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Abstract

Rotation is among the long prevailing, yet still unre-

solved, hard challenges encountered in visual object track-

ing. The existing deep learning-based tracking algorithms

use regular CNNs that are inherently translation equivari-

ant, but not designed to tackle rotations. In this paper,

we first demonstrate that in the presence of rotation in-

stances in videos, the performance of existing trackers is

severely affected. To circumvent the adverse effect of ro-

tations, we present rotation-equivariant Siamese networks

(RE-SiamNets), built through the use of group-equivariant

convolutional layers comprising steerable filters. SiamNets

allow estimating the change in orientation of the object in

an unsupervised manner, thereby facilitating its use in rel-

ative 2D pose estimation as well. We further show that

this change in orientation can be used to impose an addi-

tional motion constraint in Siamese tracking through im-

posing restriction on the change in orientation between two

consecutive frames. For benchmarking, we present Rota-

tion Tracking Benchmark (RTB), a dataset comprising a

set of videos with rotation instances. Through experiments

on two popular Siamese architectures, we show that RE-

SiamNets handle the problem of rotation very well and out-

perform their regular counterparts. Further, RE-SiamNets

can accurately estimate the relative change in pose of the

target in an unsupervised fashion, namely the in-plane ro-

tation the target has sustained with respect to the refer-

ence frame. Code and data can be accessed at https:

//github.com/dkgupta90/re-siamnet.

1. Introduction

The task of visual object tracking with Siamese net-

works [1, 29], also referred as Siamese tracking, trans-

forms the problem of tracking into similarity estimation be-

tween a template frame and sampled regions from a can-

didate frame. Siamese trackers have recently gained pop-

ularity in the field of visual object tracking, especially be-

cause of their strong discriminative power obtained from

Figure 1: Example demonstrating rotation non-equivariance

in regular CNN models used in object tracking, ψθ(f(·)) 6=
f(ψθ(·)). Here f(·) and ψθ(·) denote the neural network

encoding function and rotation transform, respectively.

similarity matching. This is the primary reason most of

the state-of-the-art trackers are based on this framework

[1, 11, 18, 19, 29].

Although Siamese trackers are generally shown to work

well, they are still prone to failure under challenges such as

partial occlusion [16], scale change [27] or when one of the

two inputs is rotated.

This paper focuses on handling the adverse affects of in-

plane rotation of objects on the performance of Siamese

trackers. Object rotation is considered to be amongst the

hardest challenges of tracking with no effective solution till

date. It can commonly occur in real-life scenarios, espe-

cially when the camera records from the top, as in drones,

where either the object is rotating or the camera itself. Ego-

centric videos are another example, where large head rota-

tions can cause the target to rotate.

The CNN architectures used in Siamese trackers are not

inherently equivariant to in-plane rotations of the target.

The implication is that the model may perform well on ob-

ject orientations that are represented in the training set, but

may fail on other previously unseen orientations. This hap-

pens because the latent encoding obtained from the network

for such cases might not be representative of the input im-

age itself. Example demonstrating this issue is shown in

Figure 1. Further, even if it were equivariant, the cross-
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correlation step in traditional Siamese trackers would still

fail to perform an accurate matching between the template

and candidate images due to rotational shift between them.

A straightforward approach to enforce learning of ro-

tated variants is to use training datasets where in-plane ro-

tations occur naturally or through data augmentation. How-

ever, as highlighted in [17], there are several limitations of

data augmentation. First, such procedures would require

learning separate representations for different rotated vari-

ants of the data. Second, the more variations are consid-

ered, the more flexible tracker model needs to be to capture

them all. This means a significant increase in training data

and computational budget. Further, such an approach would

make the model invariant to rotations, thus making the pre-

dictions unreliable when the target is surrounded by similar

objects, e.g., tracking a fish in a school of fishes.

This paper aims at incorporating the property of rotation

equivariance in the existing Siamese trackers. This built-in

feature would then allow the trackers to capture the rota-

tion variations from the start itself without the need of ad-

ditional data augmentation. Rotation equivariant networks

have been studied widely in the context of image classifi-

cation [3, 4, 34, 35, 36]. Drawing inspiration from these

works, we introduce rotation equivariance for the task of ob-

ject localization in videos. We exploit the concept of group-

equivariant CNNs [3], and use steerable filters [35] to make

the Siamese trackers equivariant to rotations. This way of

incorporating rotation equivariance induces built-in sharing

of weights among the different groups of rotations and adds

an internal notion of rotation in the model (referred further

as RE-SiamNet).

Interpreting the template image as the static memory of

the tracking model, RE-SiamNets know beforehand how the

encoding should be represented for a discrete set of rota-

tions. In the absence of other challenges such as illumina-

tion variation and occlusion, the target appearance would

match exactly at one of the discrete rotations, and is ex-

pected to contain only small errors for other intermediate

angles. This property increases the discriminative power

of the trackers towards differences in orientation (in-plane

rotation) of the target. Beyond this, RE-SiamNet can be

used for relative 2D pose estimation of objects in videos,

interchangeably also referred in this paper as relative orien-

tation estimation of objects. RE-SiamNets are equivariant

to translations and rotations, and these properties combined

with the structure of Siamese networks allow capturing the

change in pose of the target in 2D. Further, we propose

an additional motion constraint on the rotational degree of

freedom and demonstrate that it allows to obtain better tem-

poral correspondence in videos.

It is important to note that most current datasets, espe-

cially in tracking, contain very limited to no instances of

rotation. Thus, for benchmarking the performance of mod-

els in presence of in-plane rotations, we present Rotating

Object Benchmark (ROB), a set of videos focusing on in-

plane rotations. Annotations include bounding boxes of the

target object as well as its orientation in every frame. To

further summarize, the contributions of this paper are:

• We give a brief introduction to equivariant convolu-

tions networks. We then extend the theory to ob-

tain rotation-equivariant Siamese architectures (RE-

SiamNets) that feature in-plane rotation equivariance.

• We show that RE-SiamNets estimate the relative 2D

pose of any rotating object in a unsupervised manner.

Further, we introduce an additional motion constraint

to improve temporal correspondence in videos.

• For benchmarking, we present Rotating Object Bench-

mark (ROB), a novel dataset comprising sequences

with significant in-plane rotations of the target.

• Through incorporating in two existing Siamese track-

ing methods, we show that rotation equivariance can

provide significant improvements in tracking perfor-

mance and accurately estimate the orientation changes.

2. Related Work

Siamese tracking. Object tracking aims at estimating

the trajectory of an arbitrary target in a video given only

its initial state in a video frame [15]. Most of the recent

object tracking algorithms use Siamese networks and track

the object based on similarity matching [6, 8, 10, 25, 31, 33,

38]. Such algorithms estimate a general similarity function

between the feature representations learned for the target

template and the candidate search region in a given frame.

The first Siamese trackers, SINT [29] and SiamFC [1],

used twin subnetworks with shared parameters and calcu-

lated dot product similarities between the feature maps of

the template and the candidate frame. Held et al. [13] intro-

duced a detection-based Siamese tracker in which the sim-

ilarity function was modeled as a fully-connected network.

They applied extensive data augmentation for learning a

generalized function for multiple object transformations.

Valmadre et al. [30] introduced CFNet which expanded

SiamFC using a differentiable correlation filter layer. All

of these trackers were able to get good performance in

terms of object deformation compared with the trackers

without online updating, but were not suitable in fast track-

ing situations. Some of the subsequent methods such as

[12, 19, 32, 40] discarded online updating, and turned to

learn a robust feature representation instead. This allowed

the aforementioned methods to perform high speed tracking

using Siamese networks.

Challenges of tracking. There are several challenges

encountered in visual object tracking that can affect the per-

formance of the designed tracking algorithms. A detailed

study highlighting some of the most important challenges
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was presented in [26]. These include illumination variation,

in-plane and out-of-plane rotations of the target, occlusion,

clutter and confusion due to several similar objects, among

others. With recent large-scale training datasets such as La-

SOT [7] and TrackingNet [22], and state-of-the-art deep

learning trackers, several of these challenges can be ad-

dressed up to a high degree of accuracy. For example, track-

ers such as SiamRPN++ [18] and DiMP [2] exhibit strong

discriminative power with the use of deep CNN backbones,

and have been found to tackle most of the challenges. How-

ever, some challenges such as occlusion and target rotation

still remain to be solved. Recent works related to tackling

occlusion tracking are [11] and [16]. In this paper, we focus

on the challenge of target rotation.

Equivariant CNNs. Recently, several works have tried

to directly incorporate equivariance into the network’s ar-

chitecture to capture various transformations. In this paper,

we focus on rotation-equivariant CNNs which have gained

popularity in image classification [5, 4], texture classifica-

tion [21], boundary detection [36] and image segmentation

[17]. Dieleman et al. [5] included 4 operations into existing

networks to enrich both the batch- and feature dimension

with their transformed versions. Cohen et al. [3] firstly

introduced group-convolutional layers where feature maps

resulting from transformed filters were treated as functions

of the corresponding symmetry-group. However, in this

method the computational cost was directly proportional to

the group size, and this issue was resolved with steerable

filters [4, 35]. A detailed study providing a general theory

of equivariance across various existing methods is provided

in [34]. In this paper, we study rotation equivariance in the

context of object tracking.

In real-life scenarios, tracking a target object is very

challenging, especially since it can undergo transformations

beyond translation, such as in-plane and out-of-plane ro-

tations, occlusion and scale change. Unless the network

has an internal mechanism to handle these transformations,

the template matching similarity can degrade significantly

in a Siamese network. Recent Siamese trackers [18, 39]

have implicitly or explicitly focused on making the track-

ers translational equivariant, i.e. a translation of the input

image must result in the proportional translation of the cor-

responding feature space. The importance of translation

equivariance is to reduce the positional bias during training,

so that location of the target is easier to recover from the

feature space. SiamRPN++ [18] proposed a training strat-

egy which removes the spatial bias introduced in non fully-

convolutional backbones. Further, [39] showed that exist-

ing tracking models induce positional bias, which breaks

strict translation equivariance. Sosnovik et al. [27] intro-

duced scale-equivariant Siamese trackers which are crucial

when the camera zooms its lens or when the target moves

into depth. We argue that in-plane rotation is also an impor-

tant challenge in tracking, especially when the videos are

recorded using drone cameras, other videos recorded from

top view, cameras mounted on rotating objects and egocen-

tric videos. To the best of our knowledge, rotation equivari-

ance in the context of tracking has never been studied, and

we address it in this paper.

3. Rotation Equivariant CNNs

We first provide some basic background knowledge on

equivariance and rotation equivariance in CNNs required to

formulate our tracker. For a more general overview we refer

the interested reader to [35].

Equivariance. The property of equivariance requires

functions to commute with the actions of a symmetry group

acting on its domain and co-domain. For any given trans-

formation group G, a mapping function f : X −→ Y is

equivariant if it satisfies

f(ψX
g (x)) = ψY

g (f(x)) g ∈ G, x ∈ X, (1)

where ψ
(·)
g denotes a group action in the respective space.

For invariance, ψY
g (·) will be an identity mapping.

For clarity, we take translation equivariance as an exam-

ple. In this example, f stands for the convolutional neural

network function and ψg denotes the translation group. Ex-

ample actions from this group include for example, moving

one pixel left, or one towards right, or an action compris-

ing shift of several pixels. In this manner, an infinite num-

ber of actions can be defined within the translation group.

Making the network equivariant to translations leads to re-

duced sample complexity and facilitates generalization of

the model against translational variations.

It is important to note that there are several other trans-

formations beyond translation that can be built in the model

to improve robustness, if the effects of these transformations

are present in the data and the task. Examples include rota-

tions, reflections and scale change. For generalization over

any of these transformations, equivariance needs to be en-

forced on the respective transformation group. In this work

we focus on rotation equivariance.

Rotation equivariance. One of the more robust ways

of enforcing rotation equivariance in CNNs is through the

use of steerable filters [35]. Steerable filter CNNs (SFC-

NNs) extend the notion of weight sharing from the trans-

lation group to rotations as well. For rotation equivariance

with steerable filters, the network must perform convolu-

tions with different rotated versions of each filter. In this

case weight sharing helps the model to generalize better.

Steerable filters not only facilitate efficiently computing

responses for an arbitrary number of discrete filter rotations

Λ, but they also exhibit strong expressive power as well. A

filter Ψ is rotationally steerable if its rotation by an arbitrary

angle θ can be expressed in terms of a fixed set of atomic
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Figure 2: Schematic representation of RE-SiamNet typically designed for object tracking. On the template head, multiple

equidistant rotated variants of the original template image are used.

functions [9, 35]. In our network, we employ circular har-

monics ψjk defined as

ψjk(r, φ) = τj(r)e
ikφ, (2)

where φ ∈ (−π, π] and j = 1, 2, . . . , J allows to control the

radial part of the basis functions. Further, the (r, φ) refers

to transformed version of (x1, x2) in polar coordinates and

k ∈ Z denotes the angular frequency. The benefit of circular

harmonics is that now we can simply express rotations on

ψjk as a multiplication with a complex exponential,

ρθψjk(x) = e−ikθψjk(x). (3)

Note that for clarity purpose, we express ψjk(·) as ψjk(x).

Each learnt filter is then constructed as a linear combina-

tion of the elementary filters,

Ψ(x) =

J∑

j=1

K∑

k=0

wjkψjk(x), (4)

with weights wjk ∈ C. For rotation by θ, the composed

filter can be steered through phase manipulation of the ele-

mentary filters,

ρθΨ(x) =

J∑

j=1

K∑

k=0

wjke
−ikθψjk(x). (5)

A single orientation of the filter can be obtained by taking

real part of Ψ, denoted as ReΨ(x).

4. Rotation Equivariant Siamese Trackers

4.1. Proposed Formulation

For trackers that rely on similarity matching with

Siamese networks, the resultant heatmap h(z, x) is

h(z, x) = f(z) ∗ f(x), (6)

where z and x denote the template image and the candidate

frames, respectively, f(·) is the encoding function of the

Siamese network, and ∗ denotes the convolution operation.

Figure 2 presents the schematic representation of our

RE-SiamNet framework for object tracking. Architec-

turally, we start from and modify the basic SiamFC [1]

model due to its simple design. The basic SiamFC com-

prises the following modular layers: input, convolutional

layers, and a cross-correlation of the outputs from the two

Siamese heads. For our rotational Siamese tracker, we re-

place these layers with rotation equivariant modules. Fur-

ther, we introduce a group max pooling module that se-

lects the cross-correlation encoding for the most appropriate

orientations among the multiple heatmaps generated in our

setup. Details related to these modules follow below.

Rotation equivariant input. The candidate head of the

network takes a single search image as input. However, the

template head is modified to not just take one template im-

age as an input, rather a set of its Λ rotated variants defined

by the set Z, where Z = {z1, z2, . . . , zΛ}. Instead of tak-

ing all possible rotation versions Z of the template target,

we could also first compute the feature f(z) of the original

target, then rotate f(z). In theory, this is supported by rota-

tion equivariant networks. In practice, however, the spatial
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resolution of f(z) is very low, typically 6×6 or 7×7 pixels.

As a result, there will be artifacts at the corners and edges

because of the crudeness of the transformation. Instead, it

yields more accurate feature maps if, when creatingZ in the

first frame, we first rotate the whole frame (not just the tar-

get) centering about the target, and then crop. Since this is

only performed on the target branch, it can be pre-computed

during the inference phase.

Each input image I , as stated above, comprises C chan-

nels, where each channel is represented as Ic and c ∈
{1, 2, . . . , C}. This input is then convolved with Ĉ rotated

filters ρθΨ
(1)
ĉc , where ĉ ∈ {1, 2, . . . , Ĉ}. Based on Eq. 5, the

resultant features obtained before applying nonlinear activa-

tion will be

y
(1)
c̃ (x, θ) = Re

C∑

c=1

J∑

j=1

Kj∑

k=0

wĉcjke
−ikθ(Ic ∗ ψjk)(x), (7)

where the filters are then rotated variants at equidistant ori-

entations θ represented by the set Θ = {(i−1)·360/Λ}Λi=1.

The bias term β
(1)
ĉ and nonlinearity σ are then applied to

obtain the feature map at the first layer ζ
(1)
ĉ .

Rotation equivariant convolutions. Feature maps re-

sulting from Eq. 7 are processed further using group con-

volutions, generalizing spatial convolutions over a wider set

of transformation groups. Similar to the first layer, steerable

filters are defined on the group as

y
(l)
ĉ (x, θ) =Re

C∑

c=1

∑

φ∈Θ

∑

j,k

wĉcjk,θ−φe
−ikθ(

ζ(l−1)
c (·, φ) ∗ ψjk)(x). (8)

The additional index θ−φ introduced in Eq. 8 for the weight

tensor facilitates the group convolution operation along the

rotation dimension. It involves transforming the functions

on the group through rotating them spatially.

Rotation equivariant pooling. The output of the last

group convolutional layer is further processed through pool-

ing over the rotation dimension. Unlike the conventional

classification tasks, pooling is not performed along the spa-

tial dimension to preserve the rotation equivariance.

Rotation equivariant cross-correlation. From the two

subnetworks of the Re-SiamNet module, we obtain two sets

of feature maps, {φ(z)} and φ(x), where {φ(z)} is the set

containing feature maps at Λ orientations. Next, {φ(z)} and

φ(x) are convolved to obtain {ĥ(z, x)}, a set of Λ heatmaps,

where hi(z, x) = φ(zi) ∗ φ(x). Next, {ĥ(z, x)} is pro-

cessed with a global maxpooling operation to obtain the fi-

nal output heatmap h(Z, x). The global maxpooling opera-

tion identifies the maximum value in {ĥ(z, x)} and selects

the feature map that contains it.

By introducing the aforementioned modules, we obtain

the rotation equivariant Siamese tracker. Again, we empha-

size that the tracker is equivariant to in-plane rotations, as

out-of-plane rotations require knowledge of the 3D scene to

be integrated in the network. Next, we describe the training

and inference of rotation equivariant Siamese trackers.

4.2. Constructing RESiamNet Framework

We outline below the steps to design RE-SiamNet frame-

work using the rotation equivariant modules described in

the earlier section.

1. Identify the precision of the tracker in terms of dis-

criminating between different orientations of the ro-

tational degree of freedom. We consider here Λ ro-

tation groups, based on which RE-SiamNets would

be perfectly equivariant to angles defined by the set

Θ = {(i− 1) · 360/Λ}Λi=1.

2. Define the non-parametric encoding φ(·) based on ex-

isting Siamese trackers. Based on the choice of φ(·),
the discriminative power of trackers varies.

3. Replace all the convolutional layers of φ(·) with the

rotation-equivariant modules 1.

4. Instead of a single convolution to generate h(z, x),
Λ convolutions are performed to generate Λ different

heatmaps.

5. Perform Global max-pooling over the feature maps to

generate h(Z, x), which is then processed to localize

the target.

Note that depending on the choice of the tracker head,

processing operation on h(Z, x) can differ. For example,

for trackers such as SINT [29] and SiamFC [1], target in-

stance from the previous frame is fitted at different scales

and aspect ratios, and the best among them is chosen. For

other trackers such as SiamRPN [19] and SiamRPN++ [18],

a region-proposal module is added that regresses the bound-

ing box using a neural network head. In our tracking archi-

tecture, rotation equivariance needs to be only maintained

up to h(Z, x), thus it can work with any of these methods.

5. Unsupervised Relative Rotation Estimation

Unsupervised 2D pose estimation. The inherent design

of RE-SiamNets allows to obtain an estimate of the relative

change of 2D pose of the target in a fully unsupervised man-

ner. This information can be obtained from the result of the

group maxpooling step. Let i ∈ {1, 2, . . . ,Γ} denote one of

Λ orientations of the template image. Then, i is the number

of rotation groups by which the pose of the template differs

from that of its appearance in the candidate image, if:

h(Z, x) = ĥ(zi, x) = group-maxpool({h(z, x)}). (9)

1For implementing rotation-equivariant modules in this pa-

per, we use the e2CNN Pytorch library [34] available at

https://github.com/QUVA-Lab/e2cnn
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The difference in pose expressed in terms of rotational angle

θdiff is then i · 360/Γ. Assuming that the actual in-plane

rotation of the target is θc, the error in prediction in degrees

is bounded as |θdiff − θc| ≤
360
2Λ . Thus, for larger values of

Λ, error in the estimation of pose decreases.

Rotational Motion Consistency. An important advan-

tage is that RE-SiamNets provide a novel motion constraint

that can be used to improve temporal correspondence in

object tracking. To reiterate, Siamese trackers are mostly

based on similarity matching with only weak temporal cor-

respondence introduced through localizing the search area

in any candidate frame around the target location in the pre-

vious frame and penalizing the changes in translation and

scale between two consecutive frames. With RE-SiamNets,

we explore the applicability in improving the temporal con-

sistency through imposing restrictions on the rotational mo-

tion. This is achieved during the selection of θopt ∈ Θ
among the Λ orientations. Let θt,opt = θt,i, where θt,i refers

to the ith orientation in frame t. For the next frame, rather

than selecting θt+1,opt from the full set Θ, a constraint can

be imposed such that θt+1,opt ∈ {θi}. Index i here is con-

strained to the set {it,opt − γ, . . . , it,opt − 1, it,opt, it,opt +
1, . . . , it,opt + γ} such that γ is the maximum change in

number of orientations allowed in either directions between

two consecutive frames. This constraint ensures that the

orientation does not change by more than γ groups between

two successive frames.

6. Rotating Objects Benchmark (ROB)

State-of-the-art benchmarks mostly do not contain rota-

tion annotations. To evaluate RE-SiamNets as well as to

enable future benchmarking on rotation sensitive tracking,

unsupervised rotation estimation and rotation stabilization.

We present Rotating Objects Benchmark (ROB) consisting

of real world video sequences with large-scale variations in

in-plane rotation of target objects.

ROB dataset is a collection of short video clips compris-

ing multiple objects in diverse scenarios, where the target

object undergoes rotation due to a rotating camera or/and

an in-plane rotation of the object itself. In each video, the

camera moves around the objects, capturing its different an-

gles of rotation. The dataset consists of 35 video sequences

with over 10,000 annotated frames and 15 object categories,

ranging from a wide range of real-world scenarios such as

livestock monitoring, cycling and aeroplanes.

Sequences from ROB dataset are densely annotated in

a semi-automated manner, with each frame providing ob-

jects location using bounding box coordinates, as well as

information about its orientation with respect to the frame.

To annotate orientation change, a one-head arrow is drawn

along one of the axes of target in the first frame, and con-

sistently followed in rest of of the frames. This allows to

compute the orientation change between the appearances of

the target in any two frames of the sequences.

7. Experiments

We validate rotation equivariant Siamese trackers in

tracking and estimation of relative 2D orientation changes.

We first compare with the non-rotation equivariant version

of the trackers, including SiamFC and SiamFCv2 [1] and

SiamRPN++ [18]. The proposed design philosophy, how-

ever, is general and any Siamese tracker can benefit. More-

over, we compare with DiMP [2] that attains SOTA results

on standard tracking benchmarks.

Training. All rotation equivariant variants of SiamFC

are trained on the GOT-10k [14] training set. To train

SiamRPN++, we trained a rotation equivariant version of

ResNet50 architecture on ImageNet. The SiamRPN++

model was then trained using this backbone on sets of

COCO [20], ImageNet DET [24], ImageNet VID and

YouTube-BoundingBoxes Dataset [23]

Evaluation. To evaluate how well the proposed RE-

SiamNets perform in presence of frequent in-plane rota-

tions, we test them on ROB, Rot-OTB100 and Rot-MNIST

datasets. Rot-OTB100 dataset is built by rotating each

frame of OTB100 videos by 0.5 degree with respect to its

previous frame. Rot-MNIST involves superposition of 3-5

MNIST digits on GOT-10k image backgrounds, and the dig-

its translate and rotate randomly but in a smooth manner.

Details related to the generation of these two datasets, as

well as results on ROT-MNIST are provided in the supple-

mentary section of this paper. To demonstrate that adding

RE-SiamNets do not degrade the performance of trackers

with respect to other challenges, we test them on tracking

benchmarks that include OTB100 [37] and GOT-10k [14].

Implementation Details To design RE-SiamNets, we

adapt the existing models by replacing the regular CNN

layers with rotation equivariant layers and using a group-

pooling layer to output features at single orientation for ev-

ery input. These rotation equivariant modules are added

using the e2cnn pytorch library [34]. For base Siamese

trackers, we use SiamFC [1], its variant SiamFCv2, and

SiamRPN++ [18]. Here and henceforth, we use the prefix

‘RE-’ to refer to the rotation equivariant version of a tracker.

For most experiments in this paper, we use RE-SiamFC.

The base tracker SiamFCv2 differs from SiamFC in terms

of the filter sizes and the number of convolutional layers.

The former comprises only 4 convolutional layers with filter

sizes of 9, 7, 7 and 6. The reason behind choosing this vari-

ant is to experiment with models involving largers filters,

since these are known to work well for rotation equivari-

ant CNNs [34]. Full details on SiamFC and SiamFCv2 are

provided in the supplementary section. We further point out

we will occasionally refer SiamFC and SiamFCv2 under the

same name of SiamFC. We experiment with rotation groups

of Λ = 4, 8, 16 for SiamFC and Λ = 4 for SiamRPN++.
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Figure 3: Example frames obtained with different template images from 3 sequences of ROB dataset. Images show the

ground truth bounding box (blue), and predictions obtained using SiamFC[1](green) and RE-SiamFC using 8 rotation groups

(red). Further, blue and red arrows show the ground truth pose estimate and the prediction obtained using RE-SiamFC.

Rot-OTB100 OTB100

Model Type Success Precision Success Precision

SiamFC

- 0.315 0.523 0.578 0.765

R4 0.360 0.629 0.567 0.745

R8 0.423 0.676 0.566 0.749

SiamFCv2

- 0.288 0.473 0.540 0.724

R4 0.348 0.622 0.526 0.710

R8 0.425 0.678 0.532 0.717

R16 0.423 0.688 0.514 0.705

SiamFCv2 aug 0.317 0.541 0.533 0.718

SiamRPN++ - 0.461 0.634 0.696 0.914

SiamRPN++ R4 0.485 0.679 0.691 0.903

DiMP18 - 0.429 0.643 0.660 -

DiMP50 - 0.447 0.668 0.684 -

DiMP50 R4 0.490 0.701 0.673 0.908

Table 1: Performance scores (success rate ‘Succ’ and

precision ‘Pr’ of OPE) for object tracking using differ-

ent Siamese trackers with regular CNNs as well as RE-

SiamNets on Rot-OTB100 and OTB datasets. Further, ‘aug’

refers to inclusion of rotation augmentation during training.

All RE-SiamNet implementations described in this pa-

per are trained using stochastic gradient descent method.

The methods follow the same training configurations as

those of their base trackers. Exceptions include training

of RE-SiamFC with R16 for 150 epochs using batch size

of 16. Further, the rotation equivariant ResNet50 backbone

was trained on ImageNet for only 50 epochs due to limited

computational time. All models were trained on machines

equipped with either 1 or 4 GPU Titan X GPUs. Details on

optimization can be found in the supplementary material.

7.1. Rotation Equivariance in Tracking

Rot-OTB100. Table 1 shows that adding rotations in

the tracked sequences makes tracking considerably harder.

Thus, compared to the performance obtained on standard

OTB100, the precision and success scores for SiamFC

drop by 24.2% and 26.3%, respectively. Further, for

SiamRPN++, these scores drop by 23.5% and 28.0%, re-

spectively. Even with just 4 rotational groups RE-SiamNet

outperforms both variants of SiamFC comfortably. Impor-

tantly, rotation equivariant Siamese trackers are notably bet-

ter than standard trackers trained on data with additional ro-

tation augmentations. With 16 rotation groups, there does

not seem to be any improvement in performance. The rea-

son is that for the same number of parameters, 16 quantiza-

tions permit relatively very few channels per layer. When

doubling the number of channels per layer in SiamFCv2-

16, success and precision scores increase to 0.437 and

0.698, respectively. Going beyond 16 quantizations requires

many more parameters and is susceptible to overfitting for

SiamFC and slow to train with SiamRPN++. We also note

that with 16 bins, we have fine-grained angle resolution

(22.5o, i.e., ±11.25 around the heading, similar to pose es-

timation [28]). Interestingly, adding rotation equivariance

brings improvements even to deep siamese trackers such as

SiamRPN++ [19] and DiMP [2]. See supplementary sec-

tion for plots on AUC for precision and success scores.

ROB. We benchmark rotation equivariance also on natu-

ral in-plane rotations on the ROB dataset, see Figure 4. It

shows the performance plots obtained on ROB dataset us-

ing SiamFCv2, SiamRPN++ and their RE-SiamNet equiv-

alents. We make similar observations as in Rot-OTB100.

Adding rotation equivariance makes both SiamFC and

SiamRPN++ more capable to handle natural rotations and

overall, the precision and success rates improve. We pro-

vide qualitative examples in Figure 3, showcasing the ben-
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Figure 4: Performance curves for ROB dataset obtained us-

ing SiamFCv2 and RE-SiamNet with different choices of

equivariant rotation groups.

ROB Rot-OTB100

Type Range SR0.5 SR0.7 SR0.5 SR0.7

Baselines

±π
4

0.25 0.25 0.25 0.25

±π
8

0.125 0.125 0.125 0.125

± π
16

0.062 0.062 0.0625 0.062

R4 ±π
4

0.57 0.66 0.61 0.73

R8
±π

8
0.55 0.64 0.60 0.73

±π
4

0.71 0.82 0.79 0.87

R16

± π
16

0.10 0.14 0.16 0.32

±π
8

0.15 0.21 0.22 0.38

±π
4

0.31 0.46 0.38 0.51

Table 2: Performance values for RE-SiamFC with R8 on the

task of 2D relative pose estimation for ROT-OTB100 and

ROB datasets. Scores reported are in terms of success rate

(SR) at IoU thresholds of 0.5 and 0.7. Reported baselines

are computed assuming equal probability for each orienta-

tion in the dataset.

efits of inducing rotation equivariance in Siamese trackers.

OTB100 and GOT-10k. To further analyze if the ro-

tation equivariant formulation can have adverse effects on

other tracking challenges, we compared the results of RE-

SiamFC with 4 rotation groups to that of the base Siamese

model on OTB100 and GOT-10k. For both the cases, drops

in performance scores were within 2% of the original val-

ues. Such minor drop is expected given that the rota-

tion equivariant trackers use lesser number of channels for

the same number of parameters, thereby exhibiting slightly

lower discriminative power in general.

7.2. Unsupervised Pose Estimation

We experimentally demonstrate that RE-SiamNets can

extract the relative 2D pose of the target over time, using

the first frame as a reference. We provide results in Table 2

on the Rot-OTB100 and ROB datasets. In this experiment,

we measure the success rate SRα as the fraction of frames

for which the actual and predicted orientations are within

the specified range at an IoU threshold of α.

We observe that rotation equivariant trackers recover the

relative orientation change with average accuracy above

60%, well beyond the random baseline. With 8 rotational

groups, RE-SiamNets can even predict angles within a con-

fidence of ±π
8 at a similar accuracy. For finer rotations

Orientation Estimation Tracking

Type Range SR0.3 SR0.5 SR0.7 Pr Succ

R8
±π

4

0.72 0.79 0.87 0.42 0.68

c-R8 0.75 0.80 0.88 0.43 0.69

R16
±π

4

0.34 0.38 0.51 0.42 0.69

c-R16 0.36 0.42 0.54 0.43 0.69

Table 3: Accuracy of orientation estimation and perfor-

mance scores for object tracking on Rot-OTB100 dataset

obtained for RE-SiamFC with (denoted with prefix ‘c-’) and

without imposing constraint on rotational motion. Here,

‘Range’ refers to permissible change in orientation between

two consecutive frames of any video, ‘SRX ’ refers to suc-

cess rate at an IoU threshold of X .

within ± π
16 there is a significant drop, with accuracies rang-

ing between 0.1 and 0.3. The problem is that by increasing

the rotation groups, we trade the parameters required for

better tracking with parameters that are required for finer

rotational bases, thus reducing the final discriminative ca-

pacity of our trackers. We include some qualitative exam-

ples in Figure 3 to show the orientations predicted by our

rotation equivariant tracker.

7.3. Rotationalbased Motion Constraints

Last, we explore briefly whether the predictions of orien-

tation estimates can be used to improve tracking by an ad-

ditional constraint to encourage smooth orientation changes

over time. We present results in Table 3. Adding the rota-

tion constraint on rotational motion has a modest yet pos-

itive influence on tracking performance, while the benefits

regarding robustness are higher (data not shown). We con-

jecture that introducing other types of equivariance to place

more constraints on the attainable types of motion in videos

would yield even more robust trackers.

8. Conclusions

This paper addresses the challenge of in-plane rotations

of the target in visual object tracking. We demonstrated that

frequent in-plane rotations can have an adverse effect on

conventional trackers, for which data augmentations do not

suffice. To address this, we introduce rotation equivariant

Siamese trackers, specifically for SiamFC and SiamRPN++,

that can adapt to rotation changes at no extra parameter cost

due to shared weights. Results show that rotation equiv-

ariant Siamese trackers can track accurately under the pre-

sense of artificial and natural rotations, they can accurately

recognize the relative orientation changes of the target with

respect to the first reference frame, and they can even be

made more robust by placing additional rotational motion

constraints.
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