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Figure 1: What are good 3D representations that support planning in dynamic environments? We visualize a typical urban motion

planning scenario from a bird’s-eye view, where an autonomous vehicle (AV) awaits an unprotected left turn. We highlight a candidate

plan with a blue arrow, whose endpoint represents where the AV will be in 1s. An object-centric representation (left), as adopted by

standard perception stacks, focuses on object properties (their shape, orientation, position, etc.) both at the current time step and the future.

Alternatively, a freespace-centric representation directly captures the freespace of the surrounding scene and can be readily obtained by

raycasting measurements from a depth (e.g., LiDAR) sensor. Forecasting a future version (in 1s) of either representation could help the

AV identify a potential collision associated with the candidate plan, however at wildly different annotation costs. Forecasting future object

trajectories requires a massive amount of object and track labels to train perceptual modules. Instead, we explore future freespace, whose

forecasting can be naturally self-supervised by simply letting time move forward and raycasting future sensor measurements. We propose

approaches to planning with forecasted freespace and learning to plan with future freespace.

Abstract

Safe local motion planning for autonomous driving in

dynamic environments requires forecasting how the scene

evolves. Practical autonomy stacks adopt a semantic

object-centric representation of a dynamic scene and build

object detection, tracking, and prediction modules to solve

forecasting. However, training these modules comes at

an enormous human cost of manually annotated objects

across frames. In this work, we explore future freespace

as an alternative representation to support motion plan-

ning. Our key intuition is that it is important to avoid stray-

ing into occupied space regardless of what is occupying

it. Importantly, computing ground-truth future freespace is

annotation-free. First, we explore freespace forecasting as

a self-supervised learning task. We then demonstrate how

to use forecasted freespace to identify collision-prone plans

from off-the-shelf motion planners. Finally, we propose fu-

ture freespace as an additional source of annotation-free

supervision. We demonstrate how to integrate such supervi-

sion into the learning-based planners. Experimental results

on nuScenes and CARLA suggest both approaches lead to a

significant reduction in collision rates.1

1. Introduction

Motion planning in dynamic environments requires fore-

casting how the scene imminently evolves. What repre-

sentation should we forecast to support planning? In prac-

tice, standard autonomy stacks forecast a semantic object-

centric representation by building perceptual modules such

as object detection, tracking, and prediction [42]. However,

in the context of machine learning, training these modules

comes at an enormous annotation cost, requiring massive

1Code will be available at https://github.com/peiyunh/ff
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amounts of data manually annotated with object labels, in-

cluding both 3D trajectories and semantic categories (e.g.,

cars, pedestrians, bicyclists, etc). With autonomous fleets

gathering petabytes of data, it’s impossible to label data at a

rate that keeps up with the rate of data collection.

To avoid the need for such costly annotations, and to en-

able learning at scale, we explore an alternative freespace-

centric representation to support motion planning (Fig. 1).

We believe this is effective for two primary reasons. First,

freespace is a natural cue for safe planning - it is generally

important to avoid straying into occupied space, regardless

of what is occupying it. Second, gathering training data for

freespace forecasting is annotation-free given LiDAR scans

recorded from an autonomous vehicle.

In this work, we propose two approaches for using

a freespace-centric representation to assist with planning.

First, we explore freespace forecasting as a self-supervised

learning task. We point out essential modeling choices

for building an effective predictor that forecasts freespace.

Then, given an off-the-shelf black-box motion planner, we

demonstrate that self-supervised future freespace predic-

tions can be used to identify candidate plans that are likely

to collide with objects in the near future.

Lastly, we propose using future freespace as an addi-

tional source of supervision when learning to plan. Many

planners learn from expert demonstrations, and for exam-

ple, learn to imitate good habits like maintaining a wide

safety margin when approaching pedestrians in the street.

However, it is difficult for the learner to know which other

actions are bad, since there may have been multiple rea-

sonable actions that could have been taken. We use future

freespace to identify a subset of other actions that are clearly

poor because they collide with an obstacle. We empirically

show that imitative learning-based planners with such ad-

ditional supervision produce motion plans that are far safer

and less likely to induce collisions.

Contributions: We explore a self-supervised freespace-

centric representation as an alternative to the predominantly

supervised object-centric representation. We are the first

to integrate self-supervised freespace predictions with an

existing planner and demonstrate promising results. We

also propose simple modifications to existing learning ap-

proaches to planning that allow future freespace to be used

as an additional source of self-supervision. Finally, we

demonstrate promising results on planning benchmarks.

2. Related work

Geometric planning: Classic planning algorithms such

as A* [17] D* [40], PRM [23], and RRT* [22] usually as-

sume static scene geometry and focus on efficiently find-

ing the shortest collision-free path within the navigable

freespace. A common workaround for motion planning in

dynamic environments is to replan at high frequencies and

reactively avoid moving objects [41, 43, 31, 3]. To avoid

reactive planning, one must be able to forecast future evolu-

tion of geometry. This is typically done by building a mod-

ular perception pipeline that contains components for ob-

ject detection, tracking, and forecasting. However, massive

amounts of training data and annotated labels are required to

train perception modules for discrete object classes. Purely

geometric planning approaches also commonly suffer from

an ambiguous interpretation of geometry (e.g. aggressively

avoiding leaves blowing in the wind) or may not pick up on

semantic cues (e.g. driving onto an empty opposite lane).

Behavior cloning: End-to-end learned approaches for

autonomous driving have emerged as simple alternatives to

modular autonomy stacks, with imitation learning methods

showing particular promise [35, 8]. Imitation learning is

generally split into two major classes: behavioral cloning

and inverse optimal control (inverse reinforcement learn-

ing) [29]. Behavioral cloning refers to methods that learn

a direct mapping from observations to actions using expert

demonstrations. ALVINN [32] is a classic example of be-

havioral cloning for road following which uses a neural net-

work to learn mapping from image to steering angle. More

recently, [4] used a deep convolutional network to demon-

strate real-world vehicle control in a variety of driving sce-

narios. Another approach uses video game driving demon-

strations to train a network that maps images to driving af-

fordances that can be directly used for control [5]. [7] trains

a network to produce steering and acceleration commands

from input images while also conditioning on a high level-

command. More recently, [6] proposes a new approach to

behavior cloning. Their results suggest that a privileged im-

itative learner, despite performing worse than the expert it

learns from, may serve as a better teacher to non-privileged

imitative learners, by providing richer supervision.

Inverse optimal control: Inverse optimal control (or

inverse reinforcement learning) attempts to recover an un-

known cost function from a set of expert demonstrations

which can then be used for planning. [1] developed a

seminal approach that cast the cost/reward model as a lin-

ear function of state features whose feature weights could

be learned from expert demonstrations. Maximum Mar-

gin Planning (MMP) [34] is another classic approach that

used a structured margin loss to learn a cost map that can

produce expert-like trajectories via dynamic programming.

[47] use the maximum-entropy principle to select solutions

that show the least commitment to the training data, avoid-

ing ambiguities that may arise if expert demonstrations are

imperfect. This approach has recently been improved by

using neural networks to approximate the underlying cost

model [44]. Similarly, [46] extends MMP by using a deep

neural network trained end-to-end with a multi-task loss to

produce cost maps for trajectory scoring.

Additional supervision: One well-known challenge for
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Figure 2: We illustrate a raw data log collected by an AV. In practice, such logs come in abundance. The crucial question is: how do we

use them to support local planning? The widely-adopted approach tries to provide planners with knowledge of where objects are and will

be (red). We try to provide knowledge of what future freespace looks like (green). We discuss two ways of how existing planners can

use future freespace. First, we develop freespace forecasting models and demonstrate that their predicted future freespace can be used to

improve off-the-shelf planners. Second, we show how to use ground-truth future freespace as additional supervision while learning to plan

and demonstrate improvements by doing so.

imitation learning is figuring out how to recover from mis-

takes - commonly referred to as the “compounding error”

problem [32, 37, 4]. [37] show that an effective solution

is to have the expert interactively provide feedback by cor-

recting the actions executed by a policy that is learning on-

line. However, this is potentially dangerous to implement

in the real world and may result in only sparse feedback. A

more widely adopted strategy is to instead learn offline from

historical (non-interactive) driving logs. Many researchers

have used the CARLA simulator to record driving logs at

scale using the built-in autopilot system [7, 8, 35, 12]. Sim-

ulation is particularly attractive because one has access to

ground-truth labels of objects and the environment, which

greatly simplifies learning [6]. However, transferring poli-

cies trained in simulation to the real world remains an active

area of research. [2] perturb mid-level representations of

real-world historical data to simulate nontrivial driving sce-

narios and were able to deploy their model on a real car. Our

freespace forecasting approach can learn from both real his-

torical data and simulated data and works directly with raw

sensor data instead of needing object labels.

Self-supervised learning: Self-supervised learning has

recently emerged as an effective approach for many robotic

manipulation tasks [27, 14, 45, 24]. However, its usage in

mobile robotics is far less prevalent, with most methods

aimed at solving perception tasks like road detection [9],

aerial image analysis [38], and lidar/camera depth comple-

tion [25]. One early application of self-supervised learn-

ing to robot navigation developed by [39] learned mappings

from both online and offline perceptual data to planning

costs, demonstrating navigation on the Crusher robot. More

recently, [21] showed that a navigation system based on a

generalized computation graph trained with self-supervised

deep reinforcement learning (DRL) was able to outperform

standard DRL approaches in both simulation and real-world

RC car experiments. In this work, we pose future freespace

forecasting as a scalable source of self-supervision and

show that it is effective for motion planning.

Freespace as a representation: A few works have ex-

plored the question of estimating freespace. [16] estimate

a top-view probabilistic occupancy map to track people in

an indoor setting with a multi-camera setup. [18] estimate

indoor freespace from a single image by leveraging “boxy”

object detectors. Thanks to the progress in 3D sensing, re-

cent works have been building upon freespace measured

through depth sensors (e.g. LiDAR). [28, 10, 15, 20, 26]

pose occupancy grid maps (OGMs) prediction as a self-

supervised learning task and explore effective neural net ar-

chitectures for this task. Our work on forecasting freespace

is similar to prior works on predicting OGMs in learning

with self-supervision. However, our work extends beyond

the forecasting task itself in three meaningful aspects. First,

we demonstrate how off-the-shelf planners can use fore-

casted freespace. Second, we demonstrate how to learn

planners with future freespace as additional supervision.

Third, we demonstrate improvements in terms of planning

performance. Most recently, [36] learn to predict semantic

occupancy maps. [11] learn to predict future semantic oc-

cupancy maps as a representation that supports downstream

planning and demonstrate improvement in planning perfor-

mance. Our work differs in that our freespace-centric rep-

resentation is annotation-free and therefore more scalable.

3. Method

Raw logs of autonomous fleets naturally provide an

abundance of aligned sensor data sequences x and ego ve-

hicle trajectories y, represented as collections of {(x,y)}.

We provide an example of such logs in Fig. 2. How do we

make use of such data to learn representations that support

planning? In the sections to follow, we first introduce the

definition of freespace and how to compute it. Then we de-

scribe a self-supervised approach to forecasting freespace.

Finally, we describe approaches to planning with forecasted

freespace and learning to plan with future freespace.
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3.1. Computing freespace

We define freespace as space free of obstacles as ob-

served by a LiDAR sensor at a particular time instance.

Given a sequence of aligned sensor data and ego-vehicle

trajectory (x,y), let us write

ray(u;x,y) ∈ {0,−1, 1}, u = (x, y, t), ∀u ∈ U (1)

to denote the freespace state of voxel u in the spacetime

voxel grid U, which can be unknown (0), free (-1), or oc-

cupied (1) respectively. Note that the spatial index of voxel

u is 2D because we assume the local motion planners we

work with operate on a ground plane and x, y represents a

bird’s-eye-view spatial location. When the freespace state

of voxel u is unknown, the true state can be either occupied

or free but is unobserved due to for example occlusion.

We compute freespace via raycasting. Given a 3D point

cloud, we compute a 2D bird’s-eye-view freespace follow-

ing two steps. First, we identify LiDAR returns from the

ground via a robust ground segmentation algorithm [19].

After we discard ground returns, we compute 2D freespace

via a 2D visibility algorithm known as wall tracking [30].

We show example results in Fig. 2. This computation is au-

tomatic and does not require human annotators in the loop.

3.2. Forecasting freespace

Suppose we split each sensor trajectory pair (x,y) into

a historical pair (x1,y1) and future pair (x2,y2), our goal

is to learn a model that predicts freespace computed over

(x2,y2) given freespace computed over (x1,y1). Cru-

cially, we can compute ground-truth future freespace via

raycasting for free (without human annotations)!

We train a convolutional neural network fθ(u;x1,y1)
with parameters θ to predict future freespace given the his-

torical sequence (x1,y1) by minimizing the following loss:

min
θ

BCE
(

σ
(

fθ(u;x1,y1)
)

, ray(u;x2,y2)
)

, ∀u ∈ U (2)

where σ represents the sigmoid function and BCE stands

for Binary Cross Entropy. Here, we use U to represent the

voxel grid with future timestamps. The neural network pro-

duces logits, which are then converted to probabilities of

voxels belonging to freespace through sigmoid.

Here, we formulate freespace forecasting as a binary

classification and do not represent an unknown state as a

separate state. This is because, as we have mentioned, when

the ground-truth freespace state of a voxel future is un-

known, its true state is either occupied or free. When com-

puting the binary cross-entropy loss, we ignore such voxels

with an ambiguous freespace state.

Residual forecasting: In most scenarios, future

freespace does not look much different from historical

freespace. This means we may be able to predict a ma-

jority of future freespace through interpolating historical

freespace. Therefore, we decompose our freespace fore-

casting model into two parts, i.e., linear extrapolation and

non-linear residual.

fθ(u;x1,y1) =

linear extrapolation
︷ ︸︸ ︷

fα(ray(u1;x1,y1))+

non-linear residual
︷ ︸︸ ︷

fθ̃(u;x1,y1) (3)

where fα represents a linear extrapolation over spatially-

aligned historical freespace and fθ̃ represents a non-linear

predictor that forecasts residual logits. As we will show in

Tab. 1, residual forecasting (3) is crucial to good accuracy.

3.3. Planning with forecasted freespace

Now we have introduced a self-supervised approach

to freespace forecasting, how can an off-the-shelf planner

work with forecasted freespace? We answer this question

in the context of planners learned via both behavior cloning

(BC) and inverse optimal control (IOC).

Behavior cloning (BC): A behavior cloning planner

takes sensor data and ego-trajectories x1,y1 as input and

predicts an expert-like future trajectory ŷ2. The planner

needs to know if the ego-vehicle can safely traverse each

space-time voxel along the future trajectory. Our freespace

forecasting model is designed to answer such queries, with

one caveat: the model is trained to output a soft probability.

We have to introduce a threshold that turns soft probabilities

into hard decisions, similar to the fact that we have to pick a

confidence score threshold for object detectors in standard

autonomy stacks. Let τ be the threshold, we can test if a

candidate future trajectory y = {u} is safe by

q = ∧u∈ŷ2
[fθ(u;x1,y1) ≤ τ ] (4)

The planner passes the test of predicted future freespace

when q is true. When it fails, we override the plan with

a fall-back option, such as emergency braking maneuvers.

Inverse optimal control (IOC): An inverse optimal

control approach to planning learns a cost map that scores

potential trajectories, where the best one is found through

optimization. We define the cost of a candidate trajectory

ŷ2 to be the sum of costs at its spacetime points:

Cψ(ŷ2;x1,y1) =
∑

u∈ŷ2

costψ(u;x1,y1) (5)

where costψ is a spacetime cost map generated by a neu-

ral net, structurally similar to the freespace forecaster from

Sec. 3.2. It is important that any candidate trajectory ŷ2

maintains consistent and smooth dynamics with its immedi-

ate past y1 hence the conditioning. When integrating fore-

casted freespace into IOC planners, we directly modify the

cost map to ensure that voxels predicted to be likely occu-

pied incur very large costs,

Cψ,θ(ŷ2;x1,y1) =
∑

u∈ŷ2

[(costψ + γfθ)(u;x1,y1)] (6)
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where γ is a predefined cost w.r.t. future freespace violation.

Implementation: An IOC planner may search over an

exponentially large number of potential trajectories with dy-

namic programming [34], explore a local set of trajectories

through gradient-based optimization [33], or evaluate a set

of sampled trajectories through exhaustive search [46]. We

make use of the latter. Following [46], instead of model-

ing smoothness as part of the cost map, we enforce them

as a constraint by restricting the space of viable trajecto-

ries Y(y1) that is searched. This is formally equivalent to

assigning trajectories not in Y(y1) to be infinite cost.

min
y∈Y

Cψ(y;x1,y1) = min
y∈Y(y1)

∑

u∈y

costψ(u;x1) (7)

When the space of viable trajectories Y(y1) is available,

we found it useful to restrict the freespace forecasting loss

to the set of spacetime voxels reachable by the ego-vehicle.

This results in a sparse loss in contrast to the original dense

one. We will refer to freespace forecasting learned with the

sparse loss as planning-aware freespace forecasting.

min
θ

BCE
(

σ
(

fθ(u;x1,y1)
)

, ray(u;x2,y2)
)

, ∀u ∈ Y(y1)

(8)

3.4. Learning to plan with future freespace

We have discussed how an off-the-shelf planner can

work with forecasted freespace. In particular, we show

one can modify an IOC planner’s cost map based on pre-

dicted future freespace. A follow-up question is: can we

use ground-truth future freespace to learn a cost map that

naturally reflects future freespace?

An IOC planner learns a neural net to predict a space-

time cost map. The network will be trained to ensure that

ground truth future trajectory y2 has a lower cost than oth-

ers:

Cψ(y2;x1,y1) ≤ min
y∈Y

Cψ(y;x1,y1) (9)

Because not all alternative trajectories are equally bad, one

often introduces a penalty that ensures the ground-truth

dominates over those trajectories that lie far away by a mar-

gin l(y,y2) [34, 46]:

Cψ(y2;x1,y1) ≤ min
y∈Y

(Cψ(y;x1,y1)− l(y,y2)) (10)

The margin term l(y,y2) is often chosen to be a measure

of dissimilarity between y and y2, for example, Euclidean

distance:

l(y,y2) = Dist(y,y2) (11)

One can rewrite the constraint from (10) as a loss that

penalizes the cost of the ground-truth while maximizing the

cost of the worst-offender:

loss(ψ) =

[

Cψ(y2;x1,y1)−

(

min
y∈Y

Cψ(y;x1,y1)− l(y,y2)

)]+

(12)

where [·]
+
= max(·, 0). The minimization reaches the min-

imum at 0 when (10) is satisfied.

Importantly, [46] query additional supervision in the

form of object’s bounding boxes. These bounding boxes in

future frames are converted to a binary object occupancy

grid, denoted by O, as visualized by red in Fig. 2. If

O[u] = 1, there is an object occupying spacetime voxel

u. Any trajectory y that appears at such spacetime voxels

should bear an additional margin cost for collisions:

l(y,y2) = Dist(y,y2) + γo
∑

u∈y

O[u] (13)

where γo is a predefined cost of object collision. Instead

of relying on human annotations, our approach extracts su-

pervision from raycasted future-freespace, as visualized by

green in Fig. 2.

l(y,y2) = Dist(y,y2) + γ
∑

u∈y

[ray(u;x2,y2)]
+

(14)

where γ is a predefined cost of future freespace violation.

4. Experiments

We use CARLA to evaluate freespace forecasting as a

task itself. We use both NoCrash and nuScenes to evalu-

ate planning performance. On one hand, NoCrash offers

an interactive environment where an agent’s action has last-

ing consequences, allowing for on-policy evaluation; on the

other hand, nuScenes offers real-world sensor data and driv-

ing scenarios, allowing for realistic off-policy evaluation.

CARLA and NoCrash: CARLA is an open-source ur-

ban driving simulator [13] and NoCrash is the latest plan-

ning benchmark on CARLA [8]. On NoCrash, an agent

succeeds if it completes a predefined route in time without

collisions. NoCrash features various towns, weather condi-

tions, and traffic densities. Town 1 is for training and Town

2 is for testing. A subset of weather conditions is also held

out for testing. An agent has access to a sensor suite and

needs to produce control signals to apply to motors.

nuScenes: nuScenes is one of the latest real-world driv-

ing datasets collected by autonomous fleets. We choose

nuScenes because its unique release of CAN bus data makes

it possible to implement our baseline motion planner [46].

Since the official server does not evaluate planning, we cre-

ate a protocol for nuScenes to evaluate planning. We ran-

domly split the 850 annotated scenes into training (550),

validation (150), and test sets (150), which amounts to about

17K, 5K, 4K frames respectively.

We refer readers to the supplementary materials for im-

plementation details such as neural net architectures. We

plan to make our implementation publicly available.
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α, θ
Town 1(val) Town 2(test)

BCE F1 AP BCE F1 AP

(α0,0) 0.594 0.659 0.453 0.377 0.740 0.561

(α,0) 0.101 0.688 0.610 0.089 0.786 0.730

(0, θ) 0.043 0.687 0.752 0.099 0.406 0.364

(α, θ) 0.034 0.772 0.830 0.047 0.755 0.773

Table 1: Ablation studies on residual forecasting. (α0,0) repli-

cates the latest frame as the future prediction, without any learning.

(α,0) learns to linearly predict from historical freespace observa-

tions, dramatically improving accuracy on towns used for train-

ing, but reducing performance in new towns. (0, θ) directly learns

a nonlinear predictor without residual, which appears to heavily

overfit to the training town. (α, θ) learns a nonlinear residual that

is added to the linear prediction, which outperforms all variants.

4.1. Freespace Forecasting

Setup: We let a driving agent roam around in Town 1

under an autopilot policy [8] to collect 400 trajectories for

training and 100 trajectories for validation. We follow the

same practice to collect 100 trajectories in Town 2 for test-

ing. In total, we have about 164K frames for training, 39K

for validation, and 31K for testing.

Evaluation: Under the binary classification formulation,

two classes in freespace forecasting are highly imbalanced.

Compared to occupied space, freespace constitutes a vast

majority of freespace states in the future at a rate of 35 to 1.

Therefore, we plot a precision-recall curve w.r.t. occupied

space and compute average precision. We also evaluate the

maximum F1 score on the PR curve.

Residual forecasting: We test the idea of residual fore-

casting, including four variants as shown in Tab. 1. Our re-

sults suggest residual forecasting is highly effective. Please

refer to the caption for details.

Scalability: Learning to forecast freespace requires

no human annotation. We evaluate the performance of

freespace forecasting models trained with an increasing

amount of data. Our results in Tab. 2 suggest performance

in training towns improves dramatically as we increase the

amount of training data. The slower improvement in new

towns suggests we should collect data in new towns as well.

This would be particularly viable for freespace forecasting

as it does not need additional human annotations.

4.2. Planning on NoCrash

Baseline: LBC [6] is the state-of-the-art planner on

NoCrash. At test time, an LBC agent receives sensor

data and a high-level instruction (turn-left, turn-right, go-

straight, follow-lane) as input every 0.1s and outputs a tra-

jectory in the form of a series of bird’s-eye-view waypoints.

In particular, there are 5 waypoints from 0.5s to 2.5s at ev-

#Logs
Town 1(val) Town 2(test)

BCE F1 AP BCE F1 AP

25 0.051 0.692 0.707 0.051 0.759 0.752

50 0.046 0.710 0.740 0.049 0.760 0.760

100 0.042 0.731 0.773 0.048 0.760 0.768

200 0.037 0.754 0.805 0.048 0.757 0.772

400 0.034 0.772 0.830 0.047 0.755 0.773

Table 2: Ablation studies on increasing the amount of training

data. We see a dramatic improvement on towns used for training

and a slower improvement on new towns in AP.

ery 0.5s. The planner then uses heuristics to select one way-

point and translates it via pure-pursuit controllers to control

signals that can be applied to motors for a duration of 0.1s

before re-planning when new sensor data and instructions

arrive.

Results: We learn a residual forecasting model that takes

historical freespace from the past 2s and predicts future

freespace up to 2.5s. We incorporate future freespace pre-

dicted by this forecasting model into an off-the-shelf LBC

planner in a post hoc fashion. Based on the predicted bird’s-

eye-view future freespace (Fig. 3), we check if LBC’s way-

point passes the test according to Eq. (4). We identify rele-

vant voxels by drawing an oriented box for the ego-vehicle

centered at the selected waypoint. When the test fails, we

override LBC’s plan with a trajectory that represents the ac-

tion of staying still, which translates to control signals that

correspond to an emergency brake through the controllers.

As Tab. 3 shows, such post hoc integration significantly

improve the overall success rate on most testing suites

compared to LBC’s off-the-shelf performance. Also, our

freespace-forecasting-based intervention decreases jerk in

training weathers but increases jerk in testing weathers, in-

dicating that our current evasive maneuver might not be op-

timal and soft braking might be preferred. Finally, our ap-

proach tends to achieve higher route completion rates com-

pared to the baseline, suggesting freespace forecasting does

not simply halt movement to reduce collision rates. We fur-

ther break down the remaining failures in Fig. 4. When

incorporating forecasted freespace post hoc, we dramati-

cally reduce the number of collisions, converting some to

timeouts. This suggests avoiding imminent collisions is not

enough to guarantee successful long-term planning.

4.3. Planning on nuScenes

Baselines: Neural motion planner (NMP) [46] is a state-

of-the-art planner on real-world driving data. Since there

is no official implementation for NMP, we reimplement it

based on details from the paper and with help from the au-

thors. The planner first samples a list of plausible trajec-

tories based on the ego-vehicle’s kinematic state. Then it
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Figure 3: Freespace forecasting qualitative result (bird’s-eye-view). On the left, we visualize ground-truth future freespace. occupied is

red, unknown is gray, freespace is blue. On the right, we visualize predicted future freespace. The model does not treat the unknown as a

separate class, instead, it predicts a probability for every voxel. We highlight two vehicles in the opposing lane with green boxes. Notice

the predicted freespace tracks the first (bottom) vehicle. Also, it predicts that the second vehicle could have turned left, shown by the

predicted freespace in the pink box. We urge readers to view a video version of this figure (and other results) in our supplement.

Task Weather
Success rate (%) Jerk (m/s3) Route completion(%)

PV [6] LBC [6] LBC+FF LBC [6] LBC+FF LBC [6] LBC+FF

Empty

Train

100 ± 0 100 ± 1 99 ± 1 6.9 ± 0.0 6.9 ± 0.1 100 ± 0 99 ± 0

Regular 95 ± 1 94 ± 3 96 ± 2 7.8 ± 0.1 7.5 ± 0.2 97 ± 2 99 ± 1

Dense 46 ± 8 51 ± 3 57 ± 4 10.3 ± 0.3 8.1 ± 0.2 79 ± 2 80 ± 2

Empty

Test

100 ± 0 70 ± 4 66 ± 3 7.3 ± 0.1 7.5 ± 0.2 86 ± 3 83 ± 2

Regular 93 ± 1 62 ± 2 73 ± 1 8.4 ± 0.6 9.5 ± 0.7 82 ± 2 87 ± 2

Dense 45 ± 6 39 ± 6 44 ± 5 11.0 ± 0.8 12.0 ± 0.8 67 ± 3 71 ± 4

Table 3: Planning results on CARLA NoCrash (test town). PV: privileged agent (see [6]). LBC: Learning By Cheating (our baseline

planner on CARLA). LBC+FF: we combine a learned freespace forecaster (FF) with LBC and override any plan of LBC that “collides”

with the predicted future freespace. By using forecasted freespace, we significantly improve the state-of-the-art planner LBC’s overall

success rates on most test suites, in particular, on those test suites that have moving objects. On empty towns, using forecasted freespace

leads to slightly worse performance, likely due to false positives in freespace forecasting. Fig. 4 further breaks down failures into collisions

versus timeouts, demonstrating that freespace is even more beneficial for avoiding safety-critical collisions.

Gray : new approaches from this work.

takes sensor data from the last 2 seconds as input and pre-

dicts a space-time bird’s-eye-view cost map for the next 3

seconds, including 6 time-slices from 0.5s to 3.0s at every

0.5s. Finally, it scores every sampled trajectory according

to the predicted cost maps and pick the best scoring one.

We implement three NMP baselines. First, we imple-

ment a vanilla NMP, where it penalizes trajectories based

on how much they deviate from expert trajectories, as de-

scribed in (11). Second, we implement an object-supervised

NMP, where it applies additional penalties to trajectories

that collide with object box occupancy in space-time, as de-

scribed in (13). This baseline serves as a faithful reimple-

mentation of [46] given what is available on nuScenes ([46]

also applies penalties based on the real-time traffic light sta-

tus which is not available on nuScenes). Third, we imple-

ment a NMP with improved object supervision. Specifi-

cally, we modify binary object occupancy grid O as in (13)

by performing raycasting over O. This gives us a bird’s-

eye-view occlusion patterns imposed by object occupancy,

based on a heuristics that the ego-vehicle should learn to

stay away from not only the spacetime voxels that are occu-

pied by objects but also those that are occluded by objects.

Evaluation: We evaluate planned trajectories within a 3s

horizon at every 0.5s. We focus on two evaluation metrics:

L2 error and collision rate. First, we compute the difference

between the planned and the expert trajectory by the aver-

age L2 error between corresponding waypoints. Second,

we evaluate how often the ego vehicle would collide with

other objects. We place oriented bird’s-eye-view boxes that

represent the ego-vehicle at every waypoint on the planned

trajectory and detects if there is any collision with other an-

notated boxes in the scene. One caveat for this evaluation is

that we assume the scene plays out as recorded.

Results (L2P): We compare different learning-to-plan
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Timeout-LBC
Timeout-LBC+FF

Figure 4: Breaking down NoCrash failures. Our approach of incorporating freespace forecasting into off-the-shelf black-box planners

reduces overall failure rates in most scenarios. Most importantly, it dramatically reduces the collision rates by converting many collisions

to timeouts. This suggests that avoiding imminent collisions is not enough to assure the success of long-term goal-reaching planning. For

example, an autonomous vehicle would not want to drive on the opposing lane even if it does not lead to any collision in the near term.

Learn to plan
L2 (m) Collision (%)

1s 2s 3s 1s 2s 3s

vanilla 0.50 1.25 2.80 0.68 0.98 2.76

+ object 0.61 1.44 3.18 0.66 0.90 2.34

+ object∗ 0.61 1.40 3.16 0.71 0.81 1.45

+ freespace 0.57 1.28 2.94 0.66 0.87 2.17

+ freespace* 0.59 1.35 3.07 0.74 0.93 1.65

Table 4: We compare learning-to-plan approaches with different

additional supervision (+) on the held-out test set of nuScenes.

The vanilla approach learns with ego-vehicle trajectories as the

only source of supervision, achieving the lowest L2 errors but the

largest collision rates. Learning with additional object (especially

object* – improved) supervision significantly reduces the collision

rates. Learning with additional future freespace supervision re-

duces collision rates without requiring human annotations. Note

that vanilla+object represents a faithful reimplementation of neu-

ral motion planning (NMP) [46].

Red: approaches that need human annotations

approaches. As Tab. 4 shows, the vanilla baseline achieves

the lowest L2 errors but larger collision rates compared

to object-supervised baselines. Learning with improved

object-supervision leads to the lowest collision rates, sug-

gesting staying away from object occlusion is a good heuris-

tics when learning cost maps for planning. Finally, learning

with future freespace reduces collision rates compared to

the vanilla baseline without requiring human annotations.

Results (Plan w/ FF): We evaluate approaches that

post-process the vanilla baseline with forecasted freespace.

We explore both dense and sparse loss for learning the

freespace forecasting model. As Tab. 5 shows, post-

processing with planning-aware freespace forecasting (FF)

greatly reduces the vanilla baseline’s collision rates, and

largely bridge the gap toward the best object-supervised

baseline (Tab. 4). Interestingly, post-processing with

Plan w/ FF
L2 (m) Collision (%)

1s 2s 3s 1s 2s 3s

vanilla 0.50 1.25 2.80 0.68 0.98 2.76

→ FF (dense) 0.57 1.34 3.18 0.66 0.98 2.43

→ FF (sparse) 0.56 1.27 3.08 0.65 0.86 1.64

Table 5: We evaluate planning-with-forecasted-freespace ap-

proaches on the test set of nuScenes. We compare two loss

functions for freespace forecasting: dense (2) and sparse (8).

The sparse loss is strictly better than the dense loss, suggesting

freespace forecasting is more effective at helping planning when

it is aware of what is reachable space for the planner. Also, post-

processing a vanilla baseline with planning-aware freespace fore-

casting can largely bridge the gap toward learning with object∗-

supervision (Tab. 4).

planning-aware freespace forecasting (8) turns out more ef-

fective than learning to plan with future freespace. We posit

that max-margin learning does not take full advantage of

future freespace by penalizing only the worst offender.

Conclusion: Standard approaches to planning in a dy-

namic environment usually require an object-centric per-

ception system that is trained to forecast the future evolution

of the scene. Providing object annotations is an expensive

venture that cannot scale to the magnitude of data generated

by autonomous fleets. We introduce self-supervised future

freespace forecasting as an annotation-free, scalable rep-

resentation for safe, expert-like motion planning and show

that it serves as an effective augmentation to standard meth-

ods. In practical settings, future freespace forecasting is ver-

satile because it can (1) be directly incorporated into exist-

ing learning-based approaches for motion planning or (2) be

used as an additional post hoc predictive collision-checking

step on top of an existing motion planner.
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[31] Stéphane Petti and Thierry Fraichard. Safe motion planning

in dynamic environments. In 2005 IEEE/RSJ International

Conference on Intelligent Robots and Systems, pages 2210–

2215. IEEE, 2005. 2

[32] Dean A Pomerleau. Alvinn: An autonomous land vehicle

in a neural network. In Advances in neural information pro-

cessing systems, pages 305–313, 1989. 2, 3

[33] Nathan Ratliff, Matt Zucker, J Andrew Bagnell, and Sid-

dhartha Srinivasa. Chomp: Gradient optimization techniques

for efficient motion planning. In 2009 IEEE International

Conference on Robotics and Automation, pages 489–494.

IEEE, 2009. 5

[34] Nathan D Ratliff, J Andrew Bagnell, and Martin A Zinke-

vich. Maximum margin planning. In Proceedings of the

23rd international conference on Machine learning, pages

729–736, 2006. 2, 5

[35] Nicholas Rhinehart, Rowan McAllister, and Sergey Levine.

Deep imitative models for flexible inference, planning, and

control. arXiv preprint arXiv:1810.06544, 2018. 2, 3

[36] Thomas Roddick and Roberto Cipolla. Predicting seman-

tic map representations from images using pyramid occu-

pancy networks. In Proceedings of the IEEE/CVF Confer-

ence on Computer Vision and Pattern Recognition, pages

11138–11147, 2020. 3
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