
FFB6D: A Full Flow Bidirectional Fusion Network for 6D Pose Estimation

Yisheng He1 Haibin Huang3 Haoqiang Fan2 Qifeng Chen1 Jian Sun2

1Hong Kong University of Science and Technology 2 Megvii Technology 3Kuaishou Technology

Abstract

In this work, we present FFB6D, a Full Flow

Bidirectional fusion network designed for 6D pose estima-

tion from a single RGBD image. Our key insight is that

appearance information in the RGB image and geometry

information from the depth image are two complementary

data sources, and it still remains unknown how to fully

leverage them. Towards this end, we propose FFB6D, which

learns to combine appearance and geometry information

for representation learning as well as output representa-

tion selection. Specifically, at the representation learning

stage, we build bidirectional fusion modules in the full

flow of the two networks, where fusion is applied to each

encoding and decoding layer. In this way, the two net-

works can leverage local and global complementary in-

formation from the other one to obtain better representa-

tions. Moreover, at the output representation stage, we

designed a simple but effective 3D keypoints selection al-

gorithm considering the texture and geometry information

of objects, which simplifies keypoint localization for pre-

cise pose estimation. Experimental results show that our

method outperforms the state-of-the-art by large margins

on several benchmarks. Code and video are available at

https://github.com/ethnhe/FFB6D.git.

1. Introduction

6D Pose Estimation is an important component in lots

of real-world applications, such as augmented reality [40],

autonomous driving [13, 8, 69] and robotic grasping [9, 62,

17]. It has been proven a challenging problem due to sensor

noise, varying lighting, and occlusion of scenes. Recently,

the dramatic growth of deep learning techniques motivates

several works to tackle this problem using convolution neu-

ral networks (CNNs) on RGB images [68, 46, 70, 34]. How-

ever, the loss of geometry information caused by perspec-

tive projection limits the performance of these approaches

in challenging scenarios, such as poor lighting conditions,

low-contrast scenes, and textureless objects. The recent ad-

vent of inexpensive RGBD sensors provides extra depth in-

formation to ease the problem [5, 19, 23, 22] and also leads
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(a) The DenseFusion [65] Network. The two networks extract features

from different modalities of data separately without any communication,

util the final layers of the encoding-decoding architecture.
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(b) The Proposed Full Flow Bidirectional Fusion Network. Bidirec-

tional fusion modules are added as bridges for information communication

in the full flow of the two networks, where fusion is applied on each encod-

ing and decoding layers. Local and global supplementary information from

each other is shared between the two networks for better appearance and

geometry representation learning, which is crucial for 6D pose estimation.

Figure 1: Network Comparison

to an interesting research question: How to fully leverage

the two data modalities effectively for better 6D pose esti-

mation?

One line of existing works [68, 32] leverage the advan-

tage of the two data sources within cascaded designs. These

works first estimate an initial pose from RGB images and

then refine it on point clouds using either the Iterative Clos-

est Point (ICP) algorithm or multi-view hypothesis verifica-

tion. Such refinement procedures are time-consuming and

can not be optimized with the pose from RGB images end-

to-end. On the other hand, works like [48, 69] apply a point

cloud network (PCN) and a CNN to extract dense features

from the cropped RGB image and point cloud respectively

and the extracted dense features are then concatenated for

pose estimation [65]. Recently, DenseFusion [65] proposed

a better fusion strategy which replaced the naive concatena-
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tion operation with a dense fusion module, shown in Figure

1(a), and delivered improved performance. However, both

feature concatenation and DenseFusion suffers from perfor-

mance degeneration due to the separation of CNN and PCN

in several scenarios, including objects with similar appear-

ance or with reflective surfaces. Such cases are challenging

either for the isolated CNN or the PCN feature extraction.

In this work, we propose a full flow bidirectional fusion

network that perform fusion on each encoding and decod-

ing layers for representation learning from the RGBD im-

age, shown in Figure 1(b). Our key insight is that appear-

ance information in RGB and geometry information in point

cloud can serve as complementary information during their

feature extraction procedure. Specifically, during the CNN

encoding-decoding procedure, it’s hard for CNN to learn a

distinctive representation for similar objects from the RGB

image, which, however, is obvious in the PCN’s view. On

the other hand, the miss of depth caused by reflective sur-

faces of objects challenges the point cloud only geometry

reasoning. Whereas, these objects are visible by CNN from

RGB images. Hence, it’s necessary to get through the two

separated feature extraction branches in the early encoding-

decoding stages and the proposed full flow bidirectional fu-

sion mechanism bridges this information gap.

We further leverage the learned rich appearance and ge-

ometry representation for the pose estimation stage. We fol-

low the pipeline proposed in PVN3D [17], which opens up

new opportunities for the 3D keypoint based 6D pose es-

timation. However, it only considers the distance between

keypoints for 3D keypoint selection. Some selected key-

points might appear in non-salient regions like smooth sur-

faces without distinctive texture, making it hard to locate.

Instead, we take both the object texture and geometry infor-

mation into account and propose the SIFT-FPS algorithm

for automatic 3D keypoint selections. Salient keypoints fil-

tered in this way are easier for the network to locate and the

pose estimation performance is facilitated.

To fully evaluate our method, we conduct experiments

on three popular benchmark datasets, the YCB-Video,

LineMOD, and Occlusion LineMOD datasets. Experimen-

tal results show that the proposed approach without any

time-consuming post-refinement procedure outperforms the

state-of-the-art by a large margin.

To summarize, the main contributions of this work are:

• A novel full flow bidirectional fusion network for rep-

resentation learning from a single scene RGBD image,

which can be generalized to more applications, such as

3D object detection.

• A simple but effective 3D keypoint selection algorithm

that leverages texture and geometry information of ob-

ject models.

• State-of-the-art 6D pose estimation performance on

the YCB-Video, LineMOD, and Occlusion LineMOD

datasets.

• In-depth analysis to understand various design choices

of the system.

2. Related Work

2.1. Pose Estimation with RGB Data

This line of works can be divided into three classes,

holistic approaches, dense correspondence exploring, and

2D-keypoint-based. Holistic approaches [27, 15, 18, 68,

33, 63, 58, 60, 44, 54] directly output pose parameters from

RGB images. The non-linearity of rotation space limit the

generalization of these approaches. Instead, dense corre-

spondence approaches [36, 59, 14, 2, 41, 28, 12, 34, 66,

6, 6, 21, 4] find the correspondence between image pixels

and mesh vertexes and recover poses within Perspective-n-

Point (PnP) manners. Though robust to occlusion, the large

output space limits the prediction accuracy. Instead, 2D-

keypoint-based [53, 52, 42, 29, 43, 46, 72, 38] detect 2D

keypoints of objects to build the 2D-3D correspondence for

pose estimation. However, the loss of geometry informa-

tion due to perspective projections limit the performance of

these RGB only methods.

2.2. Pose Estimation with Point Clouds

The development of depth sensors and point cloud rep-

resentation learning techniques [49, 50] motivates sev-

eral point clouds only approaches. These approaches ei-

ther utilize 3D ConvNets [56, 57] or point cloud network

[74, 47, 24] for feature extraction and 3D bounding box pre-

diction. However, sparsity and non-texture of point cloud

limit the performance of these approaches. Besides, objects

with reflective surfaces can not be captured by depth sen-

sors. Therefore, taking RGB images into account is neces-

sary.

2.3. Pose Estimation with RGBD Data

Traditional methods utilize hand-coded [19, 20, 51]

templates or features optimized by surrogate objectives

[2, 61, 67, 28] from RGBD data and perform correspon-

dence grouping and hypothesis verification. Recent data-

driven approaches propose initial pose from RGB images

and refine it with point cloud using ICP [68] or MCN [32]

algorithms. However, they are time-consuming and are not

end-to-end optimizable. Instead, works like [31, 35] add

appearance information from CNN on RGB images as com-

plementary information for geometry reasoning on bird-

eye-view (BEV) images of point clouds. But they neglect

the help of geometry information for RGB representation

learning, the BEV ignore the pitch and roll of object pose,

and the regular 2D CNN is not good at contiguous geome-

try reasoning either. Instead, [17, 69, 48, 65, 73, 64] extract
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(a) The pipeline of FFB6D. A CNN and a point cloud network is utilized for representation learning of RGB image and point cloud respectively. In flow

of the two networks, bidirectional fusion modules are added as communicate bridges. The extracted per-point features are then fed into an instance semantic

segmentation and a 3D keypoint voting modules to obtain per-object 3D keypoints. Finally, the pose is recovered within a least-squares fitting algorithm.
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(b) Dense bidirectional fusion modules. (1) The pixel-to-point fusion modules fuse RGB features to point cloud features. For each point, we find its Kr2p

nearest neighbors in the XYZ map and gather their corresponding appearance features from the RGB feature map. These features are then processed by max

pooling and a shared MLP to obtain the most significant appearance features. Finally, a shared MLP fuses the concatenation of the appearance and geometry

features to obtain the fused point features. (2) The point-to-pixel fusion modules similarly obtain fused pixel features as the pixel-to-point fusion.

Figure 2: Overview of FFB6D.

features from RGB images and point clouds using CNN and

point cloud network individually and then fused them for

pose estimation. Such approaches are more effective and

efficient. Nevertheless, since the appearance and geome-

try features are extracted separately, the two networks are

not able to communicate and share information, and thus

limit the expression ability of the learned representation. In

this work, we add bidirectional fusion modules in the full

network flow as communication bridges between the two

networks. Assisted by supplementary information from an-

other branch, better representation of appearance and geom-

etry features are obtained for pose estimation.

3. Proposed Method

Given an RGBD image, the task of object 6D pose es-

timation aims to predict a transformation matrix that trans-

forms the object from its coordinate system to the camera

coordinate system. Such transformation consists of a rota-

tion matrix R ∈ SO(3) and a translation matrix T ∈ R
3.

To tackle the problem, pose estimation algorithms should

fully explore the texture and the geometric information of

both the scene and the target object.

3.1. Overview

We propose a full flow bidirectional fusion network to

solve the problem, as shown in Figure 2(a). The proposed

framework first extracts the pointwise RGBD feature for

per-object 3D keypoints localization. Then the pose pa-

rameters are recovered within a least-square fitting manner.

More specifically, given an RGBD image as input, we uti-

lize a CNN to extract appearance features from the RGB

image, and a point cloud network to extract geometric fea-

tures from point clouds. During the feature extraction flow

of the two networks, point-to-pixel and pixel-to-point fu-

sion modules are added into each layer as communication

bridges. In this way, the two branches can utilize the ex-

tra appearance (geometric) information from the other to

facilitate their own representation learning. The extracted

pointwise features are then fed into an instance semantic

segmentation and a 3D keypoint detection module to obtain

per-object 3D keypoints in the scene. Finally, a least-square

fitting algorithm is applied to recover the 6D pose parame-

ters.
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3.2. Full Flow Bidirectional Fusion Network

Given an aligned RGBD image, we first lift the depth

image to a point cloud with the camera intrinsic matrix. A

CNN and a point cloud network (PCN) is then applied for

feature extraction from the RGB image and point cloud re-

spectively. When the information flow through the two net-

works, point-to-pixel and pixel-to-point fusion modules are

added for bidirectional communication. In this way, each

branch can leverage local and global information from the

other to facilitate their representation learning.

Pixel-to-point fusion from image features to point

cloud features. These modules share the appearance in-

formation extracted from CNN to the PCN. One naive way

is to generate a global feature from the RGB feature map

and then concatenate it to each point cloud feature. How-

ever, since most of the pixels are background and there are

multi objects in the scene, squeezing the RGB feature map

globally would lose lots of detailed information and harm

the following pose estimation module. Instead, we intro-

duce a novel pixel to point feature fusion module. Since

the given RGBD image is well-aligned, we can use the 3D

point clouds as a bridge to connect the pixel-wise and the

point-wise features. More specifically, we lift the depth of

each pixel to its corresponding 3D point with the camera in-

trinsic matrix and get an XYZ map, aligned with the RGB

map. As shown in the left part of Figure 2(b), for each point

feature with its 3D point coordinate, we find its Kr2p near-

est point in the XYZ map and gather their corresponding

appearance features from the RGB feature map. We then

use max polling to integrate these neighboring appearance

features following [50], and apply shared Multi-Layer Per-

ceptrons (MLPs) to squeeze it to the same channel size as

the point cloud feature:

Fr2p =MLP (
Kr2p

max
i=1

Fri), (1)

where Fri is the ith nearest pixel of RGB feature and Fr2p

the integrated one. We then concatenate the integrated ap-

pearance feature Fr2p with the point feature Fpoint and use

shared MLP to obtained the fused point feature:

Ffusedp
=MLP (Fpoint ⊕ Fr2p), (2)

where ⊕ is the concatenate operation.

One thing to mention is that in the flow of the appearance

feature encoding, the height and width of the RGB feature

maps get smaller when the network goes deeper. There-

fore, we need to maintain a corresponding XYZ map so that

each pixel of feature can find its 3D coordinate. Since the

decreased size of the feature map is generated by convolu-

tion kernel scanning through the original feature map with

stride, the centers of kernels become new coordinates of the

feature maps. One simple way is to apply the same size

of kernels to calculate the mean of XYZ within it to gen-

erate a new XYZ coordinate of a pixel. The corresponding

XYZ map is then obtained by scanning through the XYZ

map with the mean kernel in the same stride as CNN. How-

ever, noise points are produced by the mean operation as

the depth changes remarkably on the boundary between the

foreground objects and the background. Instead, a better

solution is to resize the XYZ map to the same size as the

feature map within the nearest interpolation algorithm.

Point-to-pixel fusion from point cloud features to im-

age features. These modules build bridges to transfer the

geometric information obtained from the PCN to the CNN.

The procedure is shown on the right side of Figure 2(b).

Same as the pixel-to-point fusion modules, we fuse the fea-

ture densely rather than naively concatenating the global

point feature to each pixel. Specifically, for each pixel of

feature with its XYZ coordinate, we find its Kp2r nearest

points from the point cloud and gather the corresponding

point features. We squeeze the point features to the same

channel size as the RGB feature and then use max pooling

to integrate them. The integrated point feature is then con-

catenated to the corresponding color feature and mapped by

a shared MLP to generate the fused one:

Fp2r =
Kp2r

max
j=1

(MLP (Fpj
)), (3)

Ffusedr
=MLP (Frgb ⊕ Fp2r), (4)

where Fpj
denotes the jth nearest point features, Fp2r the

integrated point features and ⊕ the concatenate operation.

Dense RGBD feature embedding With the proposed

full flow fusion network, we obtain dense appearance em-

beddings from the CNN branch and dense geometry fea-

tures from the PCN branch. We then find the correspon-

dence between them by projecting each point to the image

plane with the camera intrinsic matrix. According to the

correspondence, we obtain pairs of appearance and geome-

try features and concatenate them together to form the ex-

tracted dense RGBD feature. These features are then fed

into an instance semantic segmentation module and a 3D

keypoint detection module for object pose estimation in the

next step.

3.3. 3D Keypointbased 6D Pose Estimation

Recently, the PVN3D [17] work by He et al. opens up

new opportunities for using 3D keypoints to estimate object

pose. In this work, we follow their 3D keypoint formulation

but further improve the 3D keypoint selection algorithm to

fully leverage the texture and geometry information of ob-

jects. Specifically, we first detect the per-object selected 3D

keypoints in the scene and then utilize a least-squares fitting

algorithm to recover the pose parameters.

Per-object 3D keypoint detection So far we have ob-

tained the dense RGBD embeddings. We then follow
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PVN3D [17] and obtain the per-object 3D keypoints by

adding an instance semantic segmentation module to distin-

guish different object instances and a keypoint voting mod-

ule to recover 3D keypoints. The instance semantic segmen-

tation module consists of a semantic segmentation module

and a center point voting module, where the former one pre-

dicts per-point semantic labels, and the latter one learns the

per-point offset to object centers for distinguishment of dif-

ferent instances. For each object instance, the keypoint vot-

ing module learns the point-wise offsets to the selected key-

points that vote for 3D keypoint within a MeanShift [10]

clustering manners.

Keypoint selection Previous works [46, 17] select key-

points from the target object surface using the Farthest Point

Sampling (FPS) algorithm. Specifically, they maintain a

keypoint set initialized by a random point on the object sur-

face and iteratively add other points that are farthest to those

within the set until N points are obtained. In this way, the

selected keypoints spread on the object surface and stabilize

the following pose estimation procedure [46, 17]. However,

since the algorithm only takes the Euclidean distance into

account, the selected points may appear in non-salient re-

gions, such as flat planes without distinctive texture. These

points are hard to detect and the accuracy of the estimated

pose decrease. To fully leverage the texture and geometry

information of objects, we propose a simple but effective

3D keypoint selection algorithm, named SIFT-FPS. Specifi-

cally, we use the SIFT [39] algorithm to detect 2D keypoints

that are distinctive in texture images and then lift them to

3D. The FPS algorithm is then applied for the selection of

top N keypoints among them. In this way, the selected key-

points not only distribute evenly on the object surface but

are also distinctive in texture and easy to detect.

Least-Squares Fitting Given the selected 3D keypoints

in the object coordinates system {pi}
N
i=1

, and the corre-

sponding 3D keypoints in the camera coordinated system

{p∗i }
N
i=1

. The Least-Squares Fitting [1] algorithm calculate

the pose parameters R and T by minimizing the squared

loss:

Llsf =
N∑

i=1

||p∗i − (R · pi + T )||2. (5)

4. Experiments

4.1. Benchmark Datasets

We evaluate our method on three benchmark datasets.

YCB-Video [5] contains 92 RGBD videos that capture

scenes of 21 selected YCB objects. We followed previous

works [68, 65, 17] to split the training and testing set. Syn-

thetic images were also taken for training as in [68] and the

hole completion algorithm [30] is applied for hole filling for

depth images as in [17].

Figure 3: Performance of different approaches under in-

creasing levels of occlusion on the YCB-Video dataset.

LineMOD [19] is a dataset with 13 videos of 13 low-

textured objects. The texture-less objects, cluttered scenes,

and varying lighting make this dataset challenge. We

split the training and testing set following previous works

[68, 46] and generate synthesis images for training follow-

ing [46, 17].

Occlusion LINEMOD [3] was selected and annotated

from the LineMOD datasets. Each scene in this dataset con-

sists of multi annotated objects, which are heavily occluded.

The heavily occluded objects make this dataset challenge.

4.2. Evaluation Metrics

We use the average distance metrics ADD and ADD-S

for evaluation. For asymmetric objects, the ADD metric

calculate the point-pair average distance between objects

vertexes transformed by the predicted and the ground truth

pose, defined as follows:

ADD =
1

m

∑

v∈O
||(Rv + T )− (R∗v + T ∗)||. (6)

where v denotes a vertex in object O, R, T the predicted

pose and R∗, T ∗ the ground truth. For symmetric objects,

the ADD-S based on the closest point distance is applied:

ADD-S =
1

m

∑

v1∈O
min
v2∈O

||(Rv1 + T )− (R∗v2 + T ∗)||.

(7)

In the YCB-Video dataset, we follows previous methods

[68, 65, 17] and report the area under the accuracy-threshold

curve obtained by varying the distance threshold (ADD-

S and ADD(S) AUC). In the LineMOD and Occlusion

LineMOD datasets, we report the accuracy of distance less

than 10% of the objects diameter (ADD-0.1d) as in [20, 46].
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PoseCNN [68] PointFusion [69] DCF [35] DF (per-pixel) [65] PVN3D [17] Our FFB6D

Object ADDS ADD(S) ADDS ADD(S) ADDs ADD(S) ADDS ADD(S) ADDS ADD(S) ADDS ADD(S)

002 master chef can 83.9 50.2 90.9 - 90.9 74.6 95.3 70.7 96.0 80.5 96.3 80.6

003 cracker box 76.9 53.1 80.5 - 87.1 79.3 92.5 86.9 96.1 94.8 96.3 94.6

004 sugar box 84.2 68.4 90.4 - 94.3 84.2 95.1 90.8 97.4 96.3 97.6 96.6

005 tomato soup can 81.0 66.2 91.9 - 90.5 79.8 93.8 84.7 96.2 88.5 95.6 89.6

006 mustard bottle 90.4 81.0 88.5 - 90.6 83.5 95.8 90.9 97.5 96.2 97.8 97.0

007 tuna fish can 88.0 70.7 93.8 - 91.7 73.8 95.7 79.6 96.0 89.3 96.8 88.9

008 pudding box 79.1 62.7 87.5 - 89.3 84.1 94.3 89.3 97.1 95.7 97.1 94.6

009 gelatin box 87.2 75.2 95.0 - 92.9 89.5 97.2 95.8 97.7 96.1 98.1 96.9

010 potted meat can 78.5 59.5 86.4 - 83.2 74.6 89.3 79.6 93.3 88.6 94.7 88.1

011 banana 86.0 72.3 84.7 - 84.8 71.0 90.0 76.7 96.6 93.7 97.2 94.9

019 pitcher base 77.0 53.3 85.5 - 89.5 80.3 93.6 87.1 97.4 96.5 97.6 96.9

021 bleach cleanser 71.6 50.3 81.0 - 88.4 79.8 94.4 87.5 96.0 93.2 96.8 94.8

024 bowl 69.6 69.6 75.7 75.7 80.3 80.3 86.0 86.0 90.2 90.2 96.3 96.3

025 mug 78.2 58.5 94.2 - 90.7 76.6 95.3 83.8 97.6 95.4 97.3 94.2

035 power drill 72.7 55.3 71.5 - 87.4 78.4 92.1 83.7 96.7 95.1 97.2 95.9

036 wood block 64.3 64.3 68.1 68.1 84.2 84.2 89.5 89.5 90.4 90.4 92.6 92.6

037 scissors 56.9 35.8 76.7 - 84.2 70.3 90.1 77.4 96.7 92.7 97.7 95.7

040 large marker 71.7 58.3 87.9 - 89.5 81.0 95.1 89.1 96.7 91.8 96.6 89.1

051 large clamp 50.2 50.2 65.9 65.9 63.6 63.6 71.5 71.5 93.6 93.6 96.8 96.8

052 extra large clamp 44.1 44.1 60.4 60.4 64.4 64.4 70.2 70.2 88.4 88.4 96.0 96.0

061 foam brick 88.0 88.0 91.8 91.8 83.1 83.1 92.2 92.2 96.8 96.8 97.3 97.3

ALL 75.8 59.9 83.9 - 85.7 77.9 91.2 82.9 95.5 91.8 96.6 92.7

Table 1: Quantitative evaluation of 6D Pose without iterative refinement on the YCB-Video Dataset. The ADD-S [68] and

ADD(S) [20] AUC are reported. Symmetric objects are in bold. DF (per-pixel) means DenseFusion (per-pixel).

PCNN+ICP DF(iter.) MoreFusion PVN3D+ICP FFB6D+ICP

ADD-S 93.0 93.2 95.7 96.1 97.0

ADD(S) 85.4 86.1 91.0 92.3 93.1

Table 2: Quantitative evaluation of 6D Pose with itera-

tive refinement on the YCB-Video Dataset (ADD-S [68]

and ADD(S) AUC [20]). Baselines: PoseCNN+ICP [68],

DF(iter.) [65], MoreFusion [64], PVN3D+ICP [17].

4.3. Training and Implementation

Network architecture. We apply ImageNet [11] pre-

trained ResNet34 [16] as encoder of RGB images, followed

by a PSPNet [71] as decoder. For point cloud feature extrac-

tion, we randomly sample 12288 points from depth images

following [17] and applied RandLA-Net [24] for represen-

tation learning. In each encoding and decoding layers of the

two networks, max pooling and shared MLPs are applied to

build bidirectional fusion modules. After the process of the

full flow bidirectional fusion network, each point has a fea-

ture fi ∈ R
C of C dimension. These dense RGBD features

are then fed into the instance semantic segmentation and the

keypoint offset learning modules consist of shared MLPs.

Optimization regularization. The semantic segmen-

tation branch is supervised by Focal Loss [37]. The cen-

ter point voting and 3D keypoints voting modules are opti-

mized by L1 loss as in [17]. To jointly optimize the three

tasks, a multi-task loss with the weighted sum of them is

applied following [17].

SIFT-FPS keypoint selection algorithm. We put the

target object at the center of a sphere and sample viewpoints

of the camera on the sphere equidistantly. RGBD images

with camera poses are obtained by render engines. We then

detect 2D keypoints from RGB images with SIFT. These 2D

keypoints are lifted to 3D and transformed back to the object

coordinates system. Finally, an FPS algorithm is applied to

select N target keypoints out of them.

4.4. Evaluation on Three Benchmark Datasets.

We evaluate the proposed models on the YCB-Video, the

LineMOD, and the Occlusion LineMOD datasets.

Evaluation on the YCB-Video dataset. Table 1 shows

the quantitative evaluation results of the proposed FFB6D

on the YCB-Video dataset. We compare it with other sin-

gle view methods without iterative refinement. FFB6D ad-

vances state-of-the-art results by 1.1% on the ADD-S met-

ric and 1.0% on the ADD(S) metric. Equipped with ex-

tra iterative refinement, our approach also achieves the best

performance, demonstrated in Table 2. Note that the pro-

posed FFB6D without any iterative refinement even outper-

forms state-of-the-arts that require time-consuming post-

refinement procedures. Qualitative results are reported in
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RGB RGB-D

PoseCNN
DeepIM
[68, 33]

PVNet[46] CDPN[34] DPOD[70] Point-
Fusion[69]

Dense-
Fusion[65]

G2L-
Net[7]

PVN3D[17] Our
FFB6D

MEAN 88.6 86.3 89.9 95.2 73.7 94.3 98.7 99.4 99.7

Table 3: Quantitative evaluation of 6D pose on the LineMOD dataset (ADD-0.1d [20] metrics).

Method PoseCNN
[68]

Oberweger
[43]

Hu et al.
[26]

Pix2Pose
[45]

PVNet
[46]

ADD-0.1d 24.9 27.0 27.0 32.0 40.8

Method DPOD
[70]

Hu et
al.[25]

HybridPose
[55]

PVN3D
[17]

Our
FFB6D

ADD-0.1d 47.3 43.3 47.5 63.2 66.2

Table 4: Quantitative evaluation of 6D pose (ADD-0.1d) on

the Occlusion-LineMOD dataset.

Fusion Stage Pose Result

FE FD DF ADD-S ADD(S)

91.9 87.5√
96.2 92.2√
93.0 89.2√
94.0 90.8√ √
96.6 92.7√ √ √
96.4 92.6

Table 5: Effect of fusion stages on the YCB-Video dataset.

FE: fusion during encoding; FD: fusion during decoding;

DF: Dense Fusion on the two final feature maps.

the supplementary material.

Robustness towards occlusion. We follow [65, 17] to

report the ADD-S less than 2cm accuracy under the growth

of occlusion level on the YCB-Video dataset. As is shown

in Figure 3, previous methods degrade as the occlusion in-

crease. In contrast, FFB6D didn’t suffer from a drop in

performance. We think our full flow bidirectional fusion

mechanism makes full use of the texture and geometry in-

formation in the captured data and enables our approach to

locate 3D keypoints even in highly occluded scenes.

Evaluation on the LineMOD dataset & Occlusion

LineMOD dataset. The proposed FFB6D outperforms the

state-of-the-art on the LineMOD dataset, presented in Ta-

ble 3. We also evaluate FFB6D on the Occlusion LineMOD

dataset, shown in Table 4. In the table, our FFB6D with-

out iterative refinement advances state-of-the-art by 4.7%,

further confirming its robustness towards occlusion.

4.5. Ablation Study

In this subsection, we present extensive ablation studies

on our design choices and discuss their effect.

Effect of full flow bidirectional fusion. To validate

that building fusion modules between the two modality net-

works in full flow help, we ablate fusion stages in Table

5. Compared to the mechanism without fusion, adding fu-

sion modules either on the encoding stage, decoding stage,

Fusion Direction Pose Result

P2R R2P ADD-S ADD(S)

91.9 87.5√
95.8 91.1√
94.5 90.6√ √
96.6 92.7

Table 6: Effect of fusion direction on the YCB-Video

dataset. P2R means fusion from point cloud embeddings

to RGB embeddings, and R2P means fusion from RGB em-

beddings to point cloud embeddings.

or on the final feature maps, can all boost the performance.

Among the three stages, fusion on the encoding stages ob-

tained the highest improvement. We think that’s because the

extracted local texture and geometric information are shared

through the fusion bridge on the early encoding stage, and

more global features are shared when the network goes

deeper. Also, adding fusion modules in full flow of the

network, saying that on both the encoding and decoding

stages, obtains the highest performance. While adding ex-

tra DenseFusion behind full flow fusion obtains no perfor-

mance gain as the two embeddings have been fully fused.

We also ablate the fusion direction in Table 6 to vali-

date the help of bidirectional fusion. Compared with no

fusion, both the fusion from RGB to point cloud and the in-

verse way facilitate better representation learning. Combin-

ing the two obtains the best results. On the one hand, from

the view of PCN, we think the rich textures information

obtained from high-resolution RGB images helps semantic

recognition. In addition, the high-resolution RGB features

provide rich information for blind regions of depth sensors

caused by reflective surfaces. It serves as a completion to

point cloud and improve pose accuracy, as shown in Fig-

ure 4(a). On the one hand, geometry information extracted

from point cloud helps the RGB branch by distinguishing

foreground objects from the background that are in similar

colors. Moreover, the shape size information extracted from

point clouds helps divide objects with a similar appearance

but in a different size, as is shown in Figure 4(b).

Effect of representation learning frameworks. We ex-

plore the effect of different representation learning frame-

works for the two modalities of data in this part. The result

is presented in Table 7. We find that neither concatenating

the XYZ map as extra information to CNN (CNN-R⊕D)

nor adding RGB values as extra inputs to the PCN (PCN-

R⊕D) achieves satisfactory performance. Using two CNNs
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Large clamp

Extra-large clampRGB Scene Our FFB6D

PVN3D

(b)  Effect of point-to-pixel fusion from point cloud features to image features. The point-to-pixel fusion provides 
geometry information from PCN on point cloud to help distinguish objects with similar appearance during appearance 
representation learning.

PVN3D

Our FFB6DDepth

RGB

(a)  Effect of pixel-to-point fusion from image features to point cloud 
features. The pixel-to-point fusion provides a vision of reflective surfaces 
from CNN on RGB to ease point cloud reasoning.

Figure 4: Effect of full flow bidirectional fusion, compared to PVN3D [17] with DenseFusion architecture.

CNN-R⊕D PCN-R⊕D CNN-R+CNN-D

ADD-S 91.0 90.9 92.1

ADD(S) 85.5 81.2 87.2

PCN-R+PCN-D CNN-R+3DC-D CNN-R+PCN-D

ADD-S 91.8 94.9 96.6

ADD(S) 84.3 90.1 92.7

Table 7: Effect of representation learning framework on the

two modalities of data. CNN: 2D Convolution Neural Net-

work; PCN: point cloud network; 3DC: 3D ConvNet; R:

RGB images; D: XYZ maps for CNN, point clouds for PCN

and voxelized point clouds for 3D ConvNet.

FPS4 S-F4 FPS8 S-F8 FPS12 S-F12

KP err. (cm) 1.3 1.2 1.4 1.2 1.6 1.3

ADD-S 95.9 96.4 96.1 96.6 96.0 96.5

ADD(S) 92.0 92.4 92.3 92.7 92.0 92.6

Table 8: Effect of keypoint selection algorithm. S-F means

the proposed SIFT-FPS algorithm.

(CNN-R+CNN-D) or two PCNs (PCN-R+PCN-D) with full

flow bidirectional fusion modules get better but are still far

from satisfactory. In contrast, applying CNN on the RGB

image and PCN on the point cloud (CNN-R+PCN-D) gets

the best performance. We think that the grid-like image data

is discrete, on which the regular convolution kernel fits bet-

ter than continuous PCN. While the geometric information

residing in the depth map is defined in a continuous vector

space, and thus PCNs can learn better representation.

Effect of 3D keypoints selection algorithm. In Table

8, we study the effect of different keypoint selection algo-

rithms. Compared with FPS that only considers the mutual

distance between keypoints, our SIFT-FPS algorithm taking

both object texture and geometry information into account

is easier to locate. Therefore, the predicted keypoint error

is smaller and the estimated poses are more accurate.

Effect of the downsample strategy of the assisting

XYZ map. The size of RGB feature maps are shrunk by

Run-time (ms/frame)
Parameters

NF PE All

PVN3D[17] 39.2M 170 20 190

Our FFB6D 33.8M 57 18 75

Table 9: Model parameters and run-time breakdown on the

LineMOD dataset. NF: Network Forward; PE: Pose Esti-

mation. Our FFB6D with fewer parameters is 2.5x faster.

stridden convolution kernels. To maintain the correspond-

ing XYZ maps, we first scale it down with the same size of

mean kernels and got 96.3 ADD-S AUC. However, simply

resize the XYZ map with the nearest interpolation got 96.6.

We find the average operation produces noise points on the

boundary and decrease the performance.

Model parameters and time efficiency. In Table 9, we

report the parameters and run-time breakdown of FFB6D.

Compared to PVN3D [17], which obtained the fused RGBD

feature by dense fusion modules [65] in the final layers, our

full flow bidirectional fusion network achieve better perfor-

mance with fewer parameters and is 2.5 times faster.

5. Conclusion

We propose a novel full flow bidirectional fusion net-

work for representation learning from a single RGBD im-

age, which extract rich appearance and geometry informa-

tion in the scene for pose estimation. Besides, we intro-

duce a simple but effective SIFT-FPS keypoint selection al-

gorithms that leverage texture and geometry information of

objects to simplify keypoint localization for precise pose

estimation. Our approach outperforms all previous ap-

proaches in several benchmark datasets by remarkable mar-

gins. Moreover, we believe the proposed full flow bidirec-

tional fusion network can generalize to more applications

built on RGBD images, such as 3D object detection, 3D in-

stance semantic segmentation and salient object detection

etc. and expect to see more future research along this line.
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