre-

dict with high confidence score. Recently, increasing re-

searchers investigated the problem of pseudo label noise in

target domain by filtering out noisy samples with respect to

confidence score or uncertainty [17, 23, 30, 35, 48, 51]. Zou

et al. [51] proposed to threshold the argmax values of pre-

dictions and selected high-confidence pseudo-labeled sam-

ples. Zheng et al. [48] utilized uncertainty estimation and
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Figure 2. The proposed MetaCorrection framework contains a segmentation net and a domain predictor. Both source and target images

are passed through the segmentation net to perform semantic segmentation. The source data is supervised by the loss between prediction

and the corresponding ground truth label, while the supervision signals of noisy pseudo-labeled target data are corrected by the learnable

NTMs. Domain predictor is introduced to select domain-invariant source pixels for the guidance of NTM estimation.

enabled the dynamic threshold to obtain rectified pseudo la-

bels. However, these methods only involved confident sam-

ples for training, which may result in biased prediction in

minor classes and cannot distinguish confused categories.

Moreover, when the noise ratio is high (at the early stage of

training procedure), these models filtered out a large num-

ber of target samples, which may lose useful information

in omitted samples. In this paper, we model the noise dis-

tribution of pseudo labels in target domain with a learnable

matrix that encodes inter-class noise transition relationship,

and propose a DMLC strategy to adaptively distill knowl-

edge from all samples.

2.2. Deep Learning with Noisy Labels

Many efforts have been devoted to tackling the noisy la-

bel problem in DNN training and can be roughly catego-

rized into three typical strategies: label correction [1, 47],

sample reweighting [19, 21, 36], and loss correction [13,

16, 31, 37, 43]. Zhang et al. [47] introduced the meta-

learning algorithm to conducted a dynamic linear combi-

nation of noisy label and prediction from DNN, thereby

refurbishing noisy labels. Li et al. [37] progressively in-

corporated increasing samples in an easy-to-hard manner to

enable a robust model trained with noisy samples. Authors

in [19, 37] utilized multiple layer perception network to au-

tomatically assign large weighting factor for easy samples.

Goldberger et al. [13] estimated the noise pattern through

embedding a noise adaptation layer in DNN model. Wang et

al. [43] leveraged a small set of trusted clean-labeled sam-

ples to estimate the NTM for loss correction. Nonetheless,

these strategies were designed for fully-supervised whole-

image classification, and could not be directly incorporated

into UDA semantic segmentation. Our work represents the

first effort to exploit the loss correction with an effective

meta-learning strategy for self-training based UDA.

3. Methodology

3.1. Preliminaries

We focus on the problem of UDA in semantic segmenta-

tion. In the source domain, we have access to source images

XS = {xs ∈ R
H×W×3}s∈S and the corresponding pixel-

wise one-hot labels YS = {ys ∈ {0, 1}H×W×C}s∈S , while

only target images XT = {xt ∈ R
H×W×3}t∈T are avail-

able in the target domain. Note that H , W , C denote the

height, width of images and the number of classes, respec-

tively. The goal is to learn a segmentation net f(·)w that

can correctly categorize pixels for target data XT . Self-

training based methods [17, 23, 30, 35, 46, 49, 50] regarded

pseudo labels of target data as learnable hidden variables,

ŶT = {ŷt}t∈T = {argmax f(xt)w}t∈T , and utilized

them as approximate ground truth labels for model training.

Then cross-entropy loss over the source and target dataset

for self-training can be defined as

LST = LS
seg(XS , YS) + LT

seg(XT , ŶT )

= −
∑

s∈S

ys log f (xs,w)−
∑

t∈T

ŷt log f (xt,w) .

(1)

By minimizing the empirical risk of target data with respect

to the estimated pseudo label ŷt, the optimized model thus

can be discriminatively adapted to the target domain.

3.2. Self­training with Loss Correction

Jointly optimizing the model and estimating pseudo la-

bels for target data is difficult as the accuracy of generated

pseudo labels cannot be guaranteed. The noise in pseudo

labels could deteriorate the performance of existing self-

training based methods, and result in unstable training and

biased predictions. A feasible way is to enhance the noise

tolerance property of target domain risk minimization via
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loss correction. To incorporate loss correction, we assume

that the generated pseudo labels Ŷt can be bridged to the

ground truth labels Yt via an underlying noise transition

matrix (NTM) T ∈ [0, 1]C×C , which specifies the proba-

bility of ground truth label j flipping to noisy label k by

Tjk = p(ŷt = k | yt = j).
If we directly optimize the segmentation net f(·)w on

the noisy pseudo-labeled taget data, we would obtain a class

posterior probability for noisy label p(ŷt = k | xt). NTM

bridges the posterior for noisy label p(ŷt = k | xt) and the

class probability for ground truth label via:

p(ŷt = k | xt,w) =

C∑

j=1

Tjkp(yt = j | xt,w),

⇒ p(ŷt | xt,w) = p(yt | xt,w)T.

(2)

Given the NTM (T ), we modify and correct the self-training

loss LT
seg(XT ) in Eq. (1) with respect to noisy pseudo-

labeled target data as

LT
LC(XT , ŶT ) = −

∑

t∈T

ŷt log[f (xt,w)T ]. (3)

This corrected loss function encourages the similarity

between noise adapted posterior class probabilities and the

noisy pseudo labels. It is obvious that once the NTM is ob-

tained, we can recover the desired estimation of class poste-

rior probability p(yt|xt,w) by the softmax output f (xt,w)
even training the segmentation model with noisy data.

3.3. Domain­aware Meta Loss Correction (DMLC)

The effectiveness of loss correction methods highly de-

pends on the estimation of NTM (T ). Some previous at-

tempts constructed T with a strong assumption on the noise

type [16, 31], which impeded the generalization capabil-

ity of model to complicated label noise. Other works re-

quired a set of clean labeled data to guide the estimation

of T [16, 37, 43]. For example, Gold Loss Correction [16]

utilizes the mean probability of all samples in the clean set

categorized to class i to approximate T . This requirement

makes the loss correction algorithm infeasible to be applied

to unsupervised learning task directly.

To heuristically explore the inter-class noise transition

probabilities, we devise a Domain-aware Meta-learning

strategy to enable Loss Correction (DMLC) for UDA task.

DMLC alternatively estimates T by minimizing the empir-

ical risk on the domain-invariant meta data with clean la-

bels and optimizes the segmentation net with supervision

signal corrected by previously approximated T on the un-

labeled target data. The key idea of DMLC lies in the es-

timation of T , and we first construct a set of meta data set

{XM,MM} = {xm, ym}m∈M with clean labels, repre-

senting the meta-knowledge of underlying label distribution

of clean samples. Due to the lack of annotation in target do-

main, we attempt to select domain-invariant source data to

construct such a meta data set. In particular, an additional

pre-trained domain predictor g(·)u and a threshold coeffi-

cient τ are introduced to sample target-like source pixels as

the meta data, as illustrated in Figure 2. Only those samples

with domain predictions g(xs,u) larger than τ are involved

in meta-learning procedure. With the constructed meta data

set, NTM can be updated to T ∗ via:

T
∗ = argmin

T∈[0,1]c×c

−
∑

m∈M

ym log f(xm,w(T )∗),

where w(T )∗ = argmin
w

−
∑

t∈T

ŷt log[f (xt,w)T ],
(4)

where w(T )∗ represents the optimal segmentation net with

the minimal corrected loss on the noisy pseudo-labeled tar-

get data, and the updated T ∗ should minimize the empir-

ical loss on meta data with the optimal segmentation net

[36, 37, 43]. Intuitively, during the optimization procedure

of segmentation net, it is difficult to distinguish hard sam-

ples and noisy samples since both of them can produce large

loss values, leading to the overfitting of noise. Guiding the

estimation of T via risk minimization on meta data set, our

method can avoid the wrong supervision signals and boost

the generalization ability of adapted model.

With the estimated T ∗, the noisy pseudo-labeled target

data can be effectively utilized to optimize the segmenta-

tion net. Jointly optimizing the segmentation net on source

and target data, the proposed DMLC model can be extended

from self-training in Eq. (1) and our objective function for

UDA can be formulated as:

LDMLC = LS
seg(XS , YS) + LT

DMLC(XT , ŶT )

= −
∑

s∈S

ys log f (xs,w)−
∑

t∈T

ŷt log[f (xt,w)T ∗]. (5)

Jointly optimizing NTM associated with the segmentation

net, the proposed DMLC can simultaneously estimate the

noise distribution in pseudo labels and perform loss correc-

tion to target low segmentation error on target data.

3.4. Alternating Optimization for DMLC

To synergically optimize the NTM (T ) and the segmen-

tation net f(·)w, we adopt an alternating optimization strat-

egy, and the training procedure consists of three steps: vir-

tual optimization, meta optimization, actual optimization,

as in Figure 3. The virtual and meta optimizations aim to

optimize T , and the actual optimization is to update param-

eters in the segmentation net with fixed T .

During virtual optimization step (Figure 3 (a)), a meta

net is copied from segmentation net with parameters w
i,

and a mini-batch of target images is forwarded through the

meta net. Then the parameters in the meta net are updated

by moving the current wi along the gradient descent direc-

tion of corrected loss function with learning rate γv:

ŵ
i+1(T i) = w

i + γv∇w

∑

t∈T

ŷt log[f
(
xt,w

i
)
T i]. (6)
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Figure 3. Illustration of alternating optimization strategy for

DMLC, including three steps: virtual optimization, meta optimiza-

tion and actual optimization.

Note that this is a ‘virtual’ step, indicating parameters in

segmentation net are not actually updated to ŵ
i+1.

Similar to well-known MAML [12] with second-order

back-propagation, in the meta optimization step (Figure 3

(b)), we update T by minimizing the cross entropy loss on

meta data with the feedback from the updated parameters

ŵ
i+1 as follows:

T̃ i+1 = T i + γm∇T

∑

m∈M

ym log f(xm, ŵi+1(T i)), (7)

where γm is the learning rate of meta optimization. The

intuition behind the meta optimization step is to obtain an

optima of T̃ i+1 with a low empirical risk and a high gen-

eralization ability. After the back propagation updating pa-

rameters, T̃ i+1 may contains negative values. Therefore,

we first utilize T̃ i+1 = max
(
T̃ i+1, 0

)
to enable the non-

negative matrix and then perform normalization along the

row direction T i+1
jk = T̃ i+1

jk /
∑

T̃ i+1
j· to ensure transition

probabilities of class j are summed to 1.

In the actual optimization step (Figure 3 (c)), the noisy

pseudo-labeled target data and the labeled source data are

simultaneously used to optimize the segmentation net via:

w
i+1 = w

i + γa∇w

∑

s∈S

ys log f (xs,w)

+ γa∇w

∑

t∈T

ŷt log[f (xt,w)T i+1],
(8)

where γa is the learning rate. Through the alternating opti-

mization strategy, both the NTM (T ) and the segmentation

net f(·)w can be gradually ameliorated based on the opti-

mal solution computed in the last step.

3.5. MetaCorrection

Since low-level layers usually contain detailed features

while high-level features often encode task-specific infor-

mation, it may be beneficial to transfer the knowledge from

the deep layer to guide the adaptation of low-level fea-

tures. Previous deep supervision approaches [4, 40] directly

forces the low-level output to mimic the one-hot pseudo la-

bel computed from high-level output layer, which may bring

about supervision bias and eliminate useful detailed infor-

mation in low-level layer due to the capacity gap [8, 25].

Aiming at solving the above problem, we incorporate

the proposed DMLC to generate the matched and compati-

ble supervision signal for the low-level features to enhance

the adaptation. In particular, we introduce additional NTM

for the loss correction and utilize the domain-aware meta-

learning method to estimate the specific noise distribution

for shallow supervisions, thereby bridging the gap between

the low-level outputs and the pseudo label obtained from

deep features. The overall training objective of our Meta-

Correction framework can be extended from Eq. (5) to be:

LMC = LS
seg(XS , YS) +

∑

l

αlL
T (l)
DMLC(XT , ŶT ), (9)

where l indicates the level used for DMLC and αl is the

weighting factor for supervision signal of lth layer. Note

that l = 0 denotes the output layer.

With the proposed MetaCorrection framework, NTMs

embedded in the segmentation net are capable of assessing

the individual noise distributions in pseudo labels for differ-

ent layers. Moreover, our MetaCorrection framework can

obtain corrected loss functions in a data-driven manner, and

these generated compatible supervision signals for different

levels of features can further boost the learning of model.

4. Experiments

4.1. Datasets

We evaluate the performance of our methods on two

challenging synthetic-to-real UDA semantic segmentation

tasks and a medical image segmentation task. Two synthetic

datasets, GTA5 [33] and SYNTHIA [34], and a real dataset,

Cityscapes [10], are utilized to perform UDA synthetic-to-

real semantic segmentation tasks, including two scenarios:

GTA5→Cityscapes and SYNTHIA→Cityscapes. More-

over, two public prostate MRI datasets are adopted to per-

form UDA from Decathlon [38] to NCI-ISBI13 [29].

GTA5 contains 24,966 images captured from a video

game. Pixel-wise annotations with 33 classes are pro-

vided, but only 19 classes are utilized for compatibility

with Cityscapes. SYNTHIA consists of 9,400 synthetic

images, and annotations with 16 classes are used for adap-

tation. Cityscapes is a real-world semantic segmentation

dataset collected in driving scenarios. Training set, includ-

ing 2,975 unlabeled images, is regarded as the target domain

data for training. Evaluations are performed on 500 valida-

tion images with manual annotations. Decathlon is a com-

prehensive medical image segmentation dataset, including
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Table 1. Results of adapting GTA5 to Cityscapes. The mechanism ‘AL’ and ‘ST’ stand for adversarial learning and self-training.
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AdaptSegNet [40] AL 86.5 36.0 79.9 23.4 23.3 23.9 35.2 14.8 83.4 33.3 75.6 58.5 27.6 73.7 32.5 35.4 3.9 30.1 28.1 42.4

PatchAlign [41] AL 92.3 51.9 82.1 29.2 25.1 24.5 33.8 33.0 82.4 32.8 82.2 58.6 27.2 84.3 33.4 46.3 2.2 29.5 32.3 46.5

LTIR [20] AL 92.9 55.0 85.3 34.2 31.1 34.9 40.7 34.0 85.2 40.1 87.1 61.0 31.1 82.5 32.3 42.9 0.3 36.4 46.1 50.2

CBST [51] ST 91.8 53.5 80.5 32.7 21.0 34.0 28.9 20.4 83.9 34.2 80.9 53.1 24.0 82.7 30.3 35.9 16.0 25.9 42.8 45.9

CRST [50] ST 91.0 55.4 80.0 33.7 21.4 37.3 32.9 24.5 85.0 34.1 80.8 57.7 24.6 84.1 27.8 30.1 26.9 26.0 42.3 47.1

MaxSquare [4] ST 89.4 43.0 82.1 30.5 21.3 30.3 34.7 24.0 85.3 39.4 78.2 63.0 22.9 84.6 36.4 43.0 5.5 34.7 33.5 46.4

MLSL [17] ST 89.0 45.2 78.2 22.9 27.3 37.4 46.1 43.8 82.9 18.6 61.2 60.4 26.7 85.4 35.9 44.9 36.4 37.2 49.3 49.0

PyCDA [23] ST 90.5 36.3 84.4 32.4 28.7 34.6 36.4 31.5 86.8 37.9 78.5 62.3 21.5 85.6 27.9 34.8 18.0 22.9 49.3 47.4

IntraDA [30] ST 90.6 37.1 82.6 30.1 19.1 29.5 32.4 20.6 85.7 40.5 79.7 58.7 31.1 86.3 31.5 48.3 0.0 30.2 35.8 46.3

CAG-UDA [46] ST 90.4 51.6 83.8 34.2 27.8 38.4 25.3 48.4 85.4 38.2 78.1 58.6 34.6 84.7 21.9 42.7 41.1 29.3 37.2 50.2

Source only – 75.8 16.8 77.2 12.5 21.0 25.5 30.1 20.1 81.3 24.6 70.3 53.8 26.4 49.9 17.2 25.9 6.5 25.3 36.0 36.6

Ours (single DMLC) ST 92.5 55.1 85.9 36.9 32.4 34.7 41.4 37.0 85.3 37.8 87.4 62.7 31.8 84.5 36.8 48.2 2.2 34.3 47.3 51.2

Ours (MetaCorrection) ST 92.8 58.1 86.2 39.7 33.1 36.3 42.0 38.6 85.5 37.8 87.6 62.8 31.7 84.8 35.7 50.3 2.0 36.8 48.0 52.1

32 prostate MRI scans obtained from 3T (Siemens TIM).

Annotations outline the peripheral zone (PZ) and transition

zone (TZ). NCI-ISBI13 consists of 40 labeled prostate MRI

scans obtained from 1.5 T (Philips Achieva). We utilized

30 training scans as unlabeled target data to perform UDA

training and other 10 scans for evaluation.

4.2. Network and Training Details

Segmentation Net We adopt DeepLab-v2 [3] backbone

with pre-trained ResNet-101 [15] encoder as our segmen-

tation net. Subsequently, Atrous Spatial Pyramid Pooling

(ASPP) is employed after the last layer of encoder with di-

lated rates {6, 12, 18, 24}. Finally, an up-sampling layer

along with a softmax operator is applied to obtain the final

segmentation result with the matched size of input image.

We construct the above-mentioned segmentation net and

apply the NTM to the output layer as our single DMLC

model. For the MetaCorrection framework, we addition-

ally extract low-level feature maps from the conv4 layer of

ResNet-101 and introduce an ASPP module as the auxiliary

classifier with output f1 (xt,w). An additional NTM T (1)

is incorporated to generate a compatible supervision signal

for low-level output. α0 and α1 in Eq. (9) are set as 1, 0.1.

Domain Predictor The feature maps extracted from the

encoder in the segmentation net are utilized for the pixel-

level domain prediction. We adopt a similar structure with

DCGAN [32], which is composed of five cascaded 4×4

convolution layers with output channel numbers {64, 128,

256, 512, 1}. Then the domain prediction is obtained with

the same resolution of the input image, and the threshold

coefficient τ is set as 0.5 to construct the meta data set.

Implementation Details Our methods are implemented

with the PyTorch library on Nvidia Tesla V100. The

Stochastic Gradient Descent is utilized as our optimizer,

where the momentum is 0.9 and the weight decay is 1e-

3. We adopt polynomial learning rate scheduling to opti-

mize the segmentation net with the initial learning rate of

γa = 2.5e− 4. The batch size is set as 3, and the maximum

iteration number is 150000. For the updating of meta net,

γv = 1e− 4 and γm = 0.11 are set in our implementation.

The performances of our methods in synthetic-to-real

scenarios are evaluated by the widely utilized performance

metrics, intersection-over-union (IoU) of each class and the

mean IoU (mIoU). For the prostate zonal segmentation,

Dice scores for PZ, TZ and the whole prostate (WP) are

employed to measure the accuracy of segmentation results.

4.3. Results on GTA5→Cityscapes

We first verify the effectiveness of our approachs in the

GTA5→Cityscapes scenario, and the corresponding com-

parison results are listed in Table 1 with the first and sec-

ond best results highlighted in bold and underline. For a

fair comparison, all the competed models adopt DeepLab-

v2 backbone network with pre-trained ResNet-101 as en-

coder. Overall, our MetaCorrection framework surpasses

all other models with a promising mIoU of 52.1%, outper-

forming the model trained only on the source data by a sig-

nificant increment of 15.5% in mIoU. Compared with do-

main alignment methods [40, 41, 20], the proposed method

shows superior performance. For example, PatchAlign [41]

leverages the patch-level information to encourage the do-

main alignment, yielding 46.5% mIoU, which is inferior to

our approach. Our MetaCorrection model, as a self-training

based method, also outperforms other related pseudo label

learning works [51, 4, 17, 23, 30, 46], demonstrating the ef-

fectiveness of the proposed method in alleviating the noise

problem. Moreover, the proposed methods also show supe-

rior performance in terms of the per class IoU score, espe-

cially in the minor categories (e.g., ‘motor’) and ambiguous

(e.g., ‘road’ and ‘sidewalk’) categories.

4.4. Results on SYNTHIA → Cityscapes

We then utilize SYNTHIA as the source domain data

and display comparison results of our methods and other

state-of-the-art methods [40, 41, 20, 51, 4, 17, 23, 30, 46]

on the validation set of Cityscapes, as listed in the Table 2.

We consider the IoU and mIoU of both the 16 classes and

a subset of 13 classes following the standard experimental

setting [30]. Since the domain shift is more evident in this

scenario, the performance is slightly worse. Our MetaCor-
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Table 2. Results of adapting SYNTHIA to Cityscapes. mIoU* denotes the mean IoU of 13 classes, excluding the classes with ∗.

SYNTHIA → Cityscapes
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mIoU mIoU*

AdaptSegNet [40] AL 84.3 42.7 77.5 – – – 4.7 7.0 77.9 82.5 54.3 21.0 72.3 32.2 18.9 32.3 – 46.7

PatchAlign [41] AL 82.4 38.0 78.6 8.7 0.6 26.0 3.9 11.1 75.5 84.6 53.5 21.6 71.4 32.6 19.3 31.7 40.0 46.5

LTIR [20] AL 92.6 53.2 79.2 – – – 1.6 7.5 78.6 84.4 52.6 20.0 82.1 34.8 14.6 39.4 – 49.3

CBST [51] ST 68.0 29.9 76.3 10.8 1.4 33.9 22.8 29.5 77.6 78.3 60.6 28.3 81.6 23.5 18.8 39.8 42.6 48.9

CRST [50] ST 67.7 32.2 73.9 10.7 1.6 37.4 22.2 31.2 80.8 80.5 60.8 29.1 82.8 25.0 19.4 45.3 43.8 50.1

MaxSquare [4] ST 82.9 40.7 80.3 10.2 0.8 25.8 12.8 18.2 82.5 82.2 53.1 18.0 79.0 31.4 10.4 35.6 41.4 48.2

MLSL [17] ST 59.2 30.2 68.5 22.9 1.0 36.2 32.7 28.3 86.2 75.4 68.6 27.7 82.7 26.3 24.3 52.7 45.2 51.0

PyCDA [23] ST 75.5 30.9 83.3 20.8 0.7 32.7 27.3 33.5 84.7 85.0 64.1 25.4 85.0 45.2 21.2 32.0 46.7 53.3

IntraDA [30] ST 84.3 37.7 79.5 5.3 0.4 24.9 9.2 8.4 80.0 84.1 57.2 23.0 78.0 38.1 20.3 36.5 41.7 48.9

CAG-UDA [46] ST 84.7 40.8 81.7 7.8 0.0 35.1 13.3 22.7 84.5 77.6 64.2 27.8 80.9 19.7 22.7 48.3 44.5 51.5

Source only – 55.6 23.8 74.6 9.2 0.2 24.4 6.1 12.1 74.8 79.0 55.3 19.1 39.6 23.3 13.7 25.0 33.5 38.6

Ours (single DMLC) ST 92.3 53.0 80.2 7.7 2.8 26.9 11.4 8.1 83.1 85.2 58.9 20.5 85.5 35.9 21.0 41.8 44.6 52.1

Ours (MetaCorrection) ST 92.6 52.7 81.3 8.9 2.4 28.1 13.0 7.3 83.5 85.0 60.1 19.7 84.8 37.2 21.5 43.9 45.1 52.5

Table 3. Results of adapting Decathlon to NCI-ISBI13.

Method mech. PZ (Dice) TZ (Dice) WP (Dice)

CBST [51] ST 38.22 70.14 64.31

MRENT [50] ST 40.82 72.39 67.68

MaxSquare [4] ST 37.45 69.61 63.34

Source only – 28.48 52.57 47.56

Ours (single DMLC) ST 42.03 74.09 69.38

Ours (MetaCorrection) ST 43.25 74.31 70.87

rection framework still achieves promising results in com-

parison to other competed methods. Specifically, the pro-

posed method achieves 45.1% mIoU of 16 categories and

52.5% mIoU∗of 13 categories.

4.5. Results on Decathlon → NCI­ISBI13

Domain discrepancy is common in clinical practice, e.g.,

MRIs obtained from different scanners and sites. Hence,

we further assess the performance of our methods on UDA

prostate segmentation, and the quantitative comparison re-

sults are listed in Table 3. It is observed that our methods ex-

hibit superior segmentation performance in comparison to

the self-training based methods, CBST [51], MRENT [50],

MaxSquare [4]. For example, both single DMLC and Meta-

Correction methods outperform CBST with increments of

5.07%, 6.56% in WP Dice score. This observation proves

the impact of our approaches in medical image analysis.

4.6. Ablation Study

Ablation Experiments. To investigate the effects of in-

dividual components of our proposed model, we design ab-

lation studies under three adaptation scenarios (Table 1, 2,

3) and with three baseline models (Table 4). Compared

with the ‘Source only’ lower bound, our baseline network

with single DMLC boosts the mIoU to 51.2% with an in-

crement of 14.6% in GTA5 → Cityscapes case. Then we

introduce auxiliary supervision signals for low-level lay-

ers, which also contributes to the performance gain and in-

creases the mIoU to 52.1%, as in Table 1. Moreover, incor-

porating DMLC to different baseline models, the MetaCor-

rection framework consistently improves the performance

over single DMLC in terms of mIoU score, as in Table 4.

Table 4. Impact of different pseudo labels. ‘Pseudo Label’ denotes

we employ pseudo labels generated by the corresponding model.

Method Pseudo Label
GTA5 →

Cityscapes
∆

AdaptSegNet [40] — 42.4 –

Self-training (MRENT [50]) AdaptSegNet 45.1 2.7

Self-training (Threshold [51]) AdaptSegNet 44.4 2.0

Self-training (Ucertainty [48]) AdaptSegNet 46.1 3.7

Ours (single DMLC) AdaptSegNet 45.9 3.5

Ours (MetaCorrection) AdaptSegNet 47.3 4.9

LTIR [20] — 50.2 –

Self-training (MRENT [50]) LTIR 50.6 0.4

Ours (single DMLC) LTIR 51.2 1.0

Ours (MetaCorrection) LTIR 52.1 1.9

Source only — 36.6 –

Self-training (MRENT [50]) Source 39.6 3.0

Ours (single DMLC) Source 43.8 7.2

Ours (MetaCorrection) Source 44.5 7.9

Comparison with Self-training based UDA Models.

To validate the effectiveness of DMLC, we compare it with

three typical self-training based UDA models [48, 50, 51].

As listed in Table 4, the proposed MetaCorrection frame-

work (row 7) is superior to other self-training methods,

including entropy minimization [50] (row 3), handcrafted

threshold [51] (row 4), uncertainty based rectification [48]

(row 5), yielding increments of 2.2%, 2.9%, 1.2% mIoU.

Through entropy minimization, considerable noisy labels

inevitably result in unsatisfactory performance. Other self-

training based methods [48, 51] filtered out noisy samples

with respect to the confidence score and uncertainty, but lost

useful information in those omitted samples. Therefore, the

increments are owing to that our method can preserve all

data distribution and distill effective information from all

samples with learned NTM for unbiased self-training.

Robustness to Various Types of Noise. We further ex-

plore the robustness of our MetaCorrection framework un-

der different types of noise. Specifically, we adopt Adapt-

SegNet [40], LTIR [20], source only model to generate

noisy pseudo labels and apply our MetaCorrection to mit-

igate the noise problem. As in Table 4, these three models

have significantly improved performance with the proposed

MetaCorrection framework. For example, MetaCorrection

(row 7) improves the performance of AdaptSegNet (row 2)

from 42.4% to 47.3% mIoU.
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(a)

(b)

(c)

(d)

(e)

GTA5 → CityScapes SYNTHIA → CityScapes Decathlon → NCI-ISBI13 

Figure 4. Qualitative results of UDA semantic segmentation. (a) Target image, (b) Ground truth, Predictions from (c) source only model,

(d) self-training based MRENT model [50], (e) ours (MetaCorrection).

Source	only MRENT	[50]

Ours	(MetaCorrection) Oracle	modelNoise	Transition	Matrix	(𝑇!)

Noise	Transition	Matrix	(𝑇")

Figure 5. Left: Visualization of NMTs T (0) and T (1). Right: The

t-SNE visualization of embedded features.

4.7. Visualization Results

Segmentation Visualization. As illustrated in Figure

4, we provide some typical qualitative segmentation re-

sults of target data on all three benchmarks. Obviously,

the self-training method [50] could significantly promote

the performance in comparison to the source model. Be-

sides, in contrast to the baseline self-training method with

conventional entropy minimization, the proposed MetaCor-

rection framework has better scalability to confused cate-

gories (e.g., ‘rider’ and ‘bike’) and small-scale objectives

(e.g., ‘traffic sgn’). We speculate the reason is that pseudo

labels usually contain considerable noises in the minor cat-

egories and ambiguous categories. The proposed method

rectifies the supervision signals and prevent such mistakes,

leading to more reasonable segmentation predictions.

NTM Visualization. We visualize the learned NTMs of

output layer (T 0) and shallow layer (T 1), as in Figure 5. It

is obvious that different layers exhibit variant noise transi-

tion probability, indicating the varying noise distributions

of deep and shallow layers. The proposed MetaCorrection

framework can generate matched supervision signals for in-

dividual layers to enhance the deep adaptation.

Feature Visualization. We use t-SNE [27] to visual-

ize the feature representations of source only model, self-

training [50], our MetaCorrection and oracle model (i.e.,

fine-tuning the segmentation net with the labeled target

data), as illustrated in Figure 5. It is observed that our

MetaCorrection model obtains the most matched feature

distribution with that of the oracle model in comparison to

source only and self-training [50] models. This observa-

tion demonstrates that our method can provide correct su-

pervision signal for target data through the learnable NTM.

Moreover, our feature representations exhibit the clearest

clusters compared with other baseline methods, revealing

the discriminative capability of our method.

5. Conclusion

In this paper, we have proposed a MetaCorrection frame-

work, where the Domain-aware Meta Loss Correction

(DMLC) strategy is advanced for UDA in the context of se-

mantic segmentation, aiming for addressing the noise prob-

lem in self-training based UDA methods. The DMLC in-

corporates a learnable noise transition matrix (NTM) to

bridge the noisy pseudo labels and ground truth labels for

loss correction of the target domain, and NTM is derived

through the proposed domain-aware meta-learning strategy

in a data-driven manner. The model-agnostic DMLC can

be flexibly applied to other models and datasets. Moreover,

we consider the capacity gap between deep and shallow lay-

ers, and provide compatible supervisions for different levels

to ensure the deep adaptation of the proposed MetaCorrec-

tion. The experimental results demonstrate that our meth-

ods achieve superior results to state-of-the-art methods.
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