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Figure 1: How many point labels are necessary to train a 3D instance segmentation model on point clouds? It turns out not

too many! With the help of unsupervised pre-training, only 20 labelled points per scene (less than 0.1% of the total points)

are used to fine-tune an instance segmentation model on ScanNet. Left: Train samples; only colored points (enlarged for

better visibility) are labeled. Right: Predictions in validation set and different colors represent different instances.

Abstract

The rapid progress in 3D scene understanding has come

with growing demand for data; however, collecting and an-

notating 3D scenes (e.g. point clouds) are notoriously hard.

For example, the number of scenes (e.g. indoor rooms)

that can be accessed and scanned might be limited; even

given sufficient data, acquiring 3D labels (e.g. instance

masks) requires intensive human labor. In this paper, we

explore data-efficient learning for 3D point cloud. As a

first step towards this direction, we propose Contrastive

Scene Contexts, a 3D pre-training method that makes use

of both point-level correspondences and spatial contexts in

a scene. Our method achieves state-of-the-art results on

a suite of benchmarks where training data or labels are

scarce. Our study reveals that exhaustive labelling of 3D

point clouds might be unnecessary; and remarkably, on

ScanNet, even using 0.1% of point labels, we still achieve

89% (instance segmentation) and 96% (semantic segmenta-

tion) of the baseline performance that uses full annotations.

1. Introduction

Recent advances in deep learning on point clouds, such

as those obtained from LiDAR or depth sensors, together

with a proliferation of public, annotated datasets [9, 13, 53,

32, 64, 2, 40, 55], have led to swift progress in 3D scene

understanding. However, compared to large-scale 2D scene

understanding on images [14, 38, 23], the scale of 3D scene

understanding—in terms of the amount and diversity of data

and annotations, the model size, the number of semantic

categories, and so on—still falls behind. We argue that one

major bottleneck is the fact that collecting and annotating

diverse 3D scenes are significantly more expensive. Unlike

2D images that comfortably exists on the Internet, collect-

ing real world 3D scene datasets usually involves travers-

ing the environment in real life and scanning with 3D sen-

sors. Therefore, the number of indoor scenes that can be

scanned might be limited. What is more concerning is that,

even given sufficient data acquisition, 3D semantic labelling

(e.g. bounding boxes and instance masks) requires complex

pipelines [13] and labor-intensive human effort.

In this work, we explore a new learning task in 3D, i.e.
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data-efficient 3D scene understanding, which focuses on the

problem of learning with limited data or supervision1. We

note that the importance of data-efficient learning in 3D is

two-fold. One concerns the status quo: given limited data

we have right now, can we design better methods that per-

form better? The other one is more forward-looking: is it

possible to reduce the human labor for annotation, with a

goal of creating 3D scene datasets on a much larger scale?

To formally study the problem, we first introduce a suite

of scene understanding benchmarks that encompasses two

complementary settings for data-efficient learning: (1) lim-

ited scene reconstructions (LR) and (2) limited annotations

(LA). The first setting concerns the scenario where the bot-

tleneck is the number of scenes that can be scanned and

reconstructed. The second one focuses on the case where in

each scene, the budget for labeling is constrained (e.g. one

can only label a small set of points). For each setting, the

evaluation is done on a diverse set of scene understanding

tasks including object detection, semantic segmentation and

instance segmentation.

For data-efficient learning in 2D [28], representation

learning, e.g. pre-training on a rich source set and fine-

tuning on a much smaller target set, often comes to the res-

cue; in 3D, representation learning for data-efficient learn-

ing is even more wanted but long overdue. With this per-

spective, we focus on studying data-efficient 3D scene un-

derstanding through the lens of representation learning.

Only recently, PointContrast [65] demonstrates that net-

work weights pre-trained on 3D partial frames can lead to

a performance boost when fine-tuned on 3D semantic seg-

mentation and object detection tasks. Our work is inspired

by PointContrast. However, we observe that the simple

contrastive-learning based pretext task used in [65] only

concerns point-level correspondence matching, which com-

pletely disregards the spatial configurations and contexts

in a scene. In Section 3, we show that this design limits

the scalibility and transferability; we further propose an ap-

proach that integrates the spatial information into the con-

trastive learning framework. The simple modification can

significantly improve the performance over PointContrast,

especially on complex tasks such as instance segmentation.

Our exploration in data-efficient 3D scene understand-

ing provides some surprising observations. For example, on

ScanNet, even using 0.1% of point labels, we are still able

to recover 89% (instance segmentation) and 96% (semantic

segmentation) of the baseline performance that uses full an-

notations. The results imply that exhaustive labelling of 3D

point clouds might not be necessary. In both scenarios of

limited scene reconstructions (LR) and limited annotations

(LA), our pre-trained network, when used as the initializa-

1Sometimes a distinction is drawn between data-efficiency and label-

efficiency, to separate the scenarios of limited amount of data samples and

limited supervision; here, we use data-efficiency to encompass both cases.

tion for supervised fine-tuning, offers consistent improve-

ment across multiple tasks and datasets. In the scenario of

LA, we also show that an active labeling strategy can be en-

abled by clustering the pre-trained point features.

In summary, the contributions of our work include:

• A systematic study on data-efficient 3D scene under-

standing with a comprehensive suite of benchmarks.

• A new 3D pre-training method that can gracefully

transfer to complex tasks such as instance segmenta-

tion and outperform the state-of-the-art results.

• Given the pre-trained network, we study practical so-

lutions for data-efficient learning in 3D through fine-

tuning as well as an active labeling strategy.

2. Related Work

3D Scene Understanding. Research in deep learning on

3D point clouds have been recently shifted from synthetic,

single object classification [47, 46, 48] to the challenge of

large-scale, real-world scene understanding. A variety of

datasets [2, 13, 54, 18, 55] and algorithms have been pro-

posed for 3D object detection [45, 44, 43, 24], semantic

segmentation [46, 56, 62, 57, 20, 12] and instance seg-

mentation [59, 30, 69, 36, 60, 67, 31, 15, 34, 33]. In

the past year, sparse convolutional networks [20, 12] stand

out as a promising approach to standardize deep learning

for point clouds, due to its computational efficiency and

state-of-the-art performance for 3D scene understanding

tasks [12, 25, 34]. In this work, we also adopt a sparse

U-Net [49] backbone for our exploration.

3D Representation Learning. Compared to 2D vision,

the limits of big data are far from being fully explored

in 3D. In 2D representation learning, for example, trans-

fer learning from a rich source data (e.g. ImageNet [14])

to a (typically smaller) target data, has become a domi-

nant framework for many applications [19]. In contrast,

3D representation learning has not been widely adopted

and most 3D networks are trained from scratch on the

target data directly. Recently, unsupervised pre-training

has made great progress and drawn significant attention in

2D [42, 3, 39, 28, 63, 58, 29, 27, 10, 8, 21]. Following

suit, recent works attempt to adapt the 2D pretext tasks to

3D, but mostly focus on single object classification tasks

on ShapeNet [1, 17, 68, 22, 37, 61, 26, 51, 50]. Our work

is mostly inspired by a recent contrastive-learning based

method PointContrast [65], which first demonstrates the ef-

fectiveness of unsupervised pre-training on a diverse set of

scene-level understanding tasks. As we will show in the

later sections, the simple point-level pre-training objective

in PointContrast ignores the spatial contexts of the scene

(such as relative poses of objects, and distances between

them) which limits its transferability for complex tasks such

as instance segmentation. PointContrast also focuses on
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downstream tasks with 100% data and labels, while we sys-

tematically explore a new data-efficient paradigm that has

practical importance.

Data-Efficient Learning. Data-efficient learning concerns

the problem of learning with limited training examples

or labels. This capability is known in cognitive science

to be a distinctive characteristic of humans [6]. In con-

trast, training deep neural networks is not naturally data-

efficient, as it typically relies on large amount of anno-

tated data. Among many potential solutions towards this

goal, representation learning (commonly through transfer

learning) is arguably the most promising one. A good rep-

resentation “entangles the different explanatory factors of

variation behind the data” [5] and thus makes the down-

stream prediction easier (and less data-hungry). This con-

cept has been validated successfully in natural language

processing [7] and to some extent in 2D image classifica-

tion [28]. Pursuing this direction in 3D is even more desir-

able, considering the potential benefit in reducing the labor

of data collection and annotation. Existing work focuses on

mostly single CAD model classification or part segmenta-

tion [70, 52, 41, 11, 26, 16, 65]. To the best of our knowl-

edge, our work is the first to explore data-efficient learning

in a real-world, large-scale 3D scene understanding setup.

3. Contrastive Scene Contexts for Pre-training

In this section, we first briefly revisit the PointContrast

framework [65], and discuss the shortcomings and reme-

dies. We then introduce our pre-training algorithm.

Revisiting PointContrast. The pre-training objective for

PointContrast is to achieve point equivariance with respect

to a set of random geometric transformations. Given a

pair of overlapping partial scans, a contrastive loss for pre-

training is defined over the point features. The objective

is to minimizes the distance for matched points (positive

pairs) and maximize the distance between unmatched ones

(negative pairs). Despite the fact that strong spatial contexts

exist among objects in a scene, this objective does not cap-

ture any of the spatial information: the negative pairs could

be sampled from arbitrary locations across many scenes in

a mini-batch. We hypothesize that this leads to some lim-

itations: 1) the spatial contexts (e.g. relative pose, direc-

tion and distance), which could be pivotal for complex tasks

such as instance segmentation, are entirely discarded from

pre-training; 2) the scalibility of contrastive learning might

be hampered; PointContrast cannot utilize a large number of

negative points, potentially because that contrasting a pair

of spatially distant and unrelated points would contribute

little to learning. In fact, PointContrast uses only a random

sampling of 1024 points per scene for pre-training, and it

has been shown that results do not improve with more sam-

pled points [65]. We also confirm this behavior with exper-

iments later this section.

2 Partitions 4 Partitions 8 Partitions

Figure 2: Illustration of Scene Contexts. We visualize

the 2,4 and 8 spatial partitions for Scene Contexts. The an-

chor point is in the center. For 2 and 4 partitions, only rela-

tive angles are sufficient. For 8 partitions (a cross-section is

shown), both relative angles and distances are needed.

Contrastive Scene Contexts. We hope to integrate spa-

tial contexts into the pre-training objective. There are many

ways to achieve the goal, and here we take inspiration from

the classic ShapeContext local descriptor [4, 35, 66] for

shape matching. The ShapeContext descriptor partitions the

space into spatially inhomogeneous cells, and encodes the

spatial contexts about the shape at each point by comput-

ing a histogram over the number of neighboring points in

each cell. We call our method Contrastive Scene Contexts

because at a high level, our method also aims to capture the

distribution over relative locations in a scene. We parti-

tion the scene point cloud into multiple regions, and instead

of having a single contrastive loss for the entire point set

sampled in a mini-batch, we perform contrastive learning in

each region separately, and aggregate the losses in the end.

Concretely, given a pair of partial frame point clouds x

and y from the same scene, we have correspondence map-

ping (i, j) ∈ Mxy available, where i is the index of a point

xi ∈ R3 in frame x and j is the index of a matched point

yj ∈ R3 in frame y. Similar to PointContrast, we sample

N pairs of matched points as positives. However, in our

method, for each anchor point xi, the space is divided into

multiple partitions and other points are assigned to different

partitions based on their relative angles and distances to i.

The distance and angle information needed for scene

context partition at anchor point xi is as follows,

Dik =

√

√

√

√

3
∑

d=1

(xd
i − xd

k)
2 (1)

Aik = arctan2(Dik) + 2π (2)

where D is the relative distance matrix. Dik stores the dis-

tance between point i and point k and A is the relative angle

matrix, where Aik stores the relative angle between point i

and point k. In Equation (1) d represents the 3D dimen-

sion. With D and A, a ShapeContext-like spatial partition-

ing function can be easily constructed on-the-fly. In Fig-

ure 2, we show a visual illustration of how the space par-

titioning works. Computing 2 or 4 partitions only requires
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cutting the space according to relative angles based on A;

while the 8 or more partitions also require the extent of the

inner regions using D. We always partition the space uni-

formly along the relative angles and distances. Note that the

partitioning is relative to the anchor point i.
Suppose there are P partitions, we denote the spatial par-

tition functions as parp(·), where p ∈ {1, . . . , P}. Function

parp(·) takes the anchor point i as input, and return a set of
points as negatives. A PointInfoNCE loss Lp is indepen-
dently computed for each partition:

Lp = −

∑

(i,j)∈M

log
exp(f1i · f2j /τ)∑

(·,k)∈M,k∈parp(i)
exp(f1i · f2

k
/τ)

(3)

Details of Equation (3) and other implementation details

can be found in Appendix. The final loss is computed by

aggregating all partitions L = 1

|P |

∑

p Lp.

Analysis. We first show that by integrating the scene con-

texts into the objective, our pre-training method can benefit

more from a larger point set. We conduct an analysis ex-

periment by varying the number of scene context partitions

and the number of points sampled for computing the con-

trastive loss. We pre-train our model for a short schedule

(20K iters). We then fine-tune the pre-trained weights on

S3DIS instance segmentation benchmark [2]. Results are

shown in Figure 3, the green line represents a variant with

no spatial partitioning; the left-most point represents Point-

Contrast2. Similar to the observation in [65], without scene

contexts, increasing the number of sampled points does not

improve the performance; with more partitions, increasing

# sampled points leads to a consistent boost in performance

(up to 4096 points). We use 8 partitions as empirically it

works best. This shows that our method leads to better scal-

ability as more points can be utilized for pre-training.

We achieve state-of-the-art instance segmentation results

in terms of mAP@0.5 (Table. 1) using a simple bottom-

up clustering mechanism with voting loss (details in Ap-

pendix). We do not use any special modules such as Pro-

posal Aggregation [15] or Scoring Network [34]. We ob-

serve a 2.9% absolute improvement over PointContrast pre-

training, which brings the improvement over train-from-

scratch baseline to 4.1%. This substantial margin demon-

strates the effectiveness of Contrastive Scene Contexts on

instance segmentation tasks. We provide more results com-

paring against PointContrast in Section 5.3.

4. Data-Efficient 3D Scene Understanding

To formally explore data-efficient 3D scene understand-

ing, in this section, we propose two different learning

paradigms and relevant benchmarks that are associated with

two complementary settings that can occur in real world ap-

plication scenarios: (1) limited scene reconstructions (LR)

2Not exactly identical since the matched points are sampled per scene

in this experiment, rather than from the whole mini-batch as in PointCon-

trast; we have verified that this nuance does not influence the conclusion.

1024 2048 4096 8192
Number of Points

60.5

61.5

62.5

63.5

m
AP

@
0.

5

No scene contexts
2 Partitions
4 Partitions
8 Partitions
16 Partitions
32 Partitions

Figure 3: Analysis Experiment. Varying the number of

partitions and sampled points for pre-training; Results are

reported on the S3DIS instance segmentation task [2]. Us-

ing scene context partitions has enabled constrastive learn-

ing to utilize more points for better performance.

Methods mAP@0.5

ASIS [60] 55.3

3D-BoNet [67] 57.5

PointGroup [34] 57.8

3D-MPA [15] 63.1

Train from scratch 59.3

PointContrast (PointInfoNCE) [65] 60.5 (+1.2)

Contrastive Scene Contexts 63.4 (+4.1)

Table 1: Fine-tuning results for instance segmentation

on S3DIS [2]. A simple clustering-based model with Con-

trastive Scene Contexts pre-trained backbone performs sig-

nificantly better than the train-from-scratch baseline and

PointContrast pre-training [65].
.

and (2) limited annotations (LA). The first setting mainly

concerns the scenario where the bottleneck of data collec-

tion is the number of scenes that can be scanned and re-

constructed. The second one focuses on the case where in

each scene, the budget for labeling is limited (e.g. one can

only label a small set of points). Since 3D point labeling is

human intensive, this represents a practical scenario where

a data-efficient learning strategy can greatly reduce the an-

notation cost. An overview is presented in Figure 4, and

details of individual benchmarks are described below.

4.1. Limited Annotations (LA)

In this benchmark, we explore 3D scene understanding

with a limited budget for point cloud annotations. We con-

sider a diverse set of tasks including semantic segmentation,

instance segmentation and object detection. Specifically,

for instance segmentation and semantic segmentation, the

annotation budget is in terms of the number of points for

labelling. This is practically useful: if an annotator only
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Figure 4: Overview of Data-Efficient 3D Scene Understanding. Left: Unsupervised pre-training with Contrastive Scene

Contexts. The outputs of pre-training are 1) a pre-trained U-Net F (that can be used as an offline feature extractor) and 2) its

associated weights W. Right: After pre-training, different learning scenarios can be applied for the downstream tasks such

as learning with limited scene reconstructions (LR) or limited annotations (LA). In the case of LR, the pre-trained weights

W are used as network initialization for fine-tuning. In the case of LA, all the scene reconstructions can be used but only a

limited annotation budget is available, e.g. 20 points can be annotated (semantic labels) per scene. Again, W can be used as

network initialization for fine-tuning; optionally the feature extractor F can be used in an active labeling strategy to decide

which points to annotate. Baselines are standard supervised learning where models are trained from scratch.

needs to label the semantic labels for 20 points, it will only

require a few minutes to label a full room. Our benchmark

considers four different training configurations on ScanNet

including using {20, 50, 100, 200} labeled points per scene.

For object detection, the annotation budget is with respect

to the number of bounding boxes to label in each scene. Our

benchmark considers four different training configurations

including {1, 2, 4, 7} labeled bounding boxes. Our base

dataset is ScanNetV2 [13] which has 1201 scenes for train-

ing. We evaluate the model performance on standard Scan-

NetV2 validation set of 312 scenes that has full labels.

4.2. Limited Scene Reconstructions (LR)

For current 3D scene datasets, it is common for anno-

tators to carry commodity depth cameras and record 3D

videos at private houses or furniture stores. It might be un-

realistic to enter a large number of homes and obtain de-

tailed scanning. In this case, the number of scenes might

be the bottleneck and the training has to be done on lim-

ited amount of scene reconstructions. We simulate this sce-

nario by random sampling a subset of ScanNetV2 training

set. Our benchmark has four configurations {1%, 5%, 10%,

20%} (100% represents the entire ScanNet train set) for se-

mantic segmentation and instance segmentation; and {10%,

20%, 40%, 80%} for object detection. During test time,

evaluation is on all scenes in the validation set.

5. Experimental Results

In this section, we present our experimental results

on the data-efficient 3D scene understanding benchmarks:

ScanNet-LA with limited annotations and ScanNet-LR

with limited scene reconstructions. In both scenarios, we

compare our method against the baseline of training from

scratch, and report results on semantic/instance segmenta-

tion and object detection. We also compare our models with

the state-of-the-art method in the last part of the section.

Experiments Setup For pre-training, we use SGD opti-

mizer with learning rate 0.1 and a batch-size of 32. The

learning rate is decreased by a factor of 0.99 every 1000

steps. The model is trained for 60K steps. The fine-tuning

experiments on instance segmentation and semantic seg-

mentation are trained with a batch-size of 48 for a total of

10K steps. The initial learning rate is 0.1, with polynomial

decay with power 0.9. For all experiments, we use data

parallel on 8 NVIDIA V100 GPUs. For object detection

experiments, we fine-tune the model with a batch-size of 32

for 180 epochs. The initial learning rate is set to 0.001 and

decayed by a factor of 0.1 at epoch 80, 120 and 160. For

all the experiments, we use the same Sparse Res-UNet [65]

as the backbone. For both training and testing, the voxel

size for Sparse ConvNet is set to 2.0 cm. We use Sparse

ConvNet implemented by MinkowskiEngine [12].

5.1. Limited Annotations

As introduced in Section 4, the Limited Annotation (LA)

benchmark covers two different annotation types: Limited
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Figure 5: Qualitative Instance Segmentation Results (ScanNet-LA). With our pre-trained model as initialization for fine-

tuning, together with an active labeling process, our approach (trained with 20 labeled points per scene) generates high-quality

instance masks. Different color represents instance index only (same instances might not share the same color).

Point Annotations for semantic and instance segmentation

and Limited Bounding Box Annotations for detection. The

pre-trained network (and its weights) can be used as ini-

tialization for fine-tuning, or integrate in an active labeling

strategy, which we describe below.

Active labeling. Since we focus on the scenario of having

limited annotation budget, it is natural to consider an active

learning strategy during the data annotation process; i.e.

one can interactively query an annotator to label some data

points that can help most for subsequent training. The core

idea of our approach is to perform a balanced sampling

on the feature space, so that the selected points will be the

most representative and exemplary ones in a scene. Our

pre-trained network extracts dense features at each point

of the to-be-annotated point cloud, by simply performing

a forward pass. We then perform k-means clustering in this

feature space to obtain K cluster centroids. We select the

K centroids as the points to be provided to the annotators

for labeling. We also present two baseline strategies includ-

ing a simple random sampling strategy where K points

are randomly selected to be labeled, and a similar k-means

sampling strategy on raw (RGB+XYZ) inputs, rather than

on the pre-trained features.

We note that although our experiments are simulated

based on the already collected ScanNet dataset, our pre-

trained feature extractor and the labeling strategy are readily

useful in a real-world data annotation pipeline.

Results. In Figure 6 we show that compared to the naive

from-scratch baselines, our proposed pre-training frame-

work can lead to much improved performance. It is interest-

ing to see that, for both semantic segmentation and instance

segmentation, even without fine-tuning, the active labeling

strategy alone provides point labels that make the trained

model perform significantly better, compared to random

sampling or k-means sampling baseline strategies, yielding

a >10% absolute improvement in terms of mAP@0.5 and

mIoU when the training data has only 20 point labels.

The fact that active labeling strategy performs on
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Figure 6: 3D Instance and Semantic Segmentation with Limited Point Annotations (ScanNet-LA). Ours (init) denotes

the network initialization by our pre-trained model. Ours (act. labeling) denotes the active selection of annotated points by

our pre-trained model. Ours (init+act. labeling) denotes using our model as both network initialization and active labeling.

We additionally mark the upper bound of using all 150K annotated points (in average) per scene as the dash line.

No. of Boxes VoteNet (scratch) VoteNet (ours)

all 35.4 39.3 (+3.9)

1 27.5 30.3 (+2.8)

2 30.9 32.4 (+1.5)

4 32.5 34.6 (+2.1)

7 33.4 35.9 (+2.5)

Table 2: Object detection results using Limited Bound-

ing Box Annotations on ScanNet. The metric is

mAP@0.5. “Ours” denotes the fine-tuning results with our

pre-trained model. We list the upper-bound performance

using all annotated bounding boxes (in average about 13

bounding boxes per scene) as a reference in the first row.

par with the more common pre-training and fine-tuning

paradigm, suggests that finding exemplary points to label

is crucial for data-efficient learning. Of course, in real ap-

plications both active labeling and fine-tuning can be used

jointly, and we indeed observe a further (though admittedly

smaller) boost in performance by 1) active sampling points

to label and then 2) fine-tuning with the pre-trained weights.

Overall, with the help of our Contrastive Scene Con-

texts pre-training, even using around 0.1% of point labels

(e.g. 200 labeled points out of 150K total points per scene),

we are still able to achieve 50.4% mAP@0.5 for instance

segmentation, and 69.0% mIoU for semantic segmentation.

This indicates a recovery of 89% and 96% of baseline per-

formance that uses 100% of the annotations. We show ad-

ditional qualitative comparison in Figure 5.

Limited Bounding Box Annotations. For object detec-

tion, we use VoteNet [44] as the detector framework; foll-

woing [65], we replace PointNet [46] with our Sparse Res-

UNet. For this part, we do not use any active labeling

strategy as the labeling cost for bounding boxes are much

smaller. We random sample {1, 2, 4, 7} bounding boxes

per scene and train the detector. In Table 2, we observe that

our pre-training also consistently improves over the base-

line VoteNet, and the performance gap does not diminish

when more box annotations are available.

5.2. Limited Scene Reconstructions

In this section, we report the experimental results for

another scenario of data-efficient 3D scene understanding,

when there is a shortage of scene reconstructions. For in-

stance segmentation and semantic segmentation tasks, we

random sample subsets of ScanNet scenes of different sizes.

We sample {1%, 5%, 10%, 20%} of the entire 1201 scenes

in the training set (which corresponds to 12, 60, 120, and

240 scenes, respectively). For object detection, we find it

very difficult to train the detector when the scenes are too

scarce. Thus we sample {10%, 20%, 40%, 80%} subsets.

For each configuration, we randomly sample 3 subsets and

report the averaged results to reduce variance. We also use

the official ScanNetV2 validation set for evaluation.

Network fine-tuned with our pre-trained model again

shows a clear gap compared to the training from scratch

baseline (Table 3). We achieve competitive results (50.6%

mAP@0.5 for instance segmentation and 64.6% mIoU for

semantic segmentation) using only 20% of the total scenes.

Similar behavior can be observed on the object detection

task on ScanNet, and the difference between with and with-

out our pre-training is more pronounced in Table 4: the de-

tector can barely produce any meaningful results when the

data is scarce (e.g. 10% or 20%) and trained from scratch.

However, fine-tuning with our pre-trained weights, VoteNet
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Instance Seg. Semantic Seg.
Data Pct.

Scratch Ours Scratch Ours

100% 56.9 59.4 (+2.5) 72.2 73.8 (+1.6)

1% 9.9 13.2 (+3.3) 26.0 28.9 (+2.9)

5% 31.9 36.3 (+4.4) 47.8 49.8 (+2.0)

10% 42.7 44.9 (+2.2) 56.7 59.4 (+2.7)

20% 48.1 50.6 (+2.5) 62.9 64.6 (+1.7)

Table 3: 3D semantic and instance segmentation results

with Limited Scene Reconstructions (ScanNet-LR). Met-

ric is mAP@0.5 for instance segmentation and mIoU for se-

mantic segmentation. “Scratch” denotes the training from

scratch baseline, and “Ours” denotes the fine-tuning results

using our pre-trained weights. Results using 100% of the

data during training are listed in the first row.

can perform significantly better (e.g. improve the mAP@0.5

by more than 16% with 20% training data).

Data Pct. VoteNet (scratch) VoteNet (ours)

100% 35.4 39.3 (+3.9)

10% 0.3 8.6 (+8.3)

20% 4.6 20.9 (+16.3)

40% 22.0 29.2 (+7.2)

80% 33.7 36.7 (+3.0)

Table 4: Object detection results with Limited Scene Re-

constructions on ScanNet. Metric is mAP@0.5. We show

constantly improved results over training from scratch, es-

pecially so when 10% or 20% of the data are available. Re-

sults using all scenes are listed in the first row.

5.3. Additional Comparisons to PointContrast

As Contrastive Scene Contexts is closely related to

PointContrast [65], we provide additional results in this

section, including comparisons on the data-efficient Scan-

Net benchmarks (Table 5) as well as on other datasets and

benchmarks (Table 6). Our pre-training method outper-

forms [65] in almost every benchmark setting, sometimes

by a big margin. These results further render the impor-

tance of integrating scene contexts in contrastive learning.

Notably, our pre-training method on S3DIS achieves 72.2%

mIoU which outperforms, for the first time, the supervised

pre-training result reported in [65].

5.4. Analysis on Active Labeling: Cluttered Scenes

To better explain our active labeling strategy and show

that it can work in scenes with heavy occlusion and clut-

ter, we filter out a ScanNet subset of 200 cluttered scenes

that has multiple objects per one square meter area. Com-

pared to naive k-means sampling, active labeling performs

even better on cluttered scenes. In Figure 7, we visualize a

cluttered scene and sampled points (bottom); we also show

quantitatively (top) our strategy covers more distinct objects

and thus has a balancing effect.

Settings Task (Metric) SC PC [65] Ours

LA (200 points) ins (mAP@0.5) 43.5 44.5 (+1.0) 48.9 (+5.4)

LA (200 points) sem (mIoU) 65.5 67.8 (+2.3) 68.2 (+2.7)

LA (7 bboxes ) det (mAP@0.5) 33.4 34.9 (+1.5) 35.9 (+2.5)

LR (240 scenes) ins (mAP@0.5) 48.1 48.4 (+0.3) 50.6 (+2.5)

LR (240 scenes) sem (mIoU) 62.9 63.0 (+0.1) 64.6 (+1.7)

LR (960 scenes) det (mAP@0.5) 33.7 36.3 (+2.6) 37.4 (+3.7)

Table 5: Comparisons to PointContrast for data-efficient

3D scene understanding on ScanNet. We compare our

method with PointContrast (PC) and training from scratch

(SC) in various tasks. Our method constantly achieves bet-

ter results in both Limited Point Annotations (LA) and Lim-

ited Scene Reconstructions (LR) scenarios.

Datasets Task (Metric) SC PC [65] Ours

S3DIS ins (mAP@0.5) 59.3 60.5 (+1.2) 63.4 (+4.1)

S3DIS sem (mIoU) 68.2 70.3 (+2.1) 72.2 (+4.0)

SUN RGB-D det (mAP@0.5 ) 31.7 34.8 (+3.1) 36.4 (+4.7)

ScanNet ins (mAP@0.5) 56.9 58.0 (+1.1) 59.4 (+2.5)

ScanNet sem (mIou) 72.2 74.1 (+1.9) 73.8 (+1.6)

ScanNet det (mAP@0.5) 35.4 38.0 (+2.6) 39.3 (+3.9)

Table 6: Downstream fine-tuning results on other bench-

marks. Contrastive Scene Contexts (Ours) achieve better

or on par results compared to PointContrast (PC) [65] on

instance segmentation (ins), semantic segmentation (sem)

and object detection (det) across multiple datasets.
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Figure 7: Top: object coverage percentage—more distinct

objects are covered with active labeling; Bottom: Visual-

ization of sampled points in a cluttered scene.
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