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Abstract

We propose Skip-Convolutions to leverage the large

amount of redundancies in video streams and save compu-

tations. Each video is represented as a series of changes

across frames and network activations, denoted as residu-

als. We reformulate standard convolution to be efficiently

computed on residual frames: each layer is coupled with

a binary gate deciding whether a residual is important to

the model prediction, e.g. foreground regions, or it can be

safely skipped, e.g. background regions. These gates can ei-

ther be implemented as an efficient network trained jointly

with convolution kernels, or can simply skip the residuals

based on their magnitude. Gating functions can also in-

corporate block-wise sparsity structures, as required for ef-

ficient implementation on hardware platforms. By replac-

ing all convolutions with Skip-Convolutions in two state-of-

the-art architectures, namely EfficientDet and HRNet, we

reduce their computational cost consistently by a factor of

3 ∼ 4× for two different tasks, without any accuracy drop.

Extensive comparisons with existing model compression, as

well as image and video efficiency methods demonstrate

that Skip-Convolutions set a new state-of-the-art by effec-

tively exploiting the temporal redundancies in videos.

1. Introduction

Is a video a sequence of still images or a continuous se-

ries of changes? We see the world by sensing changes, and

process information whenever the accumulated differences

in our neurons exceed some threshold. This trait has in-

spired many efforts to develop neuromorphic sensors and

processing algorithms, such as event-based cameras [40]

and spiking neural networks [12]. Despite their efficiency

for video processing, spiking nets have not been as success-

ful as conventional models, mostly due to the lack of ef-

ficient training algorithms. There have been several works

on mapping spiking nets to conventional networks, but these

works have been mostly limited to shallow architectures and
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Figure 1: Skip-Convolution illustration for the input layer.

Convolutions are computed only on a few locations in the

residual features determined by a gate function (blue dots).

In other locations, output features are copied from the pre-

vious time step (yellow dots). Frames taken from [65].

simple problems, such as digit classification [66, 36, 35].

Representing videos by changes through residual frames is

common in video compression codecs, such as HEVC [46],

because residual frames normally have less information en-

tropy and therefore require fewer bits to be compressed.

For stream processing applications, that require spatially

dense predictions for each input frame, deep convolutional

networks still process a sequence of still images as input.

Each frame is processed entirely by sliding convolutional

filters all over the frame, layer by layer. As a result, the

overall computational cost grows linearly with the number

of input frames, even though there might be not much new

information in the subsequent frames. This inherent ineffi-

ciency prohibits using accurate but expensive networks for

real-time tasks, such as object detection and pose estima-

tion, on video streams.

This paper proposes Skip-Convolutions, in short, Skip-

Convs, to speed up any convolutional network for infer-

ence on video streams. Instead of considering a video as

a sequence of still images, we represent it as a series of

changes across frames and network activations, denoted as

residual frames. We reformulate standard convolution to be

efficiently computed over such residual frames by limiting

the computation only to the regions with significant changes

while skipping the others. Each convolutional layer is cou-
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pled with a gating function learned to distinguish between

the residuals that are important for the model accuracy and

background regions that can be safely ignored (Fig. 1).

By applying the convolution kernel on sparse locations,

Skip-Convs allow to adjust efficiency depending on the in-

put, in line with recent studies on conditional computation

in images [25, 7, 42, 51, 53]. However, we hereby ar-

gue that distinguishing the important and non-important re-

gions is more challenging in still images. Indeed, residual

frames provide a strong prior on the relevant regions, eas-

ing the design of effective gating functions. As a result,

Skip-Convs achieve a much higher cost reduction in videos

(300 ∼ 400%), compared to what has been previously re-

ported for images (15 ∼ 60% in [51], 27 ∼ 41% in [53]).

To summarize, the main contributions of this work are:

i) a simple reformulation of convolution, which computes

features on highly sparse residuals instead of dense video

frames. ii, iii) Two gating functions, Norm gate and Gum-

bel gate, to effectively decide whether to process or skip

each location. Norm gates do not have any trainable pa-

rameter, thus can be easily plugged into any trained net-

work obviating the need for further fine-tuning. On the con-

trary, Gumbel gates are trainable: they are learned jointly

with the backbone model with the Gumbel reparametriza-

tion [20, 32], and allow to achieve even more efficiency.

We extend these gates to generate structured sparsity as re-

quired for efficient hardware implementations. iv) A gen-

eral formulation of Skip-Conv, which extends the idea to

a broader range of transformations and operations. v) ex-

tensive experiments on two different tasks and state-of-the-

art network architectures, showing a consistent reduction in

cost by a factor of 3 ∼ 4×, without any accuracy drop.

2. Related work

Efficient video models Exploiting temporal redundancy

is the key to develop efficient video models. A com-

mon strategy is feature propagation [44, 69, 26, 68], which

computes the expensive backbone features only on key-

frames. Subsequent frames then adapt the backbone fea-

tures from key-frames directly [44] or after spatial align-

ments via optical flow [69, 19], dynamic filters [26, 34], or

self-attention [15]. Similarly, Skip-Conv also propagates

features from the previous frame, however: i) feature prop-

agation models depend on the alignment step, which is po-

tentially expensive, e.g. for accurate optical flow extraction.

ii) These methods propagate the feature only at a single

layer, whereas Skip-Conv propagates features at every layer.

iii) Skip-Conv selectively decides whether to propagate or

compute at the pixel level, rather than for the whole frame.

iv) differently from feature propagation methods that imply

architectural adjustments, Skip-Conv does not involve any

modifications to the original network.

Another strategy is to interleave deep and shallow back-

bones between consecutive frames [19, 29, 34]. The deep

features, extracted only on key-frames, are fused with shal-

low features extracted on other frames using concatena-

tion [19], recurrent networks [29], or more sophisticated dy-

namic kernel distillation [34]. This strategy usually leads to

an accuracy gap between key-frames and other frames.

Several works aim for efficient video classification by de-

veloping faster alternatives for 3D convolutions, such as

temporal shift modules [27] and 2+1D convolutions [49],

neural architecture search [39, 8], or adaptive frame sam-

pling [4, 55, 33]. These methods are mostly suitable for

global prediction tasks where a single prediction is made

for the whole clip. Differently, we target stream processing

tasks, such as pose estimation and object detection, where a

spatially dense prediction is required for every frame.

Efficient image models The reduction of parameter re-

dundancies, e.g. in channels and layers, is a fundamental

aspect for obtaining efficient image models. Model com-

pression methods [24], such as low-rank tensor decompo-

sition [18, 67], channel pruning [13, 30], neural architec-

ture search [47, 48], and knowledge distillation [14, 43], ef-

fectively reduce the memory and computational cost of any

network. Instead of exploiting weight redundancies, as ad-

dressed by model compression, Skip-Conv leverages tem-

poral redundancies in activations. As verified by our exper-

iments, these are complementary and can be combined to

further reduce the computational cost.

Conditional computation has recently shown great promise

to develop efficient models for images [2]. It enables the

model to dynamically adapt the computational graph per

input to skip processing unnecessary branches [16], lay-

ers [50], channels [1, 11], or non-important spatial locations

such as background [9, 25, 7, 42, 51, 53]. However, distin-

guishing the important vs. non-important regions is difficult

in images. Skip-Conv leverages residual frames as a strong

prior to identify important regions in feature maps based on

their changes, outperforming their image counterparts by a

large margin as validated by our experiments.

3. Skip Convolutions

Instead of treating a video as a sequence of still images, we

represent it as a series of residual frames defined both for

the input frames and for intermediate feature maps. In sec-

tion 3.1, we reformulate the standard convolution to be effi-

ciently computed on residuals. Section 3.2 proposes several

gating functions to decide whether to process or skip each

location in residual frames. Gating functions are crucial to

reduce the computation without losing much accuracy. Fi-

nally, section 3.3 discusses how Skip-Conv can be general-

ized to a broader set of transformations beyond residuals as

a direction for future developments.
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3.1. Convolution on Residual Frames

Given a convolutional layer with a kernel w ∈
R

co×ci×kh×kw and an input xt ∈ R
ci×h×w, the output fea-

ture map zt ∈ R
co×h×w is computed for each frame as1:

zt = w ∗ xt. (1)

In Eq. 1 (and in the remainder of this section) zt refers to

the result before the application of a non-linear activation

function. Using the distributive property of convolution as

a linear function, the output can be obtained by:

zt = w ∗ xt−1 +w ∗ xt −w ∗ xt−1

= zt−1 +w ∗ (xt − xt−1)

= zt−1 +w ∗ rt,

(2)

where rt represents the residual frame as the difference be-

tween the current and previous feature maps xt − xt−1.

Since zt−1 has been already computed for the previous

frame, computing zt reduces to summing the term w ∗ rt.

Due to the high correlation of consecutive frames in a video,

the residual frame rt is often sparse and contains non-zero

values only for the regions that changed across time, i.e.

moving objects as visualized in Figure 2. This sparsity can

effectively be leveraged for efficiency: for every kernel sup-

port filled with zero values in rt, the corresponding output

will be trivially zero, and the convolution can be skipped by

copying values from zt−1 to zt.

We use residuals to represent features at every convolu-

tional layer. For the first frame, the residual r1 will be the

same as the frame content x1, so the feature map is com-

puted over the whole frame. Instead, consecutive frames

update their features only at locations with non-zero resid-

uals while reusing past representations elsewhere.

Although residuals are inherently sparse, they may still con-

tain lots of locations with small non-zero values that prevent

skipping them. To save even further, we introduce a gat-

ing function for each convolutional layer, g : Rci×h×w →
{0, 1}h×w, to predict a binary mask indicating which loca-

tions should be processed, and taking only rt as input. Us-

ing rt as input provides a strong prior to the gating function,

making it effective even with a fairly simple form. Putting

it all together, our proposed Skip-Conv is defined as:

z̃t = z̃t−1 + g(rt)⊙ (w ∗ rt), (3)

where ⊙ indicates a broadcasted Hadamard (i.e. element-

wise) product and the ∼ symbol highlights that z̃t is an ap-

proximation of zt, as it skips negligible but non-zero resid-

uals. The gating function is further described next.

1To avoid notational clutter, we describe the case in which xt and zt have

the same resolution.

Input frame Layer 3 Layer 30
Figure 2: Gating masks for video object detection. Gates

become more selective at deeper layers, concentrating on

task specific regions. Frames from [61, 60, 62].

3.2. Skipping Non­zero Residuals

We propose two gating functions: i) Norm gate, that decides

to skip a residual if its magnitude (norm) is small enough.

This gate does not have any learnable parameter and does

not involve any training. As a result, it can be easily plugged

into any trained image network without any labeled video

or training resources required. ii) Gumbel gate, that has

parameters trained jointly with the convolutional kernels.

The learned parameters can make the Gumbel gate more

effective at the cost of fine-tuning the model.

3.2.1 Norm Gate

A naive form of gating is based on applying a scalar thresh-

old ǫ to the norm of each output pixel:

g(rt,w, ǫ) = round
(

σ(‖w ∗ rt‖p − ǫ)
)

, (4)

where σ(·) indicates a sigmoid function, p represents the

order of the norm, and the norm is computed over all chan-

nels for each position. However, such a gating function

requires the computation of the convolution at each pixel

of the residual, which would reintroduce inefficiency. We

therefore propose to approximate Eq. 4 by considering the

norm of each kernel support in the residual as:

g(rt, ǫ) = round
(

σ(‖rt‖p − ǫ)
)

, (5)

We refer to this function as Input-Norm gate. The norm

‖rt‖p in Eq. 5 is to be intended for local convolutional sup-

ports rather than pixel-wise. As such, it is computed by

applying an absolute value function to rt then taking sum

within the di × kh × kw neighborhood (i.e. p = 1).

A more accurate approximation can be achieved without

computing the full convolution, by involving the norm of

the weight matrix w. Considering Young’s inequality [58]

we get an upper bound on the norm of the convolution of
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two vectors f and g:

‖f ∗ g‖r ≤ ‖f‖s · ‖g‖q ,

where
1

s
+

1

q
=

1

r
+ 1.

(6)

By following Eq. 6, we define a more precise approxima-

tion, based on the norms of the input residual rt and the

weight matrix w, in what we refer to as Output-Norm gate:

g(rt,w, ǫ) = round
(

σ(‖w‖p · ‖rt‖p − ǫ)
)

, (7)

where the norm ‖w‖p is computed over all four dimensions.

We set the order p for both input-norm and output-norm

gates to 1 (i.e., l1 norm), and we share the margin ǫ between

all layers. More flexible strategies such as layer-specific ǫ

can potentially yield better results at the cost of more hy-

perparameter tweaking.

3.2.2 Gumbel Gate

Residual norms indicate regions that change significantly

across frames. However, not all changes are equally impor-

tant for the final prediction (e.g. changes in background).

This observation suggests that a higher efficiency can be

gained by introducing some trainable parameters within

gates, which are learned to skip even large residuals when

they do not affect the model performance.

For each convolutional layer l we define a light-weight gat-

ing function f(rt;φl), parameterized by φl, as a convolu-

tion with a single output channel. Such an addition imposes

a negligible overhead to the convolutional layer, which nor-

mally has dozen to hundreds of output channels. To gen-

erate masks of the same resolution, the gate function uses

the same kernel size, stride, padding, and dilation as its

corresponding layer. The gating function f outputs unnor-

malized scores that we turn into pixel-wise Bernoulli dis-

tributions by applying a sigmoid function. During training,

we sample binary decisions from the Bernoulli distribution,

whereas we round the sigmoids at inference:

g(rt, φl)

{

∼ Bern(σ(f(rt;φl))) at training,

= round (σ(f(rt;φl))) at inference
(8)

We employ the Gumbel reparametrization [20, 32] and a

straight-through gradient estimator [3] in order to backprop-

agate through the sampling procedure. The gating param-

eters are learned jointly with all model parameters by min-

imizing Ltask + βLgate. The hyper-parameter β balances

the model accuracy, measured by Ltask, vs the model ef-

ficiency as measured by Lgate. We define the gating loss

as the average multiply-accumulate (MAC) count needed to

process T consecutive frames as:

Lgate(φ1, . . . , φL) =
1

T − 1

T
∑

t=2

L
∑

l=1

ml ·E[g(rt, φl)], (9)

1x1 2x2 4x4 8x8
Figure 3: Exemplar masks generated by Skip-Conv for pose

estimation, when trained with different block structures.

where L is the number of layers in the network, E[·] in-

dicates an average over spatial locations and the coefficient

ml denotes the MAC count for the lth convolutional layer 2.

Similar to recurrent networks, we train the model over a

fixed-length sequence of frames and do inference iteratively

on an arbitrary number of frames.

Structured Sparsity Similar to sparse convolutions, an

efficient implementation of Skip-Conv requires block-wise

structured sparsity in the feature maps [42, 51], for two

main reasons. First, block structures can be leveraged to

reduce the memory overhead involved in gathering and scat-

tering of input and output tensors [42]. Additionally, many

hardware platforms perform the convolutions distributed

over small patches (e.g. 8× 8), so do not leverage any fine-

grained spatial sparsity smaller than these block sizes.

Skip-Conv can be extended to generate structured sparsity

by simply adding a downsampling and an upsampling func-

tion on the predicted gates. More specifically, we add a

max-pooling layer with the kernel size and stride of b fol-

lowed by a nearest neighbor upsampling with the same scale

factor of b. This enforces the predicted gates to have b × b

structure, as illustrated in Figure 3. We will illustrate in Sec-

tion 4.3 how adding structure, despite significantly reduc-

ing the resolution of the gates, does not harm performances

when compared with unstructured gating. Thus, structured

sparsity enables more efficient implementation with mini-

mal effect on performance.

3.3. Generalization & Future Work

Skip-Conv computes the output features in three steps: i)

encoding the input tensor as residuals using a global sub-

traction transform. ii) efficient computation in the residual

domain by leveraging the sparsity. iii) decoding the output

back into the feature space using a global addition transform

(inverse of subtraction). Here we generalize this process

to a broader set of transformations beyond global subtrac-

2To keep Lgate at a manageable scale, we normalize ml by dividing it by
∑L

i=1
mi.
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tion/additions for the interested reader, but leave these ideas

to be explored in future work.

Whereas in Eq. 2 we defined the residual as rt = xt−xt−1,

we may more generally define rt = fxt−1
(xt) as an xt−1-

dependent (approximately) invertible function f of xt, that

produces a sparse generalized residual rt. As before, we

may then write:

zt = w ∗ xt = w ∗ f−1

xt−1
(rt). (10)

Now, if convolution is equivariant to f−1

xt−1
, i.e. if the equa-

tion w ∗f−1

xt−1
(rt) = f̃−1

xt−1
(w ∗rt) holds for some function

f̃−1

xt−1
acting on the output space of the convolution, then

we can compute zt via a convolution with a sparse rt fol-

lowed by a transformation by f̃ (which should be chosen to

be efficiently computable):

zt = w ∗ f−1

xt−1
(rt) = f̃−1

xt−1
(w ∗ rt). (11)

The original Skip-Conv is recovered by setting fxt−1
(xt) =

xt − xt−1, so that f−1

xt−1
(rt) = rt + xt−1 and the output

transformation is f̃−1

xt−1
(w ∗ rt) = zt−1 +w ∗ rt.

The question of when a convolution is equivariant to a given

group of transformations has received a lot of attention in

the literature [6, 23, 5]. The general answer is that w∗ can

be made equivariant by linearly constraining the filters, re-

sulting in so-called steerable filters [10]. In this case, how-

ever, the group of transformations generated by fxt−1
for all

xt−1 may not be known in advance, so analytically solving

the linear constraints on the filters is not feasible. Neverthe-

less, equivariance can be encouraged via a simple loss term

that pulls w ∗ f−1

xt−1
(rt) and f̃−1

xt−1
(w ∗ rt) closer.

One promising choice for fxt−1
is to compute a residual

between xt and a warped version of xt−1. This opera-

tion is guaranteed to be invertible (just add back the warped

xt−1) and is equivariant whenever the warping operation

is equivariant. Formally, let T denote a warping opera-

tion, e.g. bilinear interpolation of a frame at a set of points

indicated by a flow field. The flow field could be com-

puted from the network input frames, for instance. We may

define fxt−1
(xt) = xt − T (xt−1), so that f−1

xt−1
(rt) =

rt+T (xt−1) and, if the warp is equivariant, f̃−1

xt−1
(w∗rt) =

T̃ (zt−1) +w ∗ rt (where T̃ applies the warp to the convo-

lution output space). Other choices for the function f and f̃

also apply, including learning them from data.

4. Experiments

We evaluate Skip-Conv on two stream processing tasks,

namely object detection and single-person pose estimation,

in Section 4.1 and 4.2 respectively. Several ablation studies

are reported in Section 4.3.
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EfficientDet
EfficientDet-interleaved
EfficientDet+Skip-Conv

Figure 4: Comparison with the video object detection state-

of-the-art. Skip-Conv reduces EfficientDet cost by 300%,

consistently across the configurations D0, D1, D2, D3.

4.1. Object Detection

Experimental setup We conduct object detection exper-

iments on UA-DETRAC dataset [54]. It consists of over

140,000 frames capturing 100 real-world traffic videos with

bounding box annotations provided for vehicles at every

frame. The dataset comes with a standard partitioning of 60
and 40 videos as train and test data, respectively. The per-

formance is evaluated in terms of average precision (AP),

averaged over multiple IoU thresholds varying from 0.5 to

0.95 with a step size of 0.05, similar to [48].

Implementation details We use EfficientDet [48], the

state of the art architecture for object detection, and ap-

ply Skip-Conv on top of it. We conduct our experiments on

D0 to D3 as the most efficient configurations [48], though

more expensive configurations, i.e. D4 to D7, can similarly

benefit from Skip-Conv. Each model is initialized with pre-

trained weights from MS COCO dataset [28] and trained

using SGD optimizer with momentum 0.9, weight decay

4e− 5 and an initial learning rate of 0.01 for 4 epochs. We

decay the learning rate of a factor of 10 at epoch 3. All mod-

els are trained with mini-batches of size 4 using four GPUs,

where synchronized batch-norm is used to handle small ef-

fective batch sizes. We use Skip-Conv with learned gates,

which is trained for each EfficientDet configuration using

the sparsity loss coefficient set to β = 0.01. During train-

ing we apply random flipping as data augmentation. The

clip length is set to 4 frames both for training and inference.

Comparison to state of the art We compare Skip-

Conv to several image and video object detectors: i) Effi-

cientDet [48] as the state of the art in efficient object detec-

tion in images. We also include an EfficientDet-interleaved
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GMAC Head Sho. Elb. Wri. Hip Knee Ank. Avg

Park et al. [37] - 79.0 60.3 28.7 16.0 74.8 59.2 49.3 52.5

Nie et al. [56] - 80.3 63.5 32.5 21.6 76.3 62.7 53.1 55.7

Iqbal et al. [17] - 90.3 76.9 59.3 55.0 85.9 76.4 73.0 73.8

Song et al. [45] - 97.1 95.7 87.5 81.6 98.0 92.7 89.8 92.1

Luo et al. [31] 70.98 98.2 96.5 89.6 86.0 98.7 95.6 90.9 93.6

DKD et al. [34] 8.65 98.3 96.6 90.4 87.1 99.1 96.0 92.9 94.0

HRNet-w32 [52] 10.19 98.5 97.3 91.8 87.6 98.4 95.4 90.7 94.5

+S-SVD [18] 5.04 97.9 96.9 90.6 87.3 98.7 95.3 91.1 94.3

+W-SVD [67] 5.08 97.9 96.3 87.2 82.8 98.1 93.2 88.8 92.4

+L0 [30] 4.57 97.1 95.5 86.5 81.7 98.5 92.9 88.6 92.1

+Skip-Conv 5.30 98.7 97.7 92.0 88.1 99.3 96.6 91.0 95.1

Table 1: Comparison with the state-of-the-art on JHMDB.

Skip-Conv outperforms in PCK the best image and video

models, whilst requiring fewer MAC per frame.

baseline, where model predictions are propagated from

keyframes to the next frames without further processing. ii)

Deep Feature Flow (DFF) [69] as a seminal work on ef-

ficient object detection in video, iii) SpotNet [38] as the

top performer in UA-DETRAC benchmark, which trains

a joint model to detect objects and extract motion masks

for improved object detection in video. Figure 4 demon-

strates that Skip-Conv significantly reduces the computa-

tional cost of EfficientDet with a reasonable accuracy drop.

More specifically, for D3 configuration, Skip-Conv reduces

the cost from 22.06 to 6.36 GMAC with even a slight in-

crease in AP from 62.3 to 62.6. Similarly for other configu-

rations, Skip-Conv consistently reduces the MAC count by

330% to 350%. By comparing Skip-Conv and EfficientDet-

interleaved, we observe that although interleaved detection

reduces the computational cost, it leads to severe accuracy

drop as there are lots of motion and dynamics in this dataset.

Moreover, we observe that Skip-Conv outperforms

DFF [69] both in terms of accuracy and computational cost.

We hypothesize that DFF performances, solely relying on

optical-flow to warp features across frames, are sensitive

to the accuracy of the predicted motion vectors. However,

there are lots of small objects (e.g. distant vehicles) in this

dataset for which optical flow predictions are noisy and in-

accurate. Finally, our experiments demonstrate that Skip-

Conv achieves the state of the art accuracy on UA-DETRAC

dataset, reported by SpotNet [38], with orders of magnitude

less computes (6.36 vs 972.0 GMAC).

4.2. Human Pose Estimation

Experimental setup We conduct our experiments on the

JHMDB dataset [21], a collection of 11,200 frames from

316 video clips, labeled with 15 body joints. Video se-

quences are organized according to three standard train/test

partitions and we report average results over the three splits.

We evaluate the performance using the standard PCK met-

ric [57]. Given a bounding box of the person with height h

and width w, PCK considers a candidate keypoint to be a

valid match if its distance with the ground-truth keypoint is

lower than α ·max(h,w). We set α = 0.2. Our experimen-

tal setup is consistent with prior works [45, 31, 34].
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96
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S-SVD
W-SVD
Skip-Conv
S-SVD+Skip-Conv
HRNet-w32

Figure 5: Comparison with model compression on JHMDB.

Skip-Conv outperforms existing approaches. Applying it on

top of compressed models further improves efficiency.

Implementation details We use HRNet [52], the state

of the art architecture for human pose estimation, and ap-

ply Skip-Conv on top of it. We select HRNet-w32 as it per-

forms on par with HRNet-w48, while being more efficient.

All models are trained for 100 epochs with mini-batches of

16 images, using the Adam optimizer [22] with an initial

learning rate of 0.001. We decay the learning rate with a

factor of 10 at epochs 40 and 80. We use Skip-Conv with

learned gates, which is trained using the sparsity loss coef-

ficient set to β = 1e− 5 unless specified otherwise.

We follow the setup from [45, 31, 34] for training and in-

ference. We use standard data augmentations during train-

ing: randomly scaling using a factor within [0.6, 1.4], ran-

dom rotation within [−40◦, 40◦] and random flipping. Each

frame is cropped based on the ground-truth bounding box

and padded to 256× 256 pixels. The inference is done on a

single scale. The clip length is set to T = 8 frames both for

training and inference.

Comparison to state of the art We compare Skip-

Conv to two categories of prior works: i) task specific meth-

ods, which are dedicated to efficient human pose estimation

in video i.e. by dynamic kernel distillation (DKD) [34]. ii)

task agnostic methods, which optimize the model efficiency

for any task and architecture, i.e. by model compression

and pruning. For this purpose, we apply ℓ0 channel prun-

ing [30], Spatial SVD (S-SVD) [18], and Weight SVD (W-

SVD) [67] to compress HRNet-w32 at different efficiency

vs. accuracy trade-offs. For S-SVD and W-SVD, we use

greedy search to select the optimal rank per layer as imple-

mented in [41]. For batch-norm layers in ℓ0 channel prun-

ing, we estimate the statistics during test on a large batch of

48 images, as it performs better in our experiments than us-

ing batch statistics from training. Finally, we compare to a
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Figure 6: Qualitative comparison between HRNet and HRNet+Skip-Conv. GMAC count is reported for each frame. Skip-

Conv significantly reduces the computations with minimal difference in predictions. Frames from [64, 63].

conditional computation baseline on images, CC − image,

by applying Gumbel gates to the raw frames, instead of

residual frames, similar to [51].

Table 1 reports the comparison with the state of the art mod-

els on the JHMDB dataset. By comparing Skip-Conv re-

sults with the backbone network HRNet-w32, results high-

light that skipping redundant computations allows a reduc-

tion in MAC count by roughly a factor of 2, even with a

remarkable improvement in PCK from 94.5 to 95.1. We at-

tribute such a performance increase to a regularizing effect

from the firing of stochastic gates during training. More-

over, when compared with DKD [34], Skip-Conv yields

again a 1 point margin in PCK, with a relative cost reduction

of 38.7%. Finally, out of the model compression baselines,

S-SVD excels by halving the MAC count of HRNet-w32

with a minimal reduction in accuracy, even outperform-

ing DKD in terms of the PCK vs cost trade-off. Notably,

W-SVD and L0 regularization achieve similar compression

rates, but with more severe performance degradations.

The comparison between Skip-Conv and model compres-

sion baselines can be best understood by looking at Fig-

ure 5, that reports PCK and MAC count at different oper-

ating points. The figure clearly shows the better trade-off

achieved by Skip-Conv, which is able to retain the origi-

nal HRNet-w32 performance whilst reducing the cost by

more than a factor 4. On the contrary, other baselines ex-

perience higher drop in performance when increasing their

GMAC Time (ms) MAC Red. Time Red.

Conv 10.19 548 1.00 × 1.00 ×

Skip-Conv

4.07 369 2.51 × 1.48 ×
2.35 287 4.33 × 1.91 ×
1.29 134 7.92 × 4.09 ×

Table 2: MAC count vs runtime reductions on a HRNet-

w32 architecture. The MAC count reductions obtained

by Skip-Conv translate to wall-clock runtimes.

compression ratios, with the best trade-off achieved by S-

SVD. However, we remark that model compression and

Skip-Conv tackle two very different sources of inefficiency

in the base model: if the former typically focuses on cross-

channel or filter redundancies, the latter tackles temporal

redundancies. For these reasons, a combination of the two

approaches could further improve efficiency, as also testi-

fied by the cyan line in Figure 5, that we obtain by apply-

ing Skip-Conv to different S-SVD compressed models. In-

deed, the combination of such strategies outperforms both

of them, especially in the low-cost regime. Finally, the com-

parison between Skip-Conv and CC−image highlights the

importance of conditioning on residuals, as they provide a

strong prior to distinguish relevant and irrelevant locations.

Figure 6 depicts examples of Skip-Conv predictions.

Runtime speed up We investigate how the theoretical

speed ups, measured by MAC count reductions, translate

to actual wall clock runtimes. Following [7] we use im2col

based implementation of sparse convolutions. This algo-

rithm reformulates the convolution as a matrix multiplica-

tion between input tensor and convolution kernels flattened

as two matrices. The multiplication is computed only on

non-sparse columns while filling the other columns by zero.

We report the overall wall clock time spent on conv layers

vs Skip-Conv layers for a HRNet-w32 architecture. The

runtimes are reported on CPU3. As reported in Table 2, the

MAC count reductions obtained by Skip-Conv translate to

wall clock runtimes. The improvements on runtimes are

roughly half of the theoretical speed ups as MAC count

does not count for memory overheads involved in sparse

convolutions. The gap between theoretical and real runtime

improvements can be further reduced through highly opti-

mized CUDA kernels as demonstrated in [42, 51].

3Intel Xeon e5-1620 @ 3.50GHz.
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Figure 7: Comparison of different gates for Skip-Conv.

Output-Norm gates improve EfficientDet, though not as ef-

fectively as Gumbel gates.

4.3. Ablation studies

Impact of gating function We study the impact of gating

on Skip-Conv by evaluating EfficientDet architectures using

three different gate functions (Section 3.2): i) Input-Norm

gates with threshold value ǫ = 1e − 2; ii) Output-Norm

gates, with threshold value ǫ = 15e − 5; iii) Gumbel gates

are trained with sparsity coefficient β = 1e− 2.

Figure 7 illustrates that Gumbel gates outperform both the

Input-Norm and Output-Norm gates. This behavior is ex-

pected, as Gumbel gates are trained end-to-end with the

model and they learn to skip the residuals, regardless of

their magnitude, if it does not affect the task loss. There-

fore, they effectively skip the big changes in background,

which leads to higher computational efficiency. Moreover,

we observe that output-norm gates outperform input-norm

gates as they rely on a more precise approximation involv-

ing weight norms. Despite their simplicity, output-norm

gates improve the efficiency of EfficientDet with reasonable

accuracy drop. As an example, for D2 configuration output-

norm gates reduce the cost from 9.52 to 6.03 GMAC with a

similar AP of 61.2. Although output-norm gates are less ef-

fective than Gumbel gates, they are practically valuable as

they can be plugged into any trained network without any

labeled video or training required.

Block size GMAC PCK

1× 1 5.06 95.0

2× 2 2.43 94.5

4× 4 2.98 94.9

8× 8 4.18 95.0

Table 3: Impact of structured gates on pose estimation.

Structured gates perform comparable to unstructured gates

(1×1 blocks), while allowing for efficient implementations.

Ttrain = 4 Ttrain = 8

PCK GMAC PCK GMAC

Ttest = 4 95.3 3.10 94.5 3.56

Ttest = 8 94.3 1.91 94.5 2.43

Ttest = ∞ 89.3 1.18 94.2 1.80

Table 4: Results for pose estimation when training and test-

ing with different clip lengths T .

Structured gating We experiment with structured gating

on JHMDB (split 1) and report results in Table 3. The ta-

ble reports the accuracy and efficiency of two unstructured

models trained with different sparsity coefficients β, along

with structured models with 4 × 4 and 8 × 8 blocks. It can

be noted how adding structure to the gates does not nega-

tively impact the model, yielding results that are inline with

unstructured counterparts. This finding suggests that struc-

tured gates introduce hardware friendliness without hurting

the accuracy/cost tradeoff.

Impact of clip length We study the sensitivity of Skip-

Conv to clip length used during training and to reference

frame reset frequency during test. Table 4 shows results on

JHMDB (split 1), where we train Gumbel gates with clips

of 4 or 8 frames with a sparsity factor β = 5e − 5. Simi-

larly, we instantiate a new reference frame during test every

4 or 8 frames, or even only once at the beginning of each

sequence (t = ∞). As one can expect, the table shows how

decreasing the number of expensive reference frames im-

proves efficiency. This comes, however, at a minor cost in

PCK, with a drop of 0.3 PCK for processing up to 40 frames

sequences when training with clips having length T = 8.

5. Conclusion

We propose Skip Convolutions to speed up convolutional

nets on videos. Our core contribution is the shift of the

convolution from the content frames to the residual frames,

both at input and intermediate layers. Operating on resid-

ual frames allows to skip most of the regions in the feature

maps, for which representations can simply be copied from

the past. We further encourage this regime by per layer gat-

ing functions, for which we propose several trainable and

off-the-shelf designs.

As a potential limitation, we highlight it is unclear how our

model would perform in the presence of severe camera mo-

tion. In such situations, residual frames wouldn’t bear that

much information about relevant regions, thus a higher bur-

den would be put on the gating function. Coupling Skip-

Conv with learnable warping functions helps compensating

for severe camera motions, and is deferred to future work.
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