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Abstract

A layout to image (L2I) generation model aims to gen-

erate a complicated image containing multiple objects

(things) against natural background (stuff), conditioned on

a given layout. Built upon the recent advances in gen-

erative adversarial networks (GANs), existing L2I models

have made great progress. However, a close inspection of

their generated images reveals two major limitations: (1)

the object-to-object as well as object-to-stuff relations are

often broken and (2) each object’s appearance is typically

distorted lacking the key defining characteristics associated

with the object class. We argue that these are caused by

the lack of context-aware object and stuff feature encod-

ing in their generators, and location-sensitive appearance

representation in their discriminators. To address these

limitations, two new modules are proposed in this work.

First, a context-aware feature transformation module is in-

troduced in the generator to ensure that the generated fea-

ture encoding of either object or stuff is aware of other co-

existing objects/stuff in the scene. Second, instead of feed-

ing location-insensitive image features to the discriminator,

we use the Gram matrix computed from the feature maps of

the generated object images to preserve location-sensitive

information, resulting in much enhanced object appear-

ance. Extensive experiments show that the proposed method

achieves state-of-the-art performance on the COCO-Thing-

Stuff and Visual Genome benchmarks. Code available at:

https://github.com/wtliao/layout2img.

1. Introduction

Recent advances in generative adversarial networks

(GANs) [11] have made it possible to generate photo-

realistic images for a single object, e.g., faces, cars, cats

[4, 46, 20, 21]. However, generating complicated im-

ages containing multiple objects (things) of different classes

against natural backgrounds (stuff) still remains a challenge

[18, 3, 31, 30]. This is due to the large appearance variations
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Figure 1. Illustration of the limitations of existing L2I models and

how our model overcome them. From left to right: ground truth

layout, images generated by the state-of-the-art LostGAN-v2 [39],

and by our model with the layout as input. In the middle and

right column, regions with key differences in the generation qual-

ity between LostGAN-v2 and our model are highlighted in dashed

boxes. See text for more details.

for objects of different classes, as well as the complicated

relations between both object-to-object and object-to-stuff.

A generated object needs to be not only realistic on its own,

but in harmony with surrounding objects and stuff.

Without any conditional input, the mode collapse [36, 6]

problem is likely to be acute for GANs trained to gener-

ate such complicated natural scenes. Consequently, various

inputs have been introduced to provide some constraints

on the image generation process. These include textual

description of image content [31], scene graph represent-

ing objects and their relationship [18], and semantic map

providing pixel-level annotation [30]. This work focuses

on the conditional image generation task using the layout

[48, 38, 40] that defines a set of bounding boxes with spec-

ified size, location and categories (see Fig. 1). Layout is a

user-friendly input format on its own and can also be used as
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an intermediate input step of other tasks, e.g., scene graph

and text to image generation [3, 15].

Since the seminal work [48] in 2019, the very recent

layout to image (L2I) generation models [49, 40, 39] have

made great progresses, thanks largely to the advances made

in GANs [30, 20] as they are the key building blocks. From

a distance, the generated images appear to be realistic and

adhere to the input layout (see Fig. 1 and more in Fig. 3).

However, a closer inspection reveals two major limitations.

First, the relations between objects and object-to-stuff are

often broken. This is evident from the food example in

Fig. 1 (Top-Middle) – the input layout clearly indicates that

the four bowls are overlapping with each other. Using the

state-of-the-art LostGAN-v2 [39], the occluded regions be-

tween objects are poorly generated. Second, each gener-

ated object’s appearance is typically distorted lacking class-

defining characteristics. For instance, the surfing example

in Fig. 1 (Middle) and the giraffe example in Fig. 1 (Bot-

tom) show that the object appearance has as if been touched

by Picasso – one can still recognize the surfing person or

giraffe, but key body parts are clearly misplaced.

We believe these limitations are caused by two major de-

sign flaws in existing L2I models in both their GAN gen-

erators and discriminators. (1) Lack of context-aware mod-

eling in the generator: Existing models generate the fea-

ture for the object/stuff in each layout bounding box first,

and then feed the generated feature into a generator for im-

age generation. However, the feature generation process for

each object/stuff is completely independent of each other,

therefore offering no chance for capturing the inter-object

and object-to-stuff relations. (2) Lack of location-sensitive

appearance representation in the discriminator: As in any

GAN model, existing L2I models deploy a discriminator

that is trained to distinguish the generated whole image and

individual object/stuff images from the real ones. Such a

discriminator is essentially a CNN binary classifier whereby

globally pooled features extracted from the CNN are fed

to a real-fake classifier. The discriminator thus cares only

about the presence/absence and strength of each semantic

feature, rather than where they appear in the generated im-

ages. This lack of location-sensitive appearance representa-

tion thus contributes to the out-of-place object part problem

in Fig. 1 (Middle).

In this paper, we provide solutions to overcome both lim-

itations. First, to address the lack of context-aware mod-

eling problem, we propose to introduce a context-aware

feature transformation module in the generator of a L2I

model. This module updates the generated feature for each

object and stuff after each has examined its relations with

all other objects/stuff co-existing in the image through self-

attention. Second, instead of feeding location-insensitive

globally pooled object image features to the discriminator,

we use the Gram matrix computed from the feature maps of

the generated object images. The feature map Gram matrix

captures the inter-feature correlations over the vectorized

feature map, and is therefore locations sensitive. Adding it

to the input of the real-fake classifier in the discriminator,

the generated images preserve both shape and texture char-

acteristics of each object class, resulting in much enhanced

object appearance (see Fig. 1 (Right)).

The contributions of this work are as follows: (1) For

the first time, we identify two major limitations of exist-

ing L2I models for generating complicated multi-object im-

ages. (2) Two novel components, namely a context-aware

feature transformation module and a location-sensitive ob-

ject appearance representation are introduced to address

these two limitations. (3) The proposed modules can be

easily integrated into any existing L2I generation mod-

els and improve them significantly. (4) Extensive exper-

iments on both the COCO-Thing-Stuff [25, 5] and Vi-

sual Genome [22] datasets show that state-of-the-art perfor-

mance is achieved using our model. The code and trained

models will be released soon.

2. Related Work

Generative Adversarial Networks Generative adversar-

ial networks (GANs) [11], which play a min-max game be-

tween a generator and a discriminator, is the mainstream

approach used in recent image generation works. However,

the training of a GAN is often unstable and known to be

prone to the mode collapse problem. To address this, tech-

niques like Wasserstein GAN [2] and Unrolled GAN [28]

were developed. Meanwhile, noise injection and weight pe-

nalizing [1, 34] were used in the discriminator to alleviate

the non-convergence problem for further stabilization of the

training. To generate high fidelity and resolution images,

architectures like Progressive GAN [19] and BigGAN [4]

were also proposed.

Conditional Image Generation Conditional image gen-

eration, which generates an image based on a given condi-

tion (e.g., class label, sentence description, image, seman-

tic mask, sketch, and scene graph) has been studied inten-

sively [29, 31, 17, 51, 30, 7, 3, 9] due to its potential in gen-

erating complicated natural images. In general, there are

two popular architectures for the conditional image genera-

tion. The first one is the encoder-decoder architecture used

in Pix2pix [17] and CycleGAN [51], where the encoder di-

rectly takes the conditional input and embeds it to a latent

space. The decoder then transfers the embedded representa-

tion into the target image. The second popular architecture

is the decoder-only architecture used in StyleGAN [20] and

GauGAN [30], where a decoder starts with a random input,

and then progressively transforms it to produce the desired

output. In this architecture, the conditional input is used

to generate part of the parameters in the decoder, e.g., the
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affine transformation parameters in the normalization lay-

ers [20, 30, 33] or the weight parameters in convolutional

kernels [26].

Layout to Image Generation Though the previous work

[15] has already touched the concept of layout to image gen-

eration (L2I), it is just used as an intermediate step for a

different generation task. The first stand-alone solution ap-

peared in [48]. Compared to other conditional inputs such

as text and scene graph, layout is a more flexible and richer

format. Therefore, more studies followed up by introduc-

ing more powerful generator architectures [38, 39], or new

settings [23, 27]. Sun et al. [38] proposed a new architec-

ture inspired by StyleGAN [20], which allows their model to

generate higher resolution images with better quality. Li et

al. [23] introduced a new setting for high resolution street

scene generation. Their model retrieves a background from

a database based on the given foreground layout. Recently,

Ma et al. [27] introduced attribute guided layout genera-

tion, which is more controllable on the generated objects.

As mentioned earlier, all these existing models have two

limitations, namely lack of context-aware modeling in their

generators, and lack of location-sensitive appearance repre-

sentation in their discriminators. Both limitations are over-

come in this work, resulting in much improved L2I genera-

tion performance (see Sec. 5).

Context Modeling Context plays an important role in

many discriminative scene analysis tasks [41, 16, 8, 45, 44,

13, 43]. The main idea in context-based analysis is to tie

each object instance in the scene with the global context,

such that their relationship or interaction can be better un-

derstood. However, context has drawn little attention in im-

age generation. One exception is SAGAN [46] which ap-

plied self-attention to refine the feature map in the gener-

ator for single object image generation. In this work, we

introduce context modeling for layout to image generation,

a more complicated image generation task with a focus on

inter-objects and object-to-stuff relation modeling.

Appearance Representation in CNNs Works on CNN

visualization clear show that feature channels, especially

those at the top layers of a CNN capture semantically mean-

ingful concepts such as body parts; and the activations of

these feature channel at different locations indicate where

these concepts are [50]. However, when it comes to object

recognition [35] or real-fake discriminator in GAN [11],

these feature maps are globally pooled before being fed into

a binary classification layer. Location-sensitive information

is thus largely lost, and the focus is on the presence/absence

of the semantic concepts rather than where. We therefore

propose to use the Gram matrix computed on the feature

maps to complement the semantics-only appearance rep-

resentation used in existing discriminators in order to in-

duce location-sensitivity in object image generation. Such

a Gram matrix based appearance representation has been

used in style transfer [10] for style/texture representation,

which seems to suggest that it only captures feature dis-

tribution but contains no spatial information. However, as

pointed out in [24], this is because the use of entry-wise

mean-square distance in [10] removes the location sensitiv-

ity in the feature map Gram matrix. In our model, we pass

the raw matrix instead of mean-square distance to the dis-

criminator classifier, therefore preserving the location sen-

sitivity.

3. Preliminaries

3.1. Problem Definition

Let L = {(yi, bi)
N
i=1} be a layout with N bounding

boxes, where yi ∈ C is the class of the bounding box and

bi = [xi, yi, wi, hi] is the position and size of the bounding

box in the image lattice (H ×W ). The goal of the layout to

image (L2I) generation task is to build a model G, which can

generate a realistic photo Ig ∈ R
3×H×W , given the coarse

information in the layout L.

3.2. Prior Models

Before introducing our proposed method in Sec. 4, we

first briefly describe prior L2I models. In all previous mod-

els, the first step is always to generate a feature representa-

tion for each bounding box based on their classes:

pi = φ0([ei,ni]), (1)

where pi ∈ R
dl+dn is the feature representation of the ith

bounding box in the layout, φ0 is a linear transformation

layer, ei ∈ R
dl is the label embedding of yi, and ni ∈ R

dn

is a random noise sampled from a zero-mean unit-variance

multivariate Gaussian distribution. The generated feature

vector set {pi}
N
i=1 is then fed into a generator G for image

generation. Depending on how the generator uses the fea-

ture vector set to generate the image, the existing models

can be grouped into the following two categories.

L2I Models with Encoder-Decoder Generators These

models deploy an encoder-decoder generator [48, 27] which

takes the feature vector set as input, and then transfers the

feature vector set into a sequence of feature maps. Each

feature map is generated by filling the corresponding feature

vector into the region in the image lattice based on their

bounding box. The generated feature maps are then fed into

an encoder, which embeds each feature map into a latent

space separately. Those embedded feature maps are merged

into a single one through a convolutional LSTM network

[37]. Finally, a decoder transforms the combined feature

into the target image. Mathematically, the encoder-decoder

based method can be formulated as:

Ig = D(cLSTM(E({F(pi, bi)}
N
i=1))), (2)
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Figure 2. A schematic of our method with a decoder-only generator as in [38, 49]. The feature generation module generates the raw

representation for each bounding box based on their class label, the context-aware feature transformation module integrates the global

context into the representation of each bounding box. Then the transformed bounding boxes’ representation and the box coordinates (bi)

are fed into the generator for image generation. Finally the generated image is compared with real images by a discriminator with three

losses, namely image-level and object-level semantic loss (Lim and Lo) and object-level Gram matrix loss (La).

where F(·, ·) is a filling operation, E is the encoder, cLSTM

is the convolutional LSTM network, and D is the decoder.

L2I Models with Decoder-Only Generators These

models [38, 39, 40] use a decoder-only generator to first

generate an auxiliary mask1 for each bounding box for a

fine-grained shape or structure prediction:

Mi = RS(ψ(pi), bi), (3)

where ψ is a small convolutional neural network, ψ(pi) ∈
R

H×W , and RS(·, ·) is a resize operator, which resizes each

generated mask and fit it to the corresponding region in the

image lattice via up/down sampling. Then the decoder re-

ceives a zero-mean unit-variance multivariate random noise

n0 ∈ R
C0×H0×W0 as input, and decode it into the target

image by modulating the affine transformation in the nor-

malization layer:

f̂l = BatchNorm(fl, ϕl(

N∑

i=1

pi ⊗Mli)), (4)

where f̂l and fl are the feature maps before and after nor-

malization at the lth layer in the decoder, ϕl is a small

convolutional block to generate the pixel-wise affine trans-

formation parameters, Mli is the resized version of Mi to

match the corresponding feature map’s scale, and ⊗ is the

outer product, by which a vector pi and a matrix Mli pro-

duce a 3D tensor.

4. The Proposed Method

The main architecture of our proposed method is illus-

trated in Fig. 2. The proposed context-aware feature trans-

formation module and location-sensitive Gram matrix based

object appearance representation are integrated into the gen-

erator and discriminator respectively of a decoder-only L2I

1The mask is not a strictly binary mask, as it is the output of a layer

with sigmoid activation.

generation architecture [38, 39, 40]. Similarly they can be

easily integrated with those employing an encoder-decoder

architecture [48, 27].

4.1. Context­Aware Feature Generation

Let us first look at the feature transformation module. It

is clear that the prior models process each bounding box

independently (either in the feature generation stage or the

mask generation stage in the decoder-only methods), disre-

specting the other objects and stuff in the scene. As a result,

the generated objects do not appear in harmony with other

co-existing objects and stuff in the scene and often appear

to be out of place (see Fig. 1 and Fig. 3). To overcome this

limitation, we propose a context-aware transformation mod-

ule, which integrates contextual information into the fea-

ture representation of each bounding box by allowing each

feature to cross-examine all other features via self-attention

[42]. Concretely, the contextualized representation of each

bounding box is computed as:

pc
i =

N∑

j=1

wi,jpjWv, (5)

wi,j =
exp(αi,j)∑N

k=1 exp(αi,k)
, (6)

αi,j = (piWq)(pjWk)
T , (7)

where Wq,Wk and Wv ∈ R
(dl+dn)×(dl+dn) are linear

transformation layers. With the transformation, the contex-

tualized representation of each bounding box not only has

its own information, but also the global context in the lay-

out. It is thus able to avoid the poor occlusion region gener-

ation problem shown in Fig. 1 (Top-Middle). Note that this

module can be used for feature map filling in the encoder-

decoder based methods, as well as the mask generation and

the feature modulation steps in the decoder-only methods.

The contextualized feature representation is then fed into

the generator for image generation (see Fig. 2).
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4.2. Location­Sensitive Appearance Representation

To address the issue of lacking location-sensitive appear-

ance representation in the discriminators of existing L2I

models, we introduce a feature map Gram matrix based

appearance representation. In existing models’ discrimi-

nators, the input image Iim is first processed by a con-

volutional neural network ψD, and represented as fim ∈
R

C×HD×WD :

fim = ψD(Iim). (8)

Existing L2I models then apply two losses in the discrim-

inator to train the whole model: an image-level loss Lim

according to the globally pooled feature of fim, and an

object-level conditional loss Lo based on the ROI pooled

[32] feature of each object in the image, concatenated with

its corresponding class information. These losses are de-

signed to boost the realism of the generated image and the

objects in the image respectively. However, using pooled

feature as appearance representation means that both losses

are location-insensitive, i.e., they only care about the pres-

ence/absence and strength of each learned semantic feature;

much less about where the corresponding visual concept ap-

pear in the image.

To address this problem, we propose to introduce an ad-

ditional appearance discriminator loss, which directly pe-

nalizes the spatial misalignment of each semantic feature

between the generated and real images. Concretely, we use

object feature maps’ Gram matrix [10] as a new appearance

representation and feed it to the discriminator classification

layer. Formally, we define the appearance of a generated

object in the image as:

Ai = sis
T
i /ds, (9)

where ds = C is the channel dimension of the feature map,

si ∈ R
C×(HD×WD) is the spatial dimension vectorized fea-

ture representation of the ith generated object in the image,

computed as:

si = RA(fim, bi), (10)

where RA(·, ·) is the ROI align operator [12]. For simplic-

ity, the vectorization operation is omitted here. The new

appearance loss is then defined as:

La(G,D) = EAr∼pr
data

(Ar)[log(D(Ar|y)]

+ EAg∼p
g

data
(Ag)[1− log(D(Ag|y)],

(11)

where Ar and Ag are the Gram matrices of object feature

maps in real and generated images respectively, y is their

corresponding class label. More specifically, for the ith ob-

ject in an image, its appearance loss is computed as:

D(Ai|y) =
1

C

C∑

j=1

[Ai,j , E(yi)]WA, (12)

where E(yi) ∈ R
k is the label embedding, and WA ∈

R
(C+K)×1 is a linear layer. The Gram matrix here captures

the correlation between different feature channels and is

clearly location-sensitive: each entry only assumes a large

value when the corresponding two features are both present

and activated at the same location. This loss is thus comple-

mentary to the two conventional losses (Lim and Lo) which

emphasize the presence of the semantics only.

4.3. Training Objectives

The final model is trained with the proposed appearance

loss, together with image and object level losses [48, 38]:

G∗ = arg min
D

max
G

La(G,D)+λimLim(G,D)+λoLo(G,D),

(13)

where λim and λo are the loss weight hyperparameters, and

Lim and Lo are computed as:

Lim(G,D) = EIr
im

∼pr
data

(Ir
im

)[log(D(Irim)]

+ EI
g

im
∼p

g

data
(Ig

im
)[1− log(D(Igim)],

Lo(G,D) = EOr∼pr
data

(Or)[log(D(Or|y)]

+ EOg∼p
g

data
(Og)[1− log(D(Og|y)],

(14)

where Irim and Igim are real and generated images respec-

tively, and Or and Og are objects in the real and generated

images.

5. Experiments

Datasets Two widely used benchmarks, COCO-Thing-

Stuff [25, 5] and Visual Genome [22] are used in our exper-

iments. COCO-Thing-Stuff includes bounding box annota-

tions of the 91 stuff classes in [5] and the 80 thing/object

classes in [25]. Following [48, 38], only images with 3

to 8 bounding boxes are used in our experiments. Visual

Genome is originally built for complex scene understand-

ing. The annotations in Visual Genome contain bounding

boxes, object attributes, relationships, region descriptions,

and segmentation. As per standard in L2I generation, we

only use the bounding boxes annotation in our experiments,

and each layout contains 3 to 30 bounding boxes. We fol-

low the splits in prior works [48, 38] on both datasets to

train and test our model.

Implementation Details Our model is implemented with

PyTorch. To show the general applicability of our pro-

posed method, and for fair comparison with prior works, we

adopt both encoder-decoder and decoder-only generators

in the two instantiations of our method (termed Ours-ED

and Ours-D respectively). The encoder-decoder generator

has the same architecture as used in [48], and the decoder-

only generator shares the same architecture as used in [38].

Following [48, 38], the resolution of generated images is

64 × 64 for the encoder-decoder generator and 128 × 128
for the decoder-only generator. The learning rate is set to
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Table 1. Comparative results on COCO-Thing-Stuff and Visual Genome. E-D means encoder-decoder based generator, D means decoder-

only based generator. † means improved decoder-only generator.

Methods Resolution Generator
Inception Score ↑ FID ↓ Diversity Score ↑

COCO VG COCO VG COCO VG

Real images 64 × 64 - 16.3 ± 0.4 13.9 ± 0.5 - - - -

Real images 128 × 128 - 22.3 ± 0.5 20.5 ± 1.5 - - - -

pix2pix [17] 64 × 64 E-D 3.5 ± 0.1 2.7 ± 0.02 121.97 142.86 0 0

Layout2im [48] 64 × 64 E-D 9.1 ± 0.1 8.1 ± 0.1 38.14 40.07 0.15 ± 0.06 0.17 ± 0.09

Ours-ED 64 × 64 E-D 10.27 ± 0.25 8.53 ± 0.13 31.32 33.91 0.39 ± 0.09 0.4±0.09

Grid2Im [3] 128 × 128 E-D 11.22 ± 0.15 - 63.44 - 0.28 ± 0.11 -

LostGAN-v1 [38] 128 × 128 D 13.8 ± 0.4 11.1 ± 0.6 29.65 29.36 0.40 ± 0.09 0.43 ± 0.09

LostGAN-v2 [49] 128 × 128 D† 14.21 ± 0.4 10.71 ± 0.76 24.76 29.00 0.55 ± 0.09 0.53 ± 0.09

OC-GAN [40] 128 × 128 D 14.0 ± 0.2 11.9 ± 0.5 36.04 28.91 - -

AG-Layout2im [27] 128 × 128 E-D - 8.5 ± 0.1 - 39.12 - 0.15 ± 0.09

Ours-D 128 × 128 D 15.62 ± 0.05 12.69 ± 0.45 22.32 21.78 0.55 ± 0.09 0.54 ± 0.09
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Figure 3. Qualitative results comparing Ours-D against two representative baselines Layout2im [49] and LostGAN-v2 [39].

1e−4 for both generator and discriminator in all the experi-

ments. We train our model for 200 epochs. The loss weight

hyperparameters λim and λo are set to 0.1 and 1, respec-

tively.

Evaluation Metrics We evaluate our model both auto-

matically and manually. In automatic evaluation, we adopt

three widely used metrics, namely Inception Score [36],

Fréchet Inception Distance (FID) [14] and Diversity Score

[47]. Inception Score evaluates the quality of the gener-

ated images. FID computes the statistical distance between

the generated images and the real images. Diversity Score

compares the difference between the generated image and

the real image from the same layout. Following prior evalu-
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Figure 5. The preference rate of our model. A bar higher than

dark dashed horizontal line indicates that our model is judged to

be better than the compared baseline by the AMT workers.

ation protocol [3], for each layout, we generate five images

in COCO-Thing-Stuff and one image in Visual Genome. In

manual evaluation, we run perceptual studies on Amazon

Mechanical Turk (AMT) to compare the quality of the gen-

erated images from different models. Ten participants en-

gaged in the evaluation. Each participant was given 100

randomly sampled layouts from the testing dataset as well

as the corresponding generated images from different mod-

els. All participants were asked to vote for their preferred

image according to the image’s quality and the matching

degree to the paired layout. We compute the preference rate

of each model from all participants. Due to the difference

in generated image’s resolution and for fair comparison, we

compare our encoder-decoder generator based instantiation

(Ours-ED) with the state-of-the-art encoder-decoder gener-

ator based baseline Layout2im [48] and decoder-only in-

stantiation (Ours-D) with the state-of-the-art decoder-only

generator based baseline LostGAN-v2 [39]. In both com-

parisons, the generated images are of the same resolution.

Main Results We compare our method with existing L2I

models [48, 38, 39, 40, 27], the pix2pix model [17] which

takes the input feature maps constructed from layout as im-

plemented in [48], and the Grid2Im model [3] which re-

ceives scene graph as input. The following observations

can be made on the quantitative results shown in Table 1.

(1) Our method outperforms all compared methods on all

benchmarks with both architectures and under all three au-

tomatic evaluations metrics, particularly for Inception Score

and FID. (2) The more recent L2I methods take a decoder-

only generator. Taking the same architecture but with the
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Table 2. Ablation study on COCO-Thing-Stuff dataset.

baseline [38] context appearance Inception Score FID

X 13.8 ± 0.4 29.65

X X 14.97 ± 0.27 24.05

X X 15.28 ± 0.24 21.73

X X X 15.62 ± 0.05 22.32

two new components, our method (Ours-D) achieves new

state-of-the-art. Fig 5 shows detailed statistics in the hu-

man evaluation on AMT. Among all 40 evaluation sets, our

model won 32 sets. The preference rate is clearly higher

at the higher resolution with more complex images (i.e.,

128× 128, VG dataset). Some qualitative results are shown

in Fig. 3. It is evident from these examples that the im-

ages generated using our method are much more context-

aware, i.e., different objects co-exist in harmony with each

other and the background. Importantly, each generated ob-

ject has sharper texture, clearer shape boundary with respect

to background inside the object bounding box, and overall

much more spatially-coherent than those generated by ex-

isting L2I models.

Ablation Study In this experiment, we adopt LostGAN-

v1 [38] as our baseline and evaluate the effects of intro-

ducing our context transformation module and location-

sensitive appearance representation. The quantitative re-

sults are shown in Table 2. We can see that both our

context-aware feature transformation module and new ap-

pearance representation improve the baseline significantly

on their own and when combined give a further boost.

Some qualitative results are shown in Fig. 4. It is clear

that the model trained with our appearance representation

can generate objects with much better appearance both in

terms of shape and texture (TV in Fig. 4(b) and person in

Fig. 4(a)(f)(g)). Context transformation also plays an im-

portant role: the generated occluded regions become more

natural (Fig. 4(b)(f)); each object’s pose is also more in-

tune with its surrounding objects and background, e.g. the

surfing person’s body pose is more physically plausible in

Fig. 4(a); so is the person’s head pose in the presence of the

laptop in Fig. 4(f).

How Our Context Transformation Module Works In

the decoder-only generator, a mask is generated using the

representation of each bounding box to predict the fine-

grained shape or structure of the object in each bounding

box (Eq. 3). Without the context information in the feature

representation, the generated masks would interfere with

each other. This could result in irregular or incomplete ob-

ject shape particularly in the occluded regions, which would

further affect the feature modulation defined in Eq. 4. We

investigate this effect by adding more bounding boxes into

a layout, and visualizing the predicted masks as well as

the generated images. The visualization results in Fig. 6

show clearly that the context-aware feature transformation
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Figure 6. Qualitative examples about the contribution of context

transformation in the complex scene generation. From left to right,

at each time, we add one more bounding box into the previous

layout, visualizing the predicted masks as well as the generated

image by a model with our context transformation (Ours-D), and

the same model without context transformation. Regions to pay

more attention to are highlighted in dashed boxes.

module reduced the negative inter-object appearance inter-

ference in a complex scene when occlusion exists, yielding

better appearance for the generated objects.

6. Conclusion

In this work, we proposed a novel context feature trans-

formation module and a location-sensitive appearance rep-

resentation to improve existing layout to image (L2I) gen-

eration models. In particular, they are designed to address

existing models’ limitations on lacking context-aware mod-

eling in their generator and spatially sensitive appearance

representation in their discriminator. Extensive experiments

demonstrate the effectiveness of our method, yielding new

state-of-the-art on two benchmarks.
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