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Figure 1: POSA automatically places 3D people in 3D scenes such that the interactions between the people and the scene

are both geometrically and semantically correct. POSA exploits a new learned representation of human bodies that explicitly

models how bodies interact with scenes.

Abstract

Humans live within a 3D space and constantly interact

with it to perform tasks. Such interactions involve physi-

cal contact between surfaces that is semantically meaning-

ful. Our goal is to learn how humans interact with scenes

and leverage this to enable virtual characters to do the

same. To that end, we introduce a novel Human-Scene In-

teraction (HSI) model that encodes proximal relationships,

called POSA for “Pose with prOximitieS and contActs”.

The representation of interaction is body-centric, which en-

ables it to generalize to new scenes. Specifically, POSA

augments the SMPL-X parametric human body model such

that, for every mesh vertex, it encodes (a) the contact prob-

ability with the scene surface and (b) the corresponding

semantic scene label. We learn POSA with a VAE con-

ditioned on the SMPL-X vertices, and train on the PROX

dataset, which contains SMPL-X meshes of people interact-

ing with 3D scenes, and the corresponding scene seman-

tics from the PROX-E dataset. We demonstrate the value

of POSA with two applications. First, we automatically

place 3D scans of people in scenes. We use a SMPL-X

model fit to the scan as a proxy and then find its most likely

placement in 3D. POSA provides an effective representa-

tion to search for “affordances” in the scene that match

the likely contact relationships for that pose. We perform

a perceptual study that shows significant improvement over

the state of the art on this task. Second, we show that

POSA’s learned representation of body-scene interaction

supports monocular human pose estimation that is consis-

tent with a 3D scene, improving on the state of the art.

Our model and code are available for research purposes

at https://posa.is.tue.mpg.de.

1. Introduction

Humans constantly interact with the world around them.

We move by walking on the ground; we sleep lying on a

bed; we rest sitting on a chair; we work using touchscreens

and keyboards. Our bodies have evolved to exploit the af-

fordances of the natural environment and we design objects
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to better “afford” our bodies. While obvious, it is worth stat-

ing that these physical interactions involve contact. Despite

the importance of such interactions, existing representations

of the human body do not explicitly represent, support, or

capture them.

In computer vision, human pose is typically estimated in

isolation from the 3D scene, while in computer graphics 3D

scenes are often scanned and reconstructed without people.

Both the recovery of humans in scenes and the automated

synthesis of realistic people in scenes remain challenging

problems. Automation of this latter case would reduce an-

imation costs and open up new applications in augmented

reality. Here we take a step towards automating the realistic

placement of 3D people in 3D scenes with realistic con-

tact and semantic interactions (Fig. 1). We develop a novel

body-centric approach that relates 3D body shape and pose

to possible world interactions. Learned parametric 3D hu-

man models [2, 28, 39, 46] represent the shape and pose

of people accurately. We employ the SMPL-X [46] model,

which includes the hands and face, as it supports reasoning

about contact between the body and the world.

While such body models are powerful, we make three

key observations. First, human models like SMPL-X [46]

do not explicitly model contact. Second, not all parts of

the body surface are equally likely to be in contact with the

scene. Third, the poses of our body and scene semantics

are highly intertwined. Imagine a person sitting on a chair;

body contact likely includes the buttocks, probably also the

back, and maybe the arms. Think of someone opening a

door; their feet are likely in contact with the floor, and their

hand is in contact with the doorknob.

Based on these observations, we formulate a novel

model, that makes human-scene interaction (HSI) an ex-

plicit and integral part of the body model. The key idea

is to encode HSI in an ego-centric representation built in

SMPL-X. This effectively extends the SMPL-X model to

capture contact and the semantics of HSI in a body-centric

representation. We call this POSA for “Pose with prOxim-

itieS and contActs”. Specifically, for every vertex on the

body and every pose, POSA defines a probabilistic feature

map that encodes the probability that the vertex is in con-

tact with the world and the distribution of semantic labels

associated with that contact.

POSA is a conditional Variational Auto-Encoder

(cVAE), conditioned on SMPL-X vertex positions. We train

on the PROX dataset [22], which contains 20 subjects, fit

with SMPL-X meshes, interacting with 12 real 3D scenes.

We also train POSA using use the scene semantic annota-

tions provided by the PROX-E dataset [65]. Once trained,

given a posed body, we can sample likely contacts and se-

mantic labels for all vertices. We show the value of this

representation with two challenging applications.

First, we focus on automatic scene population as illus-

trated in Fig. 1. That is, given a 3D scene and a body in a

particular pose, where in the scene is this pose most likely?

As demonstrated in Fig. 1 we use SMPL-X bodies fit to

commercial 3D scans of people [45], and then, conditioned

on the body, our cVAE generates a target POSA feature

map. We then search over possible human placements while

minimizing the discrepancy between the observed and tar-

get feature maps. We quantitatively compare our approach

to PLACE [64], which is SOTA on a similar task, and find

that POSA has higher perceptual realism.

Second, we use POSA for monocular 3D human pose

estimation in a 3D scene. We build on the PROX method

[22] that hand-codes contact points, and replace these with

our learned feature map, which functions as an HSI prior.

This automates a heuristic process, while producing lower

pose estimation errors than the original PROX method.

To summarize, POSA is a novel model that intertwines

SMPL-X pose and scene semantics with contact. To the

best of our knowledge, this is the first learned human body

model that incorporates HSI in the model. We think this

is important because such a model can be used in all the

same ways that models like SMPL-X are used but now

with the addition of body-scene interaction. The key nov-

elty is posing HSI as part of the body representation it-

self. Like the original learned body models, POSA pro-

vides a platform that people can build on. To facilitate this,

our model and code are available for research purposes at

https://posa.is.tue.mpg.de.

2. Related Work

Humans & Scenes in Isolation: For scenes [68], most

work focuses on their 3D shape in isolation, e.g. on rooms

devoid of humans [3, 10, 16, 56, 60] or on objects that are

not grasped [8, 11, 13, 61]. For humans, there is extensive

work on capturing [5, 26, 40, 54] or estimating [41, 51] their

3D shape and pose, but outside the context of scenes.

Human Models: Most work represents 3D humans as

body skeletons [26, 54]. However, the 3D body surface is

important for physical interactions. This is addressed by

learned parametric 3D body models [2, 28, 39, 44, 46, 62].

For interacting humans we employ SMPL-X [46], which

models the body with full face and hand articulation.

HSI Geometric Models: We focus on the spatial re-

lationship between a human body and objects it interacts

with. Gleicher [18] uses contact constraints for early work

on motion re-targeting. Lee et al. [34] generate novel scenes

and motion by deformably stitching “motion patches”, com-

prised of scene patches and the skeletal motion in them.

Lin et al. [37] generate 3D skeletons sitting on 3D chairs,

by manually drawing 2D skeletons and fitting 3D skeletons

that satisfy collision and balance constraints. Kim et al.

[30] automate this, by detecting sparse contacts on a 3D ob-

ject mesh and fitting a 3D skeleton to contacts while avoid-
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ing penetrations. Kang et al. [29] reason about the physi-

cal comfort and environmental support of a 3D humanoid,

through force equilibrium. Leimer et al. [35] reason about

pressure, frictional forces and body torques, to generate a

3D object mesh that comfortably supports a given posed 3D

body. Zheng et al. [66] map high-level ergonomic rules to

low-level contact constraints and deform an object to fit a

3D human skeleton for force equilibrium. Bar-Aviv et al.

[4] and Liu et al. [38] use an interacting agent to describe

object shapes through detected contacts [4], or relative dis-

tance and orientation metrics [38]. Gupta et al. [21] esti-

mate human poses “afforded” in a depicted room, by pre-

dicting a 3D scene occupancy grid, and computing support

and penetration of a 3D skeleton in it. Grabner et al. [20]

detect the places on a 3D scene mesh where a 3D human

mesh can sit, modeling interaction likelihood with GMMs

and proximity and intersection metrics. Zhu et al. [67] use

FEM simulations for a 3D humanoid, to learn to estimate

forces, and reasons about sitting comfort.

Several methods focus on dynamic interactions [1, 25,

47]. Ho et al. [25] compute an “interaction mesh” per

frame, through Delaunay tetrahedralization on human joints

and unoccluded object vertices; minimizing their Laplacian

deformation maintains spatial relationships. Others follow

an object-centric approach [1, 47]. Al-Asqhar et al. [1] sam-

ple fixed points on a 3D scene, using proximity and “cov-

erage” metrics, and encode 3D human joints as transforma-

tions w.r.t. these. Pirk et al. [47] build functional object

descriptors, by placing “sensors” around and on 3D objects,

that “sense” 3D flow of particles on an agent.

HSI Data-driven Models: Recent work takes a data-

driven approach. Jiang et al. [27] learn to estimate human

poses and object affordances from an RGB-D scene, for

3D scene label estimation. SceneGrok [52] learns action-

specific classifiers to detect the likely scene places that “af-

ford” a given action. Fisher et al. [17] use SceneGrok and

interaction annotations on CAD objects, to embed noisy

3D room scans to CAD mesh configurations. PiGraphs

[53] maps pairs of {verb-object} labels to “interaction snap-

shots”, i.e. 3D interaction layouts of objects and a human

skeleton. Chen et al. [12] map RGB images to “interaction

snapshots”, using Markov Chain Monte Carlo with simu-

lated annealing to optimize their layout. iMapper [42] maps

RGB videos to dynamic “interaction snapshots”, by learn-

ing “scenelets” on PiGraphs data and fitting them to videos.

Phosa [63] infers spatial arrangements of humans and ob-

jects from a single image. Cao et al. [9] map an RGB scene

and 2D pose history to 3D skeletal motion, by training on

video-game data. Li et al. [36] follow [59] to collect 3D

human skeletons consistent with 2D/3D scenes of [55, 59],

and learn to predict them from a color and/or depth image.

Corona et al. [14] use a graph attention model to predict

motion for objects and a human skeleton, and their evolv-

ing spatial relationships.

Another HSI variant is Hand-Object Interaction (HOI);

we discuss only recent work [7, 15, 57, 58]. Brahmbhatt

et al. [7] capture fixed 3D hand-object grasps, and learn

to predict contact; features based on object-to-hand mesh

distances outperform skeleton-based variants. For grasp

generation, 2-stage networks are popular [43]. Taheri et

al. [57] capture moving SMPL-X [46] humans grasping

objects, and predict MANO [50] hand grasps for object

meshes, whose 3D shape is encoded with BPS [48]. Corona

et al. [15] generate MANO grasping given an object-only

RGB image; they first predict the object shape and rough

hand pose (grasp type), and then they refine the latter with

contact constraints [23] and an adversarial prior.

Closer to us, PSI [65] and PLACE [64] populate 3D

scenes with SMPL-X [46] humans. Zhang et al. [65] train

a cVAE to estimate humans from a depth image and scene

semantics. Their model provides an implicit encoding of

HSI. Zhang et al. [64], on the other hand, explicitly encode

the scene shape and human-scene proximal relations with

BPS [48], but do not use semantics. Our key difference to

[64, 65] is our human-centric formulation; inherently this

is more portable to new scenes. Moreover, instead of the

sparse BPS distances of [64], we use dense body-to-scene

contact, and also exploit scene semantics like [65].

3. Method

3.1. Human Pose and Scene Representation

Our training data corpus is a set of n pairs of 3D meshes

M = {{Mb,1,Ms,1}, {Mb,2,Ms,2}, . . . , {Mb,n,Ms,n}}

comprising body meshes Mb,i and scene meshes Ms,i. We

drop the index, i, for simplicity when we discuss meshes in

general. These meshes approximate human body surfaces

Sb and scene surfaces Ss. Scene meshesMs = (Vs, Fs, Ls)
have a varying number of vertices Ns = |Vs| and trian-

gle connectivity Fs to model arbitrary scenes. They also

have per-vertex semantic labels Ls. Human meshes are

represented by SMPL-X [46], i.e. a differentiable function

M(θ, β, ψ) : R|θ|×|β|×|ψ| → R
(Nb×3) parameterized by

pose θ, shape β and facial expressions ψ. The pose vec-

tor θ = (θb, θf , θlh, θrh) is comprised of body, θb ∈ R
66,

and face parameters, θf ∈ R
9, in axis-angle representation,

while θlh, θrh ∈ R
12 parameterize the poses of the left and

right hands respectively in a low-dimensional pose space.

The shape parameters, β ∈ R
10, represent coefficients in

a low-dimensional shape space learned from a large cor-

pus of human body scans. The joints, J(β), of the body

in the canonical pose are regressed from the body shape.

The skeleton has 55 joints, consisting of 22 body joints,

30 hand joints, and 3 head joints (neck and eyes). The

mesh is posed using this skeleton and linear blend skinning.
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Figure 2: Illustration of our proposed representation. From

left to right: An example of a SMPL-X mesh Mb in a scene

Ms, contact fc, and scene semantics fs on it. For fc, blue

means the body vertex is likely in contact. For fs, the colors

correspond to the scene semantics.

Body meshes Mb = (Vb, Fb) have a fixed topology with

Nb = |Vb| = 10475 vertices Vb ∈ R
(Nb×3) and triangles

Fb, i.e. all human meshes are in correspondence. For more

details, we refer the reader to [46].

3.2. POSA Representation for HSI

We encode the relationship between the human mesh

Mb = (Vb, Fb) and the scene mesh Ms = (Vs, Fs, Ls) in

an egocentric feature map f that encodes per-vertex features

on the SMPL-X mesh Mb. We define f as:

f : (Vb,Ms) → [fc, fs] , (1)

where fc is the contact label and fs is the semantic label of

the contact point. Nf is the feature dimension.

For each vertex i on the body, V ib , we find its closest

scene point Ps = argminPs∈Ss
‖Ps − V ib ‖. Then we com-

pute the distance fd:

fd = ‖Ps − V ib ‖ ∈ R. (2)

Given fd, we can compute whether a V ib is in contact with

the scene or not, with fc:

fc =

{

1 fd ≤ Contact Threshold,

0 fd > Contact Threshold.
(3)

The contact threshold is chosen empirically to be 5 cm. The

semantic label of the contacted surface fs is a one-hot en-

coding of the object class:

fs = {0, 1}No , (4)

where No is the number of object classes. The sizes of fc,

fs, and f are 1, 40 and 41 respectively. All the features are

computed once offline to speed training up. A visualization

of the proposed representation is in Fig. 2.

3.3. Learning

Our goal is to learn a probabilistic function from body

pose and shape to the feature space of contact and seman-

tics. That is, given a body, we want to sample labelings of

the vertices corresponding to likely scene contacts and their

corresponding semantic label. Note that this function, once

learned, only takes the body as input and not a scene – it is

a body-centric representation.

To train this we use the PROX [22] dataset, which con-

tains bodies in 3D scenes. We also use the scene semantic

annotations from the PROX-E dataset [65]. For each body

mesh Mb, we factor out the global translation and rotation

Ry andRz around the y and z axes. The rotationRx around

the x axis is essential for the model to differentiate between,

e.g., standing up and lying down.

Given pose and shape parameters in a given training

frame, we compute aMb =M(θ, β, ψ). This gives vertices

Vb from which we compute the feature map that encodes

whether each V ib is in contact with the scene or not, and the

semantic label of the scene contact point Ps.

We train a conditional Variational Autoencoder (cVAE),

where we condition the feature map on the vertex positions,

Vb, which are a function of the body pose and shape param-

eters. Training optimizes the encoder and decoder parame-

ters to minimize Ltotal using gradient descent:

Ltotal = α ∗ LKL + Lrec, (5)

LKL = KL(Q(z|f, Vb)||p(z)), (6)

Lrec
(

f, f̂
)

= λc ∗
∑

i

BCE
(

fc
i, f̂c

i
)

+ λs ∗
∑

i

CCE
(

f is, f̂s
i
)

, (7)

where f̂c and f̂s are the reconstructed contact and seman-

tic labels, KL denotes the Kullback Leibler divergence, and

Lrec denotes the reconstruction loss. BCE and CCE are

the binary and categorical cross entropies respectively. The

α is a hyperparameter inspired by Gaussian β-VAEs [24],

which regularizes the solution; here α = 0.05. Lrec en-

courages the reconstructed samples to resemble the input,

while LKL encourages Q(z|f, Vb) to match a prior distri-

bution over z, which is Gaussian in our case. We set the

values of λc and λs to 1.

Since f is defined on the vertices of the body mesh Mb,

this enables us to use graph convolution as our building

block for our VAE. Specifically, we use the Spiral Convolu-

tion formulation introduced in [6, 19]. The spiral convolu-

tion operator for node i in the body mesh is defined as:

f ik = γk

(

‖j∈S(i,l)f
j
k−1

)

, (8)

where γk denotes layer k in a multi-layer perceptron (MLP)

network, and ‖ is a concatenation operation of the features
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Figure 3: cVAE architecture. For each vertex on the body

mesh, we concatenate the vertex positions xi, yi, zi, the

contact label fc, and the corresponding semantic scene la-

bel fs. The latent vector z is concatenated to the vertex

positions, and the result passes to the decoder which recon-

structs the input features f̂c, f̂s.

of neighboring nodes, S(i, l). The spiral sequence S(i, l)
is an ordered set of l vertices around the central vertex i.

Our architecture is shown in Fig. 3. More implementation

details are included in the Sup. Mat. For details on selecting

and ordering vertices, please see [19].

4. Experiments

We perform several experiments to investigate the effec-

tiveness and usefulness of our proposed representation and

model under different use cases, namely generating HSI

features, automatically placing 3D people in scenes, and

improving monocular 3D human pose estimation.

4.1. Random Sampling

We evaluate the generative power of our model by sam-

pling different feature maps conditioned on novel poses us-

ing our trained decoder P (fGen|z, Vb), where z ∼ N (0, I)
and fGen is the randomly generated feature map. This is

equivalent to answering the question: “In this given pose,

which vertices on the body are likely to be in contact with

the scene, and what object would they contact?” Randomly

generated samples are shown in Fig. 4.

We observe that our model generalizes well to various

poses. For example, notice that when a person is standing

with one hand pointing forward, our model predicts the feet

and the hand to be in contact with the scene. It also predicts

the feet are in contact with the floor and hand is in contact

with the wall. However this changes for the examples when

a person is in a lying pose. In this case, most of the vertices

from the back of the body are predicted to be in contact

(blue color) with a bed (light purple) or a sofa (dark green).

These features are predicted from the body alone; there

is no notion of “action” here. Pose alone is a powerful pre-

dictor of interaction. Since the model is probabilistic, we

can sample many possible feature maps for a given pose.

Figure 4: Random samples from our trained cVAE. For each

example (image pair) we show from left to right: fc and fs.

The color code is at the bottom. For fc, blue means contact,

while pink means no contact. For fs, each scene category

has a different color.

4.2. Affordances: Putting People in Scenes

Given a posed 3D body and a 3D scene, can we place the

body in the scene so that the pose makes sense in the context

of the scene? That is does the pose match the affordances

of the scene [20, 30, 32]? Specifically, given a scene, Ms,

semantic labels of objects present, and a body mesh, Mb,

our method finds where in Ms this given pose is likely to

happen. We solve this problem in two steps.

First, given the posed body, we use the decoder of our

cVAE to generate a feature map by sampling P (fGen|z, Vb)
as in Sec. 4.1. Second, we optimize the objective function:

E(τ, θ0, θ) = Lafford + Lpen + Lreg , (9)

where τ is the body translation, θ0 is the global body orien-

tation and θ is the body pose. The afforance loss Lafford =

λ1 ∗ ||fGenc · fd||
2
2 + λ2 ∗

∑

i

CCE
(

fGen
i
s, f

i
s

)

, (10)

fd and fs are the observed distance and semantic labels,

which are computed using Eq. 2 and Eq. 4 respectively.

fGenc and fGens are the generated contact and semantic la-

bels, and · denotes dot product. λ1 and λ2 are 1 and 0.01
respectively. Lpen is a penetration penalty to discourage the
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Figure 5: (Top): SMPL-X meshes automatically placed in

a real scene from the PROX test set. The body shapes and

poses here are drawn from the PROX test set and were not

used in training. (Bottom): SMPL-X meshes automatically

placed in a synthetic scene.

body from penetrating the scene:

Lpen = λpen ∗
∑

fi

d
<0

(

f id
)2
. (11)

λpen = 10. Lreg is a regularizer that encourages the esti-

mated pose to remain close to the initial pose θinit of Mb:

Lreg = λreg ∗ ||θ − θinit||
2
2. (12)

Although the body pose is given, we optimize over it, al-

lowing the θ parameters to change slightly since the given

pose θinit might not be well supported by the scene. This

allows for small pose adjustment that might be necessary to

better fit the body into the scene. λreg = 100.

The input posed mesh, Mb, can come from any source.

For example, we can generate random SMPL-X meshes us-

ing VPoser [46] which is a VAE trained on a large dataset of

human poses. More interestingly, we use SMPL-X meshes

fit to realistic Renderpeople scans [45] (see Fig. 1).

We tested our method with both real (scanned) and syn-

thetic (artist generated) scenes. Example bodies optimized

to fit in a real scene from the PROX [22] test set are shown

in Fig. 5 (top); this scene was not used during training.

Note that people appear to be interacting naturally with the

Figure 6: Unmodified clothed bodies (from Renderpeople)

automatically placed in real scenes from the Replica dataset.

scene; that is, their pose matches the scene context. Figure

5 (bottom) shows bodies automatically placed in an artist-

designed scene (Archviz Interior Rendering Sample, Epic

Games)1. POSA goes beyond previous work [20, 30, 65] to

produce realistic human-scene interactions for a wide range

of poses like lying down and reaching out.

While the poses look natural in the above results, the

SMPL-X bodies look out of place in realistic scenes. Con-

sequently, we would like to render realistic people instead,

but models like SMPL-X do not support realistic cloth-

ing and textures. In contrast, scans from companies like

Renderpeople (Renderpeople GmbH, Köln) are realistic,

but have a different mesh topology for every scan. The con-

sistent topology of a mesh like SMPL-X is critical to learn

the feature model.

Clothed Humans: We address this issue by using

SMPL-X fits to clothed meshes from the AGORA dataset

[45]. We then take the SMPL-X fits and minimize an en-

ergy function similar to Eq. 9 with one important change.

We keep the pose, θ, fixed:

E(τ, θ0) = Lafford + Lpen . (13)

Since the pose does not change, we just replace the

SMPL-X mesh with the original clothed mesh after the op-

timization converges; see Sup. Mat. for details.

Qualitative results for real scenes (Replica dataset [56])

are shown in Fig. 6, and for a synthetic scene in Fig. 1. More

results are shown in Sup. Mat. and in our video.

4.2.1 Evaluation

We quantiatively evaluate POSA with two perceptual stud-

ies. In both, subjects are shown a pair of two rendered

scenes, and must choose the one that best answers the ques-

tion “Which one of the two examples has more realistic (i.e.

natural and physically plausible) human-scene interaction?”

We also evaluate physical plausibility and diversity.

1https://docs.unrealengine.com/en-US/Resources/

Showcases/ArchVisInterior/index.html
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Generation ↑ PROX GT ↓

PLACE [64] 48.5% 51.5%

POSA (contact only) 46.9% 53.1%

POSA (contact + semantics) 49.1% 50.1%

POSA-clothing (contact) 55.0% 45.0%

POSA-clothing (semantics) 60.6% 39.4%

Table 1: Comparison to PROX [22] ground truth. Subjects

are shown pairs of a generated 3D human-scene interaction

and PROX ground truth (GT), and must chose the most real-

istic one. A higher percentage means that subjects deemed

this method more realistic.

POSA-variant ↑ PLACE ↓

POSA (contact only) 60.7% 39.3%

POSA (contact + semantics) 61.0% 39.0%

Table 2: POSA compared to PLACE for 3D human-scene

interaction generation. See Tab. 1 caption.

Comparison to PROX ground truth: We follow the

protocol of Zhang et al. [64] and compare our results to ran-

domly selected examples from PROX ground truth. We take

4 real scenes from the PROX [22] test set, namely MPH16,

MPH1Library, N0SittingBooth and N3OpenArea. We take

100 SMPL-X bodies from the AGORA [45] dataset, corre-

sponding to 100 different 3D scans from Renderpeople. We

take each of these bodies and sample one feature map for

each, using our cVAE. We then automatically optimize the

placement of each sample in all the scenes, one body per

scene. For unclothed bodies (Tab. 1, rows 1-3), this opti-

mization changes the pose slightly to fit the scene (Eq. 9).

For clothed bodies (Tab. 1, rows 4-5), the pose is kept fixed

(Eq. 13). For each variant, this optimization results in 400
unique body-scene pairs. We render each 3D human-scene

interaction from 2 views so that subjects are able to get a

good sense of the 3D relationships from the images. Using

Amazon Mechanical Turk (AMT), we show these results

to 3 different subjects. This results in 1200 unique ratings.

The results are shown in Tab. 1. POSA (contact only) and

the state-of-the-art method PLACE [64] are both almost in-

distinguishable from the PROX ground truth. However, the

proposed POSA (contact + semantics) (row 3) outperforms

both POSA (contact only) (row 2) and PLACE [64] (row 1),

thus modeling scene semantics increases realism. Lastly,

the rendering of high quality clothed meshes (bottom two

rows) influences the perceived realism significantly.

Comparison between POSA and PLACE: We follow

the same protocol as above, but this time we directly com-

pare POSA and PLACE. The results are shown in Tab. 2.

Again, we find that adding semantics improves realism.

There are likely several reasons that POSA is judged more

realistic than PLACE. First, POSA employs denser contact

information across the whole SMPL-X body surface, com-

Non-Collision ↑ Contact ↑

PSI [65] 0.94 0.99

PLACE [64] 0.98 0.99

POSA (contact only) 0.97 1.0

POSA (contact + semantics) 0.97 0.99

Table 3: Evaluation of the physical plausibility metric. Ar-

rows indicate that higher scores are better.

pared to PLACE’s sparse distance information through its

BPS representation. Second, POSA uses a human-centric

formulation, as opposed to PLACE’s scene-centric one, and

this can help generalize across scenes better. Third, POSA

uses semantic features that help bodies do the right thing

in the scene, while PLACE does not. When human gener-

ation is imperfect, inappropriate semantics may make the

result seem worse. Fourth, the two methods are solving

slightly different tasks. PLACE generates a posed body

mesh for a given scene, while our method samples one from

the AGORA dataset and places it in the scene using a gen-

erated POSA feature map. While this gives PLACE an

advantage, because it can generate an appropriate pose for

the scene, it also means that it could generate an unnatu-

ral pose, hurting realism. In our case, the poses are always

“valid” by construction but may not be appropriate for the

scene. Note that, while more realistic than prior work, the

results are not always fully natural; sometimes people sit in

strange places or lie where they usually would not.

Physical Plausibility: We take 1200 bodies from the

AGORA [45] dataset and place all of them in each of the

4 test scenes of PROX, leading to a total of 4800 samples,

following [64, 65]. Given a generated body mesh, Mb, a

scene mesh, Ms, and a scene signed distance field (SDF)

that stores distances dj for each voxel j, we compute the

following scores, defined by Zhang et al. [65]: (1) the non-

collision score for eachMb, which is the ratio of body mesh

vertices with positive SDF values divided by the total num-

ber of SMPL-X vertices, and (2) the contact score for each

Mb, which is 1 if at least one vertex of Mb has a non-

positive value. We report the mean non-collision score and

mean contact score over all 4800 samples in Tab. 3; higher

values are better for both metrics. POSA and PLACE are

comparable under these metrics.

Diversity Metric: Using the same 4800 samples, we

compute the diversity metric from [65]. We perform K-

means (k = 20) clustering of the SMPL-X parameters of

all sampled poses, and report: (1) the entropy of the clus-

ter sizes, and (2) the cluster size, i.e. the average distance

between the cluster center and the samples belonging in it.

See Tab. 4; higher values are better. While PLACE gener-

ates poses and POSA samples them from a database, there

is little difference in diversity.

14714



Entropy ↑ Cluster Size ↑

PSI [65] 2.97 2.53

PLACE [64] 2.91 2.72

POSA (contact only) 2.94 2.28

POSA (contact + semantics) 2.92 2.27

Table 4: Evaluation of the diversity metric. Arrows indicate

that higher scores are better.

4.3. Monocular Pose Estimation with HSI

Traditionally, monocular pose estimation methods focus

only on the body and ignore the scene. Hence, they tend to

generate bodies that are inconsistent with the scene. Here,

we compare directly with PROX [22], which adds contact

and penetration constraints to the pose estimation formu-

lation. The contact constraint snaps a fixed set of contact

points on the body surface to the scene, if they are “close

enough”. In PROX, however, these contact points are man-

ually selected and are independent of pose.

We replace the hand-crafted contact points of PROX

with our learned feature map. We fit SMPL-X to RGB

image features such that the contacts are consistent with

the 3D scene and its semantics. Similar to PROX, we

build on SMPLify-X [46]. Specifically, SMPLify-X op-

timizes SMPL-X parameters to minimize an objective

function of multiple terms: the re-projection error of

2D joints, priors and physical constraints on the body;

ESMPLify-X(β, θ, ψ, τ) =

EJ + λθEθ + λαEα + λβEβ + λPEP (14)

where θ represents the pose parameters of the body, face

(neck, jaw) and the two hands, θ = {θb, θf , θh}, τ denotes

the body translation, and β the body shape. EJ is a re-

projection loss that minimizes the difference between 2D

joints estimated from the RGB image I and the 2D pro-

jection of the corresponding posed 3D joints of SMPL-X.

Eα(θb) =
∑

i∈(elbows,knees) exp(θi) is a prior penalizing

extreme bending only for elbows and knees. The term EP

penalizes self-penetrations. For details please see [46].

We turn off the PROX contact term and optimize Eq. 14

to get a pose matching the image observations and roughly

obeying scene constraints. Given this rough body pose,

which is not expected to change significantly, we sample

features from P (fGen|z, Vb) and keep these fixed. Finally,

we refine by minimizing E(β, θ, ψ, τ,Ms) =

ESMPLify-X + ||fGenc · fd||+ Lpen (15)

where ESMPLify-X represents the SMPLify-X energy term as

defined in Eq. 14, fGenc are the generated contact labels,

fd is the observed distance, and Lpen represents the body-

scene penetration loss as in Eq. 11. We compare our re-

sults to standard PROX in Tab. 5. We also show the results

(mm) PJE ↓ V2V ↓ p.PJE ↓ p.V2V ↓

RGB 220.27 218.06 73.24 60.80

PROX 167.08 166.51 71.97 61.14

POSA 154.33 154.84 73.17 63.23

Table 5: Pose estimation results for PROX and POSA. PJE

is the mean per-joint error and V2V is the mean vertex-to-

vertex Euclidean distance between meshes (after only pelvis

joint alignment). The prefix “p” means that the error is com-

puted after Procrustes alignment to the ground truth; this

hides many errors, making the methods comparable.

of RGB-only baseline introduced in PROX for reference.

Using our learned feature map improves accuracy over the

PROX’s heuristically determined contact constraints.

5. Conclusions

Traditional 3D body models, like SMPL-X, model the a

priori probability of possible body shapes and poses. We ar-

gue that human poses in isolation from the scene, make lit-

tle sense. We introduce POSA, which effectively upgrades

a 3D human body model to explicitly represent possible

human-scene interactions. Our novel, body-centric, repre-

sentation encodes the contact and semantic relationships be-

tween the body and the scene. We show that this is useful

and supports new tasks. For example, we consider placing

a 3D human into a 3D scene. Given a scan of a person with

a known pose, POSA allows us to search the scene for loca-

tions where the pose is likely. This enables us to populate

empty 3D scenes with higher realism than the state of the

art. We also show that POSA can be used for estimating hu-

man pose from an RGB image, and that the body-centered

HSI representation improves accuracy. In summary, POSA

is a good step towards a richer model of human bodies that

goes beyond pose to support the modeling of HSI.

Limitations: POSA requires an accurate scene SDF; a

noisy scene mesh can lead to penetration between the body

and scene. POSA focuses on a single body mesh only. Pen-

etration between clothing and the scene is not handled and

multiple bodies are not considered. Optimizing the place-

ment of people in scenes is sensitive to initialization and is

prone to local minima. A simple user interface would ad-

dress this, letting naive users roughly place bodies, and then

POSA would automatically refine the placement.
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