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Abstract

Visual Place Recognition is a challenging task for

robotics and autonomous systems, which must deal with

the twin problems of appearance and viewpoint change in

an always changing world. This paper introduces Patch-

NetVLAD, which provides a novel formulation for combining

the advantages of both local and global descriptor methods

by deriving patch-level features from NetVLAD residuals.

Unlike the fixed spatial neighborhood regime of existing

local keypoint features, our method enables aggregation

and matching of deep-learned local features defined over

the feature-space grid. We further introduce a multi-scale

fusion of patch features that have complementary scales

(i.e. patch sizes) via an integral feature space and show that

the fused features are highly invariant to both condition (sea-

son, structure, and illumination) and viewpoint (translation

and rotation) changes. Patch-NetVLAD achieves state-of-

the-art visual place recognition results in computationally

limited scenarios, validated on a range of challenging real-

world datasets, including winning the Facebook Mapillary

Visual Place Recognition Challenge at ECCV2020. It is

also adaptable to user requirements, with a speed-optimised

version operating over an order of magnitude faster than

the state-of-the-art. By combining superior performance

with improved computational efficiency in a configurable

framework, Patch-NetVLAD is well suited to enhance both

stand-alone place recognition capabilities and the overall

performance of SLAM systems.

1. Introduction

Visual Place Recognition (VPR) is a key prerequisite for

many robotics and autonomous system applications, both as

a stand-alone positioning capability when using a prior map

and as a key component of full Simultaneous Localization

And Mapping (SLAM) systems. The task can prove challeng-

ing because of major changes in appearance, illumination

and even viewpoint, and is therefore an area of active re-

search in both the computer vision [3, 19, 35, 43, 79, 81, 82]
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Figure 1. Patch-NetVLAD is a novel condition and viewpoint

invariant visual place recognition system that produces a similarity

score between two images through local matching of locally-global

descriptors extracted from a set of patches in the feature space

of each image. Furthermore, by introducing an integral feature

space, we are able to derive a multi-scale approach that fuses

multiple patch sizes. This is in contrast with the original NetVLAD

paper, which performs an appearance only aggregation of the whole

feature space into a single global descriptor.

and robotics [10, 11, 12, 27, 39, 45] communities.

VPR is typically framed as an image retrieval task [45,

59, 76, 24], where, given a query image, the most sim-

ilar database image (alongside associated metadata such

as the camera pose) is retrieved. There are two com-

mon ways to represent the query and reference images:

using global descriptors which describe the whole im-

age [3, 79, 27, 59, 10, 58, 82], or using local descriptors

that describe areas of interest [20, 52, 18, 23, 14]. Global

descriptor matching is typically performed using nearest

neighbor search between query and reference images. These

global descriptors typically excel in terms of their robust-

ness to appearance and illumination changes, as they are

directly optimized for place recognition [3, 59]. Conversely,

local descriptors are usually cross-matched, followed by

geometric verification. Local descriptor techniques priori-
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tize spatial precision, predominantly on a pixel-scale level,

using a fixed-size spatial neighborhood to facilitate highly-

accurate 6-DoF pose estimation. Given the complementary

strengths of local and global approaches, there has been little

research [9, 65, 76] attempting to combine them. The novel

Patch-NetVLAD system proposed here combines the mutual

strengths of local and global approaches while minimizing

their weaknesses.

To achieve this goal, we make a number of contributions

(see Fig. 1): First, we introduce a novel place recognition sys-

tem that generates a similarity score between an image pair

through a spatial score obtained through exhaustive matching

of locally-global descriptors. These descriptors are extracted

for densely-sampled local patches within the feature space

using a VPR-optimized aggregation technique (in this case

NetVLAD [3]). Second, we propose a multi-scale fusion

technique that generates and combines these hybrid descrip-

tors of different sizes to achieve improved performance over

a single scale approach. To minimize the computational

growth implications of moving to a multi-scale approach,

we develop an integral feature space (analogous to integral

images) to derive the local features for varying patch sizes.

Together these contributions provide users with flexibility

based on their task requirements: our final contribution is

the demonstration of a range of easily implemented system

configurations that achieve different performance and com-

putational balances, including a performance-focused con-

figuration that achieves state-of-the-art recall performance

when tight error thresholds are required, a balanced config-

uration that performs almost as well as the state-of-the-art

while being 3× faster than SuperGlue and 28× faster than

DELG, and a speed-focused configuration that is at least an

order of magnitude faster than the state-of-the-art.

We extensively evaluate the versatility of our proposed

system on a large number of well-known datasets [71, 46, 80,

79, 82] that capture all challenges present in VPR. We com-

pare Patch-NetVLAD with several state-of-the-art global fea-

ture descriptor methods [3, 59, 79], and the recent global and

local descriptor DELG [9]. We additionally introduce new

SuperPoint [18] and SuperGlue [62]-enabled VPR pipelines

as competitive local descriptor baselines. Patch-NetVLAD

outperforms the global feature descriptor methods by large

margins (from 6% to 330% relative increase) across all

datasets, and achieves superior performance (up to a rel-

ative increase of 54%) when compared to SuperGlue. Patch-

NetVLAD outperforms DELG [9] in some datasets while

performing worse in others; however, the order-of-magnitude

difference in compute speed makes Patch-NetVLAD much

more suitable in practical scenarios. Patch-NetVLAD won

the Facebook Mapillary Long-term Localization Challenge

as part of the ECCV 2020 Workshop on Long-Term Vi-

sual Localization. To characterise the system’s proper-

ties in detail, we conduct numerous ablation studies show-

casing the role of the individual components comprising

Patch-NetVLAD, particularly the robustness of the system

to changes in various key parameters. To foster future re-

search, we make our code available for research purposes:

https://github.com/QVPR/Patch-NetVLAD.

2. Related Work

Global Image Descriptors: Notable early global im-

age descriptor approaches include aggregation of local key-

point descriptors either through a Bag of Words (BoW)

scheme [67, 16], Fisher Vectors (FV) [37, 56] or Vector of

Locally Aggregated Descriptors (VLAD) [38, 2]. Aggrega-

tion can be based on either sparse keypoint locations [67, 38]

or dense sampling of an image grid [79]. Re-formulating

these methods through deep learning-based architectures led

to NetVLAD [3], NetBoW [48, 54] and NetFV [48]. More

recent approaches include ranking-loss based learning [59],

novel pooling [58], contextual feature reweighting [40], large

scale re-training [82], semantics-guided feature aggrega-

tion [28, 64, 75], use of 3D [53, 81, 43], additional sen-

sors [32, 55, 22], sequences [25, 82], and image appearance

translation [1, 57]. Place matches obtained through global

descriptor matching are often re-ranked using sequential in-

formation [26, 85, 49], query expansion [31, 13], geometric

verification [41, 27, 52] and feature fusion [83, 86]. Dis-

tinct from existing approaches, this paper introduces Patch-

NetVLAD, which reverses the local-to-global process of

image description by deriving multi-scale patch features

from a global descriptor, NetVLAD.

Local Keypoint Descriptors: Local keypoint methods

are often used to re-rank initial place match candidate lists

produced by a global approach [23, 74, 61]. Traditional hand-

crafted local feature methods such as SIFT [44], SURF [6]

and ORB [60], and more recent deep-learned local features

like LIFT [84], DeLF [52], SuperPoint [18] and D2Net [20],

have been extensively employed for VPR [52, 9, 17], visual

SLAM [50] and 6-DoF localization [63, 77, 20, 61]. The two

most common approaches of using local features for place

recognition are: 1) local aggregation to obtain global image

descriptors [52] and 2) cross-matching of local descriptors

between image pairs [74].

Several learning-based techniques have been proposed for

spatially-precise keypoint matching. These include a unified

framework for detection, description and orientation estima-

tion [84]; a ‘describe-then-detect’ strategy [20]; multi-layer

explicit supervision [21]; scale-aware negative mining [68];

and contextual similarity-based unsupervised training [69].

However, the majority of these learning-based methods aim

for 3D pose estimation, optimizing keypoint-level descrip-

tors and nearest neighbor matching. Local descriptors can

be further improved by utilizing the larger spatial context,

especially beyond the CNN’s inherent hierarchical feature

pyramid, a key motivation for our approach.
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Local Region/Patch Descriptors: [72] proposed Conv-

Net Landmarks for representing and cross-matching large

image regions, explicitly derived from Edge Boxes [91]. [12]

discovered landmarks implicitly from CNN activations using

mean activation energy of regions defined as ‘8-connected’

feature locations. [8] composed region features from CNN

activation tensors by concatenating individual spatial ele-

ments along the channel dimension. However, these off-

the-shelf CNNs or handcrafted region description [87] ap-

proaches are not optimized for place recognition, unlike the

use of the VPR-trained network in this work.

Learning region descriptors has been studied for specific

tasks [65, 47] as well as independently on image patches [70].

In the context of VPR, [29] designed a regions-based self-

supervised learning mechanism to improve global descrip-

tors using image-to-region matching during training. [89]

modeled relations between regions by concatenating local

descriptors to learn an improved global image descriptor

based on K-Max pooling rather than sum [4] or max pooling

(R-MAC) [78]. [11] proposed a ‘context-flexible’ attention

mechanism for variable-size regions. However, the learned

attention masks were only employed for viewpoint-assumed

place recognition and could potentially be used for region

selection in our proposed VPR pipeline. [76] proposed R-

VLAD for describing regions extracted through a trained

landmark detector, and combined it with selective match ker-

nels to improve global descriptor matching, thus doing away

with cross-region comparisons. [39] proposed RegionVLAD

where region features were defined using average activations

of connected components within different layers of CNN

feature maps. These region features were then separately ag-

gregated as a VLAD representation. Unlike [39, 76], we re-

move this separate step by generating region-level VLAD de-

scriptors through NetVLAD, thus reusing the VPR-relevant

learned cluster membership of spatial elements.

Existing techniques for multi-scale approaches typically

fuse information at the descriptor level, which can lead to

loss of complementary or discriminative cues [83, 86, 10, 51,

30, 90] due to pooling, or increased descriptor sizes due to

concatenation [42, 89, 7, 8]. Distinct from these methods, we

consider multi-scale fusion at the final scoring stage, which

enables parallel processing with associated speed benefits.

3. Methodology

Patch-NetVLAD ultimately produces a similarity score

between a pair of images, measuring the spatial and appear-

ance consistency between these images. Our hierarchical

approach first uses the original NetVLAD descriptors to re-

trieve the top-k (we use k = 100 in our experiments) most

likely matches given a query image. We then compute a new

type of patch descriptor using an alternative to the VLAD

layer used in NetVLAD [3], and perform local matching of

patch-level descriptors to reorder the initial match list and
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Figure 2. Proposed algorithm schematic. Patch-NetVLAD takes

as input an initial list of most likely reference matches to a query

image, ranked using NetVLAD descriptor comparisons. For top-

ranked candidate images, we compute new locally-global patch-

level descriptors at multiple scales, perform local cross-matching of

these descriptors across query and candidate images with geometric

verification, and use these match scores to re-order the initial list,

producing the final image retrievals.

refine the final image retrievals. This combined approach

minimizes the additional overall computation cost incurred

by cross matching patch features without sacrificing recall

performance at the final image retrieval stage. An overview

of the complete pipeline can be found in Fig. 2.

3.1. Original NetVLAD Architecture

The original NetVLAD [3] network architecture uses

the Vector-of-Locally-Aggregated-Descriptors (VLAD) ap-

proach to generate a condition and viewpoint invariant em-

bedding of an image by aggregating the intermediate feature

maps extracted from a pre-trained Convolutional Neural Net-

work (CNN) used for image classification [66]. Specifically,

let fθ : I → R
H×W×D be the base architecture which

given an image I , outputs a H ×W ×D dimensional fea-

ture map F (e.g. the conv5 layer for VGG). The original

NetVLAD architecture aggregates these D-dimensional fea-

tures into a K × D-dimensional matrix by summing the

residuals between each feature xi ∈ R
D and K learned

cluster centers weighted by soft-assignment. Formally, for

N × D-dimensional features, let the VLAD aggregation

layer fVLAD : RN×D → R
K×D be given by

fVLAD(F )(j, k) =
N
∑

i=1

āk(xi)(xi(j)− ck(j)), (1)

where xi(j) is the jth element of the ith descriptor, āk is

the soft-assignment function and ck denotes the kth cluster

center. After VLAD aggregation, the resultant matrix is
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then projected down into a dimensionality reduced vector

using a projection layer fproj : R
K×D → R

Dproj by first

applying intra(column)-wise normalization, unrolling into

a single vector, L2-normalizing in its entirety and finally

applying PCA (learned on a training set) with whitening and

L2-normalization. Refer to [3] for more details.

We use this feature-map aggregation method to extract

descriptors for local patches within the whole feature map

(N ≪ H×W ) and perform cross-matching of these patches

at multiple scales between a query/reference image pair to

generate the final similarity score used for image retrieval.

This is in contrast to the original NetVLAD paper, which sets

N = H ×W and aggregates all of the descriptors within

the feature map to generate a global image descriptor.

3.2. Patch­level Global Features

A core component of our system revolves around extract-

ing global descriptors for densely sampled sub-regions (in

the form of patches) within the full feature map. We extract

a set of dx × dy patches {Pi, xi, yi}
np

i=1 with stride sp from

the feature map F ∈ R
H×W×D, where the total number of

patches is given by

np =

⌊

H − dy

sp
+ 1

⌋

∗

⌊

W − dx

sp
+ 1

⌋

, dy, dx ≤ H,W

(2)

and Pi ∈ R
(dx×dy)×D and xi, yi are the set of patch fea-

tures and the coordinate of the center of the patch within the

feature map, respectively. While our experiments suggest

that square patches yielded the best generalized performance

across a wide range of environments, future work could con-

sider different patch shapes, especially in specific circum-

stances (e.g. environments with different texture frequencies

in the vertical and horizontal directions).

For each patch, we subsequently extract a descrip-

tor yielding the patch descriptor set {fi}
np

i=1 where fi =
fproj (fVLAD (Pi)) ∈ R

Dproj uses the NetVLAD aggregation

and projection layer on the relevant set of patch features. In

all experiments we show how varying the degree of dimen-

sionality reduction on the patch features using PCA can be

used to achieve a user-preferred balance of computation time

and image retrieval performance (see Section 4.5). We can

further improve place recognition performance by extracting

patches at multiple scales and observe that using a combina-

tion of patch sizes which represent larger sub-regions within

the original image improves retrieval (see Section 3.5). This

multi-scale fusion is made computationally efficient using

our IntegralVLAD formulation introduced in Section 3.6.

Compared to local feature-based matching where fea-

tures are extracted for comparatively small regions within

the image, our patch features implicitly contain semantic

information about the scene (e.g., building, window, tree)

by covering a larger area. We now introduce the remaining

parts of our pipeline, which is comprised of mutual nearest

neighbor matching of patch descriptors followed by spatial

scoring.

3.3. Mutual Nearest Neighbors

Given a set of reference and query features {fri }
np

i=1 and

{fqi }
np

i=1, (we assume both images have the same resolu-

tion for simplicity), we obtain descriptor pairs from mutual

nearest neighbor matches through exhaustive comparison

between the two descriptor sets. Formally, let the set of

mutual nearest neighbor matches be given by P , where

P =
{

(i, j): i = NNr(f
q
j ), j = NNq(f

r
i )
}

(3)

and NNq(f) = argminj ‖f − f
q
j ‖2 and NNr(f) =

argminj ‖f − f
r
j ‖2 retrieve the nearest neighbor descriptor

match with respect to Euclidean distance within the query

and reference image set, respectively. Given a set of match-

ing patches, we can now compute the spatial matching score

used for image retrieval.

3.4. Spatial Scoring

We now introduce our spatial scoring methods which

yield an image similarity score between a query/reference

image pair used for image retrieval. We present two alter-

natives, a RANSAC-based scoring method which requires

more computation time for higher retrieval performance and

a spatial scoring method which is substantially faster to

compute with only a minor decrease in image retrieval per-

formance.

RANSAC Scoring: Our spatial consistency score is

given by the number of inliers returned when fitting a homog-

raphy between the two images, using corresponding patches

computed using our mutual nearest neighbor matching step

for patch features. We assume each patch corresponds to a

2D image point with coordinates in the center of the patch

when fitting the homography. We set the error tolerance for

the definition of an inlier to be the stride sp. We also normal-

ize our consistency score by the number of patches, which is

relevant when combining the spatial score at multiple scales

as discussed in Section 3.5.

Rapid Spatial Scoring: We also propose an alternative

to the RANSAC scoring approach which we call rapid spa-

tial scoring. This rapid spatial scoring significantly reduces

computation time as we can compute this score directly on

the matched feature pairs without requiring sampling.

To compute the rapid spatial score, let xd = {xr
i −

x
q
j}(i,j)∈P be the set of displacements in the horizontal di-

rection between patch locations for the matched patches, and

yd be the displacements in the vertical direction. In addition,

let x̄d = 1
|xd|

∑

xd,i∈xd
xd,i and similarly ȳd be the mean

displacements between matched patch locations. We can
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then define our spatial score (higher is better) to be

sspatial =
1

np

∑

i∈P

(

|max
j∈P

xd,j | − |xd,i − x̄d|
)2

+
(

|max
j∈P

yd,j | − |yd,i − ȳd|
)2

, (4)

where the score comprises the sum of residual displacements

from the mean, with respect to the maximum possible spatial

offset. The spatial score penalizes large spatial offsets in

matched patch locations from the mean offset, in effect mea-

suring the coherency in the overall movement of elements in

a scene under viewpoint change.

3.5. Multiple Patch Sizes

We can easily extend our scoring formulation to ensemble

patches at multiple scales and further improve performance.

For ns different patch sizes, we can take a convex combina-

tion of the spatial matching scores for each patch size as our

final matching score. Specifically,

sspatial =

ns
∑

i=1

wisi,spatial, (5)

where si,spatial is the spatial score for the ith patch size and
∑

i wi = 1, wi ≥ 0 for all i.

3.6. IntegralVLAD

To assist the computation of extracting patch descriptors

at multiple scales, we propose a novel IntegralVLAD for-

mulation analogous to integral images [15]. To see this,

note that the aggregated VLAD descriptor (before the pro-

jection layer) for a patch can be computed as the sum of all

1×1 patch descriptors each corresponding to a single feature

within the patch. This allows us to pre-compute an integral

patch feature map which can then be used to compute patch

descriptors for multi-scale fusion. Let the integral feature

map I be given by

I(i, j) =
∑

i′<i,j′<j

f
1
i′,j′ , (6)

where f
1
i′,j′ represents the VLAD aggregated patch descrip-

tor (before projection) for a patch size of 1 at spatial index

i′, j′ in the feature space. We can now recover the patch fea-

tures for arbitrary scales using the usual approach involving

arithmetic over four references within the integral feature

map. This is implemented in practice through 2D depth-wise

dilated convolutions with kernel K, where

K =

[

1 −1
−1 1

]

(7)

and the dilation is equal to the required patch size.

4. Experimental Results

4.1. Implementation

We implemented Patch-NetVLAD in PyTorch and resize

all images to 640 by 480 pixels before extracting our patch

features. We train the underlying vanilla NetVLAD feature

extractor [3] on two datasets: Pittsburgh 30k [80] for ur-

ban imagery (Pittsburgh and Tokyo datasets), and Mapillary

Street Level Sequences [82] for all other conditions. All

hyperparameters for training are the same as in [3], except

for the Mapillary trained model that uses 16 instead of 64

clusters for faster training due to the large dataset size.

To find the patch sizes and associated weights, we per-

form a grid search to find the model configuration that per-

forms best on the RobotCar Seasons v2 training set. This

resulted in patch size dx = dy = 5 (which equates to an 228

by 228 pixel area in the original image) with stride sp = 1
when a single patch size is used, and square patch sizes 2, 5

and 8 with associated weights wi = 0.45, 0.15, 0.4 for the

multi-scale fusion. We emphasize that this single configura-

tion is used for all experiments across all datasets. It is likely

that if a highly specialized system was required, further per-

formance increases could be achieved by fine-tuning patch

sizes and associated weights for the specific environment.

4.2. Datasets

To evaluate Patch-NetVLAD, we used six of the

key benchmark datasets: Nordland [71], Pittsburgh [80],

Tokyo24/7 [79], Mapillary Streets [82], RobotCar Seasons

v2 [46, 77] and Extended CMU Seasons [5, 77]. Full techni-

cal details of their usage are provided in the Supplemen-

tary Material; here we provide an overview to facilitate

an informed appraisal of the results. Datasets were used

in their recommended configuration for benchmarking, in-

cluding standardized curation (e.g. removal of pitch black

tunnels and times when the train is stopped for the Nord-

land dataset [8, 73, 34, 33]) and use of public validation and

withheld test sets where provided (e.g. Mapillary).

Collectively the datasets encompass a challenging range

of viewpoint and appearance change conditions, partly as

a result of significant variations in the acquisition method,

including train, car, smartphone and general crowdsourc-

ing. Specific appearance changes are caused by different

times of day: dawn, dusk, night; by varying weather: sun,

overcast, rain, and snow; and by seasonal change: from sum-

mer to winter. Nordland, RobotCar, Extended CMU Sea-

sons and Tokyo 24/7 contain varying degrees of appearance

change up to very severe day-night and seasonal changes.

The Pittsburgh dataset contains both appearance and view-

point change, while the MSLS dataset [82] in particular

includes simultaneous variations in all of the following: geo-

graphical diversity (30 major cities across the globe), season,

time of day, date (over 7 years), viewpoint, and weather. In
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Figure 3. Comparison with state-of-the-art. We show

the Recall@N performance of Ours (Multi-RANSAC-Patch-

NetVLAD) compared to AP-GEM [59], DenseVLAD [79], Net-

VLAD [3], SuperGlue [62], and DELG [9] on Mapillary val. set.

total, we evaluate our systems on ≈300,000 images.

4.3. Evaluation

All datasets except for RobotCar Seasons v2 and Ex-

tended CMU Seasons are evaluated using the Recall@N

metric, whereby a query image is correctly localized if at

least one of the top N images is within the ground truth tol-

erance [3, 79]. The recall is then the percentage of correctly

localized query images, and plots are created by varying N .

We deem a query to be correctly localized within the stan-

dard ground-truth tolerances for all datasets, i.e. 10 frames

for Nordland [33, 34], 25m translational error for Pittsburgh

and Tokyo 24/7 [3], and 25m translational and 40◦ orienta-

tion error for Mapillary [82].

For RobotCar Seasons v2 and Extended CMU Seasons,

we use the default error tolerances [77], namely translational

errors of .25, .5 and 5.0 meters and corresponding rotational

errors of 2, 5 and 10 degrees. Note that our method is a place

recognition system and does not perform explicit 6-DOF

pose estimation; the pose estimate for a query image is given

by inheriting the pose of the best matched reference image.

For all methods, images are resized to 640 by 480 pixels.

4.4. Comparison to State­of­the­art Methods

We compare against several benchmark localization solu-

tions based on retrieval using global descriptors only: AP-

GEM [59], DenseVLAD [79], and NetVLAD [3].

We also compare against two recent methods which addi-

tionally perform re-ranking of global retrievals using spatial

verification of local features, similar to Patch-NetVLAD.

The first method, DELG [9] proposes a network architecture

which jointly extracts local and global features for image

retrieval. The DELG global descriptor is used for global re-

trieval. The second method is based on SuperGlue [62] and

extracts SuperPoint [18] local features before applying Su-

perGlue to identify matches. We use the number of proposed

matches to re-rank global retrievals from NetVLAD [3].

Table 1 and Fig. 3 contain quantitative comparisons of

Patch-NetVLAD and the baseline methods. Patch-NetVLAD

outperforms the best performing global descriptor methods,

NetVLAD, DenseVLAD, AP-GEM and DELG (global de-

scriptor only), on average by 18.6%, 19.3%, 22.6% and

15.8% (all percentages stated are absolute differences for

R@1) respectively. The differences are particularly pro-

nounced in datasets with large appearance variations, i.e.

Nordland and Extended CMU Seasons (seasonal changes),

Tokyo 24/7 (including night time imagery), and RobotCar

Seasons as well as Mapillary (both seasonal changes and

night time imagery). On Nordland, the difference between

Patch-NetVLAD and the original NetVLAD is 34.5%.

Patch-NetVLAD also yields competitive performance to

alternative systems which utilize local feature re-ranking.

Patch-NetVLAD yields 3.1% better performance on average

compared to SuperGlue (a relative increase of 6.0%) despite

a lack of a learned local feature matcher. We hypothesize that

Patch-NetVLAD’s performance could further benefit from

SuperGlue’s learned matcher and discuss this opportunity

further in Section 5. Patch-NetVLAD’s performance edge is

particularly significant when large appearance variations are

encountered in unseen environments – not typically used for

training local feature methods like SuperGlue. Thus, Patch-

NetVLAD achieves superior performance on Nordland with

an absolute percentage difference of 15.8%.

For DELG, Patch-NetVLAD yields considerably higher

performance on the RobotCar Seasons v2 and Extended

CMU Seasons dataset where pose error tolerances for a

correct retrieval are very low compared to the other datasets.

Comparing DELG global retrieval to DELG global + local re-

ranking indicates that utilizing local features harms retrieval

performance. DELG achieves better performance on the

remaining datasets; this comes at a high computational cost

(≈ 10 times slower than our best-performing and ≈ 240
times slower than our speed-focused method; see Fig. 4).

Patch-NetVLAD won the Mapillary Challenge at the

ECCV2020 workshops, with Table 1 showing that Patch-

NetVLAD outperformed the baseline method, NetVLAD, by

13.0% (absolute R@1 increase) on the withheld test dataset.

The test set was more challenging than the validation set

(48.1% R@1 and 79.% R@1 respectively; note that no fine-

tuning was performed on any of the datasets), indicating

that the Mapillary test set is a good benchmarking target

for further research compared to “near-solved" datasets like

Pittsburgh and Tokyo 24/7, where Patch-NetVLAD, Super-

Glue and DELG achieve near perfect performance.

Fig. 5 illustrates example matches retrieved with our

method compared to NetVLAD, SuperGlue, and DELG.

4.5. Ablation Studies

Single-scale and Spatial Scoring: To analyze the effec-

tiveness of Patch-NetVLAD, we compare with the following

variations: 1) Single-RANSAC-Patch-NetVLAD uses a sin-

gle patch size (i.e. 5) instead of multi-scale fusion. 2) Single-

Spatial-Patch-NetVLAD employs a simple but rapid spatial
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Table 1. Quantitative results

Method
Nordland Mapillary (Challenge) Mapillary (Val. set) Pittsburgh 30k Tokyo 24/7 RobotCar Seasons v2 Extended CMU Seasons

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 .25m/2° .5m/5° 5.0m/10° .25m/2° .5m/5° 5.0m/10°

AP-GEM [59] 11.1 13.2 16.1 — — — 65.0 75.7 78.2 80.7 91.4 94.0 58.4 69.5 74.3 5.7 20.7 69.5 4.4 13.4 65.7

DenseVLAD [79] 11.9 20.8 26.2 — — — 60.3 70.1 76.1 78.2 88.8 92.3 59.4 67.0 71.8 7.5 28.3 80.7 7.7 23.8 79.7

NetVLAD [3] 13.0 20.6 25.0 35.1 47.4 51.7 58.6 71.2 76.1 85.1 92.2 94.4 64.4 78.4 81.6 7.0 24.9 76.6 5.9 18.0 76.9

SuperGlue [62] 29.1 33.4 35.0 — — — 78.4 82.8 84.2 88.7 95.1 96.4 88.2 90.2 90.2 8.3 32.4 89.9 9.5 30.7 96.7

DELG global [9] 23.4 35.4 41.7 — — — 72.4 81.9 85.7 80.4 90.0 93.4 77.8 87.9 91.8 5.0 19.4 73.3 3.6 11.4 64.3

DELG local [9] 60.1 63.5 64.6 — — — 86.5 90.3 91.9 90.0 95.7 97.0 95.9 96.8 97.1 2.6 9.9 83.4 5.7 21.1 93.6

Ours 44.9 50.2 52.2 48.1 57.6 60.5 79.5 86.2 87.7 88.7 94.5 95.9 86.0 88.6 90.5 9.6 35.3 90.9 11.8 36.2 96.2

Table 2. Ablation study

Method
Nordland Mapillary (Val. set) Pittsburgh 30k Tokyo 24/7 RobotCar Seasons v2 Extended CMU Seasons

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 .25m/2° .5m/5° 5.0m/10° .25m/2° .5m/5° 5.0m/10°

Ours (Single-Spatial-Patch-NetVLAD) 42.9 49.2 51.6 77.2 85.4 87.3 88.0 94.0 95.6 78.1 83.8 87.0 8.7 32.4 88.4 10.0 31.5 95.2

Ours (Single-RANSAC-Patch-NetVLAD) 42.4 48.8 51.2 77.8 85.7 87.8 87.3 94.2 95.7 82.2 87.3 89.2 8.7 31.6 88.3 10.0 31.3 94.5

Ours (Multi-Spatial-Patch-NetVLAD) 44.5 50.1 52.0 78.2 85.3 86.9 88.6 94.5 95.8 81.9 85.7 87.9 9.4 33.9 89.3 11.1 34.5 96.3

Ours (Multi-RANSAC-Patch-NetVLAD) 44.9 50.2 52.2 79.5 86.2 87.7 88.7 94.5 95.9 86.0 88.6 90.5 9.6 35.3 90.9 11.8 36.2 96.2
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Figure 4. Computational time requirements. The time taken to

process one query image is shown on the x-axis, with the resulting

R@1 shown on the y-axis, for the Mapillary dataset. Our pipeline

enables a range of system configurations that achieve different

performance and computational balances that either outperform or

are far faster than current state-of-the-art.

verification method applied to a single patch size (see Sec-

tion 3.4). 3) Multi-Spatial-Patch-NetVLAD uses the same

rapid spatial verification method, however applied to three

patch sizes rather than a single patch size as in the previous

variant. Table 2 shows comparison results with these varia-

tions and the following numeric results are based on R@1

(recall@1) – the conclusions generally apply to R@5 and

R@10 as well. Our proposed multi-fusion approach (Multi-

RANSAC-Patch-NetVLAD) performs on average 2.0% bet-

ter than Single-RANSAC-Patch-NetVLAD, demonstrating

that a fusion of multiple patch sizes significantly improves

task performance. Our approach also provides some com-

pelling options for compute-constrained applications; our

rapid spatial verification approach is 2.9 times faster on

a single patch size (Single-Spatial-Patch-NetVLAD), with

only a 0.6% performance reduction. Rapid spatial verifi-

cation applied to multiple patch sizes (Multi-Spatial-Patch-

NetVLAD) is 3.1 times faster, with only a 1.1% performance

degradation.

Patch Descriptor Dimension: In addition to disabling

multi-scale fusion and using our rapid spatial scoring method,

the descriptor dimension can be arbitrarily reduced using

PCA (as with the original NetVLAD). Here, we choose

DPCA = {128, 512, 2048, 4096}. Fig. 4 shows the number

of queries that can be processed per second by various con-

figurations1, and the resulting R@1 on the Mapillary vali-

dation set. Our proposed Multi-RANSAC-Patch-NetVLAD

in a performance-focused configuration (red star in Fig. 4)

achieves 1.1% higher recall than SuperGlue (yellow dot)

while being slightly (3%) faster. All of our variants are much

(10-240 times) faster than DELG. A balanced configuration

(orange triangle) is more than 3 times faster than SuperGlue

with comparable performance, while a speed-oriented con-

figuration (blue triangle) is 15 times faster at the expense

of just 0.6% and 1.7% recall when compared to SuperGlue

and our performance-focused configuration respectively. A

storage-focused configuration (DPCA = 128) still largely

outperforms NetVLAD while having similar memory re-

quirements as a SIFT-like descriptor. Our speed-oriented

and storage-focused configurations provide practical options

for applications like time-critical robotics. Our approach can

also run on consumer GPUs, with our performance configu-

ration requiring 7GB GPU memory (batch-size of 5).

4.6. Further Analysis

We further study the robustness of our approach to the

choice of hyperparameters. In Fig. 6 (left) we highlight that

Single-Patch-NetVLAD is robust to the choice of the patch

size dp: The performance gradually decays from a peak at

dp = 4. Fig. 6 (right) similarly shows that Patch-NetVLAD

is robust to the convex combination of the multi-patch fusion

in terms of the patch sizes that are fused. The Supplemen-

tary Material provides additional ablation studies, including

matching across different patch sizes, complementarity of

patch sizes and comparison to other pooling strategies.

5. Discussion and Conclusion

In this work we have proposed a novel locally-global

feature descriptor, which uses global descriptor techniques

to further improve the appearance robustness of local de-

scriptors. Unlike prior keypoint-based local feature descrip-

1These results include both feature extraction and matching times; the

Supplementary Material contains further figures that separate feature ex-

traction and feature matching times.
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Figure 5. Qualitative Results. In these examples, the proposed Patch-NetVLAD successfully retrieves the matching reference image, while

NetVLAD, SuperGlue and DELG produce incorrect place matches (except Tokyo where DELG also finds the correct match). The Tokyo

24/7 match example is particularly challenging, with a combination of day vs night-time, severe viewpoint shift and occlusions.
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Figure 6. Robustness studies for single patch sizes and com-

bined patch sizes. Left: Recall performance of Single-Patch-

NetVLAD with varying patch size, using the Mapillary validation

dataset. Performance gradually degrades around a peak at dp = 4.

The smallest and largest patch sizes perform most poorly, indicating

that both local features and global areas are inferior to intermediate

size features. An additional issue with large patch sizes is that there

are too few patches for effective spatial verification. Right: Recall

performance of Multi-Patch-NetVLAD against an indicative mea-

sure of cumulative patch dimensions. Our proposed combination

of patch dimensions 2, 5 and 8 corresponds to an x-axis value of

15; data points to the left show a reduction in the cumulative patch

dimension (e.g.
∑

i
dp,i = 14 for patch sizes 1, 5 and 8; sizes

2, 4 and 8; and sizes 2, 5 and 7) and so forth; and similarly for

increasing patch size combinations to the right. As for variations

on the single patch size, performance gracefully degrades around

the peak and remains high over a large range.

tors [44, 18], our approach considers all the visual content

within a larger patch of the image, using techniques that

facilitate further performance improvements through an ef-

ficient multi-scale fusion of patches. Our proposed Patch-

NetVLAD’s average performance across key benchmarks is

superior by 17.5% over the original NetVLAD, and by 3.1%

(absolute recall increase) over the SuperPoint and SuperGlue-

enabled VPR pipeline. Patch-NetVLAD does not outperform

DELG, however we note that DELG’s feature extraction and

matching are significantly slower and thus have less utility

for mobile autonomous systems. Our experiments reveal

an inherent benefit to fusing multiple patch sizes simultane-

ously, where the fused recall is greater than any single patch

size recall, and provide a means by which to do so with

minimal computational penalty compared to single scale

techniques.

While this demonstration of Patch-NetVLAD occurred

in a place recognition context, further applications and ex-

tensions are possible. One avenue for future work is the

following: while we match Patch-NetVLAD features using

mutual nearest neighbors with subsequent spatial verifica-

tion using RANSAC, recent deep learned matchers [62, 88]

could further improve the global re-localization performance

of the algorithm. Although our method is by no means bio-

logically inspired, it is worth noting that the brain processes

visual information over multiple receptive fields [36]. As

a result, another potentially promising direction for future

research is to explore and draw inspiration from how the task

of visual place recognition, rather than the more commonly

studied object or face recognition tasks, is achieved in the

brain. Finally, another line of work could consider the corre-

lation between the learned VLAD clustering and semantic

classes (e.g. car, pedestrian, building), in order to identify

and remove patches that contain dynamic objects.
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based visual place recognition. In Eur. Conf. Mobile Robot.,

2019.
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