
Towards Semantic Segmentation of Urban-Scale 3D Point Clouds:

A Dataset, Benchmarks and Challenges

Qingyong Hu1, Bo Yang1,2**, Sheikh Khalid3, Wen Xiao4, Niki Trigoni1, Andrew Markham1

1University of Oxford, 2The Hong Kong Polytechnic University, 3Sensat Ltd, 4Newcastle University

qingyong.hu@cs.ox.ac.uk, bo.yang@polyu.edu.hk, wen.xiao@ncl.ac.uk, andrew.markham@cs.ox.ac.uk

Abstract

An essential prerequisite for unleashing the potential of

supervised deep learning algorithms in the area of 3D scene

understanding is the availability of large-scale and richly

annotated datasets. However, publicly available datasets

are either in relative small spatial scales or have limited

semantic annotations due to the expensive cost of data ac-

quisition and data annotation, which severely limits the de-

velopment of fine-grained semantic understanding in the

context of 3D point clouds. In this paper, we present

an urban-scale photogrammetric point cloud dataset with

nearly three billion richly annotated points, which is three

times the number of labeled points than the existing largest

photogrammetric point cloud dataset. Our dataset con-

sists of large areas from three UK cities, covering about

7.6 km
2 of the city landscape. In the dataset, each 3D

point is labeled as one of 13 semantic classes. We ex-

tensively evaluate the performance of state-of-the-art algo-

rithms on our dataset and provide a comprehensive anal-

ysis of the results. In particular, we identify several key

challenges towards urban-scale point cloud understanding.

The dataset is available at https://github.com/

QingyongHu/SensatUrban.

1. Introduction

The three-dimensional world around us is composed of

a rich variety of objects: buildings, trees, cars, and so forth,

each with distinct appearance, morphology, and function.

Giving machines the ability to precisely segment and label

these diverse objects is of key importance to allow them to

interact competently within our physical world, for applica-

tions such as object-level robotic grasping [39], scene-level

robot navigation [54] and autonomous driving [16], or even

large-scale urban 3D modeling, which is critical for the fu-

ture of smart city planning and management [11, 4].

The ongoing revolution in data-driven deep networks has

*Corresponding author

1
7
8
0
 m

3016 m

Figure 1: An urban-scale point cloud collected from a re-

gion on the perimeter of the city of York, UK. It covers a

contiguous area of more than 3 square kilometer and repre-

sents a typical urban suburb.

led to a radical boost in the performance of 3D point cloud

segmentation. A series of neural pipelines proposed to ad-

dress the core problem of semantic segmentation, including:

1) 3D voxel-based methods such as SparseConvNet [19]

and MinkowskiNet [10], 2) 2D projection-based approaches

such as RangeNet++ [33] and SqueezeSeg [59], and 3) re-

cent point-based architectures e.g. PointNet/PointNet++

[37, 38], KPConv [51] and RandLA-Net [23].

To a large degree, these techniques have been driven for-

ward by the availability of open datasets which act as bench-

marks for objective comparison of algorithms and their per-

formance. These existing 3D repositories can be generally

classified as 1) object-level 3D models such as ModelNet

[60] and ShapeNet [8], 2) indoor scene-level 3D scans, e.g.,

S3DIS [3], ScanNet [13], and SceneNN [70], and 3) outdoor

roadway-level 3D point clouds including SemanticKITTI

[5] and Semantic3D [21].

However, there remain a number of key open questions

as to whether these techniques are capable of learning ac-

curate semantics over urban-scale 3D point clouds. Firstly,

unlike the existing datasets for objects, rooms or roadways

which are usually less than 200m in scale, the urban-scale

datasets are expected to be collected by aerial platforms,

spanning over extremely wide areas. How to efficiently
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and effectively preprocess massive points to feed into neural

networks? Secondly, the real-world urban space is usually

dominated by large-sized buildings or ground, and there-

fore the urban-scale datasets demonstrate extreme class im-

balance - a majority of points fall into a few categories

with sparse, yet important classes being under represented.

How to overcome this data imbalance in neural networks?

Thirdly, with the advancement of aerial mapping systems,

the urban-scale point clouds can not only capture the depth

information, but also true color for the scene appearance.

(How) does color information, in addition to depth, aid in

semantic segmentation of urban areas? Lastly, and po-

tentially most importantly, how are the existing networks

trained on one urban area able to generalize to a novel area?

To this end, we aim to establish a new paradigm for

urban-scale 3D semantic segmentation, enabled by UAV

photogrammetry. Our dataset, called SensatUrban, repre-

sents sub-sections of three large cities in the UK, i.e., Birm-

ingham, Cambridge, and York. It consists of nearly four

billion 3D points covering more than 7.6 square kilome-

ters urban area in these cities (as shown in Figure 1). The

3D point clouds are generated from high-quality aerial im-

ages captured by a professional-grade UAV mapping sys-

tem. Details of data acquisition are presented in Section

3. We manually labeled each point in the Birmingham and

Cambridge city as one of 13 semantic categories such as

ground, vegetation, car, etc.. Compared with exiting 3D

datasets, our SensatUrban is unique in two-fold.

• Unlike existing datasets for objects [60, 8], rooms [70, 3,

13] and roadways [21, 5] which are usually less than two

hundred meters in scale, the SensatUrban point clouds

continuously occupy kilometers in real-world urban ar-

eas, opening up new opportunities towards urban-scale

applications such as smart cities, and large national in-

frastructure planning and management.

• Being reconstructed from high-resolution aerial images,

our point clouds provide unique top-down and oblique

perspectives for the entire landscape of cities. Inherently,

the geometric patterns, textures, natural colours and dis-

tributions are distinct from the existing datasets.

On the basis of SensatUrban, we further identify a num-

ber of key challenges and empirically investigate them

from various aspects in Section 5. In particular, we firstly

study how the large-scale urban point clouds can be pre-

processed, to adapt to existing approaches without losing

segmentation accuracy. Secondly, we explore the neces-

sity of colorful appearance for better semantic learning of

several key categories, highlighting the advantage of pho-

togrammetric point clouds over LiDAR-based point clouds.

Thirdly, we examine the imbalance of semantic categories

in the urban-scale scenarios. Lastly, the difficulty of cross-

city semantic learning is analysed. Note that, this paper

does not aim to thoroughly tackle these challenges, but ex-

pose them to the community for future research.

Overall, our primary contributions are: 1) a unique

urban-scale 3D dataset for semantic learning, and 2) an in-

depth study of generalizing existing algorithms to the large-

scale urban point clouds and an outlook on future directions

for 3D point cloud segmentation at massive scale and reso-

lution. We aspire to highlight the challenges faced in the 3D

semantic learning on large and dense point clouds of urban

environments, sparking innovation in applications such as

smart cities, digital twins, autonomous vehicles, automated

asset management of large national infrastructures, and in-

telligent construction sites.

2. Related Work

2.1. Existing 3D Datasets

Existing 3D datasets can be broadly classified into four

categories: 1) Object-level 3D models. These include the

synthetic ModelNet [60], ShapeNet [8], ShapePartNet [65],

PartNet [34] and the real-world ScanObjectNN [53]. 2) In-

door scene-level 3D scans. These datasets are usually col-

lected by short-range depth scanners, such as NYU3D [46],

SUN RGB-D [47], S3DIS [3], SceneNN [70] and ScanNet

[13]. In addition, there are two synthetic datasets SceneNet

[22] and SceneNet RGB-D [31], which covers large-scale

complex indoor environments. 3) Outdoor roadway-level

3D point clouds. The majority of these datesets are specif-

ically collected for applications such as autonomous driv-

ing using a LiDAR scanner together with RGB cameras,

such as the early Oakland [35], KITTI [17], Sydney Ur-

ban Objects [14] and the recent Semantic3D [21], Paris-

Lille-3D [43], Argoverse [9], SemanticKITTI [5], Seman-

ticPOSS [36], Toronto-3D [49], nuScenes [7], A2D2 [18],

CSPC-Dataset [52], Lyft dataset [1] and Waymo dataset

[48]. To obtain more accurate semantic labels, a number

of synthetic datasets [40, 15] are generated by simulating

street scenes. 4) Urban-level aerial 3D point clouds. They

are usually obtained by costly aerial LiDARs, such as the

recent DublinCity [72], DALES [56], LASDU [64]. How-

ever, they are unable to capture true color information for

the complex urban structures.

Being concurrent to our work, the recent Campus3D [26]

also releases large-scale photogrammetric 3D point clouds

generated from high-resolution aerial images. However, our

SensatUrban is urban-scale and several times that of cam-

pus3d in terms of space size and labeling points.

2.2. 3D Semantic Learning

The wide availability of 3D datasets has facilitated rapid

progress in semantic learning based on neural networks. In

general, existing learning algorithms [20] can be divided

into three pipelines, depending on how the 3D data is repre-
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#Name and Reference #Year #Spatial size1 #Classes2 #Points #RGB #Sensors

Object-level
ShapeNet [8] 2015 - 55 - No Synthetic

PartNet [34] 2019 - 24 - No Synthetic

Indoor

Scene-level

S3DIS [3] 2017 6×10
3
m

2 13 (13) 273M Yes Matterport

ScanNet [13] 2017 1.13×10
5
m

2 20 (20) 242M Yes RGB-D

Outdoor

Roadway-level

Paris-rue-Madame [45] 2014 0.16×10
3
m 17 20M No MLS

IQmulus [55] 2015 10×10
3
m 8 (22) 300M No MLS

Semantic3D [21] 2017 - 8 (9) 4000M Yes TLS

Paris-Lille-3D [43] 2018 1.94×10
3
m 9 (50) 143M No MLS

SemanticKITTI [5] 2019 39.2×10
3
m 25 (28) 4549M No MLS

Toronto-3D [49] 2020 1×10
3
m 8 (9) 78.3M Yes MLS

Urban-level

ISPRS [42] 2012 - 9 1.2M No ALS

DublinCity [72] 2019 2×10
6
m

2 13 260M No ALS

DALES [56] 2020 10 ×10
6
m

2 8 (9) 505M No ALS

LASDU [64] 2020 1.02 ×10
6
m

2 5 3.12M No ALS

Campus3D [26] 2020 1.58 ×10
6
m

2 24 937.1M Yes UAV Photogrammetry

SensatUrban (Ours) 2020 7.64 ×10
6
m

2 13 (31) 2847M Yes UAV Photogrammetry

Table 1: Comparison with the representative datasets for segmentation of 3D point clouds. 1The spatial size (Area/Length)

in the dataset, m: meter, 2 The number of classes used for evaluation and the number of sub-classes annotated in brackets.

MLS: Mobile Laser Scanning system, TLS: Terrestrial Laser Scanning system, ALS: Aerial Laser Scanning system.

sented: 1) Voxel-based approaches [19, 10, 25, 29, 32, 67].

Although mature 3D CNN architectures can be easily ap-

plied, these techniques usually require significant compu-

tation and memory usage, thus not being easily scalable to

urban-scale point clouds. 2) 2D projection-based methods

[33, 30, 12, 62]. Similarly, these pipelines leverage the well-

developed 2D CNN frameworks to learn 3D semantics after

projecting the point clouds onto 2D images. However, criti-

cal geometric information is very likely to be lost in the pro-

jection step, and therefore is not suitable for learning the rel-

atively small object categories within urban-scale scenarios.

3) Point-based architectures [37, 38, 27, 50, 58, 51, 23].

This class of techniques learns per-point semantics primar-

ily based on the simple MLPs and typically achieves great

results in 3D object detection [71] and instance segmenta-

tion [63]. Compared with both voxel and projection-based

methods, these pipelines tend to be computationally effi-

cient and have the potential to preserve the semantics for

every single 3D point. However, most of the existing point-

based methods are usually designed and tuned for small-

scale point sets. It is still unclear how to effectively gener-

alize the point-based methods to the more complex urban-

scale scenarios. In this regard, we investigate a number of

critical challenges in Section 5.

3. The SensatUrban Dataset

In this section we describe how we collect, process and

label the dataset over three large urban areas in the UK.

3.1. Collecting Aerial Imagery

Due to the clear advantages of UAV imaging over sim-

ilar mapping techniques, such as LiDAR, we use a cost

(a) Multi-flights survey

(b) Zoomed-in single 
flight survey

Figure 2: The survey of a region in Cambridge. All 9 flight

plans (left) are collated together to cover the site. Lines with

different colors represent different flight paths of UAVs.

The circular path is the takeoff and landing pattern.

effective fixed wing drone, Ebee X1, which is equipped

with a cutting-edge SODA camera, to stably capture high-

resolution aerial image sequences. In order to fully and

evenly cover the survey area, all flight paths are pre-planned

in a grid fashion and automated by the flight control sys-

tem (e-Motion). Note that, the camera has the ability to

take both oblique and nadir photographs, ensuring that ver-

tical surfaces are captured appropriately. Since each flight

lasts between 40-50 minutes due to limited battery capac-

ity, multiple individual flights are executed in parallel to

capture the whole area. These multiple aerial image se-

quences are then geo-referenced using a highly precise on-

board Realtime Kinemtic (RTK) GNSS. Ground validation

points which are measured by independent professional sur-

1https://www.sensefly.com/drone/ebee-x-fixed-wing-drone/
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ground vegetation building wall bridge parking rail car footpath bike water traffic road street furniture

Figure 3: Examples of our SensatUrban dataset. Different semantic classes are labeled by different colors.

veyors with high precision GNSS equipment are then used

to assess the accuracy and quality of the data. For illustra-

tion, Figure 2 shows the paths of the pre-planed multiple

flights to cover the selected area in the Cambridge city.

3.2. Reconstructing 3D Point Clouds

To reconstruct urban-scale 3D point clouds, we use off-

the-shelf software such as Pix4D to reconstruct dense and

coloured 3D point clouds from the captured aerial image

sequences based on the principles of Structure from Motion

(SfM) and dense image matching.

For the urban area on the periphery of Birmingham, we

feed all the captured sequential images to Pix4D, generating

569,147,075 3D points in total, representing an area of 1.2

square kilometers. Similarly, we reconstruct 2,278,514,725

points for the urban region adjacent to the city of Cam-

bridge with an area of approximately 3.2 square kilometers,

and reconstruct 904,155,619 points for York with an area of

approximately 3.2 square kilometers.

3.3. Annotating Semantic Labels

We define the semantic categories based on two crite-

ria. 1) Each category should have a clear and unambigu-

ous semantic meaning, and it should be of interest to social

or commercial purposes, such as asset management, urban

planning, and surveillance. 2) Different categories should

have significant variance in terms of geometric structure or

appearance. We identify the below 13 semantic classes to

label all 3D points in the Birmingham and Cambridge via

off-the-shelf point cloud labeling tools. The points in York

are not labelled, but made available for possible pre-training

in semi-supervised schemes. All labels have been manually

cross-checked, guaranteeing the consistency and high qual-

ity. It takes around 600 working hours to label the entire

dataset. Figure 3 shows examples of our annotations. Table

1 compares the statistics of our SensatUrban with a number

of existing 3D datasets.

1. Ground: including impervious surfaces, grass, terrain

2. Vegetation: including trees, shrubs, hedges, bushes

3. Building: including commercial / residential buildings

4. Wall: including fence, highway barriers, walls

5. Bridge: road bridges

6. Parking: parking lots

7. Rail: railroad tracks

8. Traffic Road: including main streets, highways

9. Street Furniture: including benches, poles, lights

10. Car: including cars, trucks, HGVs

11. Footpath: including walkway, alley

12. Bike: bikes / bicyclists

13. Water: rivers / water canals

4. Benchmarks

4.1. Statistics of Train/Val/Test Split

To setup the benchmark, we divide the point cloud of

each area into similarly sized tiles similar to DALES [56],

so to be suitable for training and testing on modern GPUs.

In particular, the point cloud of the Birmingham urban area

is divided into 14 tiles. We then select 10 tiles for training,

2 for validation and 2 for testing. Similarly, the Cambridge

split has 29 tiles in total: 20 tiles for training, 5 for valida-

tion and 4 for testing. Each tile is approximately 400×400
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PointNet [37] 80.78 30.32 23.71 67.96 89.52 80.05 0.00 0.00 3.95 0.00 31.55 0.00 35.14 0.00 0.00 0.00

PointNet++ [38] 84.30 39.97 32.92 72.46 94.24 84.77 2.72 2.09 25.79 0.00 31.54 11.42 38.84 7.12 0.00 56.93

TagentConv [50] 76.97 43.71 33.30 71.54 91.38 75.90 35.22 0.00 45.34 0.00 26.69 19.24 67.58 0.01 0.00 0.00

SPGraph [24] 85.27 44.39 37.29 69.93 94.55 88.87 32.83 12.58 15.77 15.48 30.63 22.96 56.42 0.54 0.00 44.24

SparseConv [19] 88.66 63.28 42.66 74.10 97.90 94.20 63.30 7.50 24.20 0.00 30.10 34.00 74.40 0.00 0.00 54.80

KPConv [51] 93.20 63.76 57.58 87.10 98.91 95.33 74.40 28.69 41.38 0.00 55.99 54.43 85.67 40.39 0.00 86.30

RandLA-Net [23] 89.78 69.64 52.69 80.11 98.07 91.58 48.88 40.75 51.62 0.00 56.67 33.23 80.14 32.63 0.00 71.31

Table 2: Benchmark results of the baselines on our SensatUrban. Overall Accuracy (OA, %), mean class Accuracy (mAcc,

%), mean IoU (mIoU, %), and per-class IoU (%) scores are reported.

Figure 4: The distribution of different semantic categories

in our SensatUrban dataset. Note that, there are no points

annotated as rail in Cambridge. Also note the logarithmic

scale for the vertical axis.

square meters. As shown in Figure 4, we show the total

number of 3D points for each semantic category in the train-

ing/testing tiles in both Birmingham and Cambridge. It can

be seen that the major semantic categories, i.e., ground /

building / vegetation, together comprise more than 50% of

the total points, whereas the minor yet important categories

(e.g., bike / rail) only account for 0.025% of the total points.

This shows that the distribution of semantic classes is ex-

tremely unbalanced, highlighting the challenges for gener-

alizing the existing segmentation approaches.

4.2. Representative Baselines

As discussed in Section 2.1, there are three main classes

of neural pipelines to learn 3D point cloud semantics. In

this regard, we carefully select 7 representative methods as

solid baselines to benchmark our SensatUrban dataset.

• SparseConv [19]. A solid baseline that uses submanifold

sparse convolutional networks and achieves leading re-

sults on ScanNet benchmark [13].

• TagentConv [50]. It projects 3D points onto tangent

planes and uses 2D convolutional networks.

• PointNet/PointNet++ [37, 38]. These are the seminal

works to directly operate on orderless point clouds.

• SPGraph [24]. This is one of the first approaches capa-

ble of directly processing large-scale point clouds via the

concept of superpoints.

• KPConv [51]. It introduces a flexible kernel point con-

volution and achieves state-of-the-art performance on the

DALES dataset [56].

• RandLA-Net [23]. It is the latest work for efficient se-

mantic segmentation of large-scale point clouds and ranks

the first place on Semantic3D leaderboard [21].

4.3. Evaluation Metrics

Like the existing benchmarks [21, 5, 3], we use the

Overall Accuracy (OA) and mean Intersection-over-Union

(mIoU) as the principle evaluation metrics.

4.4. Benchmark Results

For fair comparison, we faithfully follow the experimen-

tal settings of each baseline in the original publication. Ta-

ble 2 presents the quantitative results. PointNet [37] has the

worst performance, while KPConv [51] achieves the high-

est mIoU scores. However, the overall segmentation perfor-

mance is far from satisfactory. For example, there are still

a number of key categories such as bridge, rail, street, foot-

path that are poorly segmented. Furthermore, the category

bike is entirely unsegmented by all methods. Further note

that different techniques have vastly different performances

on these challenging categories, with no clear leader. Moti-

vated by this, we then investigate the particular challenges

that arise from our new urban-scale SensatUrban dataset.
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PointNet Grid Constant Number 90.57 56.30 49.69 83.55 97.67 90.66 22.56 43.54 40.35 9.29 50.74 29.58 68.24 29.27 0.00 80.55

PointNet Grid Constant Volume 88.27 49.80 42.44 80.20 96.43 87.88 8.45 35.14 32.52 0.00 43.03 19.26 54.66 18.26 0.00 75.87

PointNet Random Constant Number 90.34 55.17 48.49 83.47 97.51 90.89 18.55 33.31 42.82 11.85 47.95 26.83 68.37 29.12 0.00 79.71

PointNet Random Constant Volume 88.09 48.45 41.68 79.82 96.24 87.64 5.69 27.70 34.98 0.00 42.85 13.81 54.29 20.64 0.00 78.24

RandLA-Net Grid Constant Number 91.55 74.87 58.64 82.99 98.43 93.41 57.43 49.47 55.12 27.33 60.65 39.43 84.57 39.48 0.00 73.97

RandLA-Net Grid Constant Volume 88.11 64.91 49.18 78.18 97.92 90.87 45.02 30.89 35.82 0.00 45.73 31.96 77.78 29.90 0.00 75.30

RandLA-Net Random Constant Number 91.14 74.14 57.55 82.25 98.33 92.37 54.20 43.10 54.74 25.02 60.40 39.17 82.77 37.59 0.00 78.25

RandLA-Net Random Constant Volume 88.37 60.84 47.27 81.16 97.52 90.45 44.75 16.36 37.18 0.00 4219 26.28 76.76 30.46 0.00 71.39

Table 3: Quantitative results achieved by PointNet [23] and RandLA-Net [23] with different input preparation steps. Overall

Accuracy (OA, %), mean class Accuracy (mAcc, %), mean IoU (mIoU, %), and per-class IoU (%) are reported.

5. Challenges

In this section, we identify a number of key challenges

revealed by our SensatUrban, and explore the possible solu-

tions to overcome them, eventually improving the segmen-

tation performance for existing point-based approaches.

Note that, we are not aiming to propose new algorithms

in this section. Instead, we aim to generalize the existing

pipelines from the perspective of dataset characteristics.

5.1. Data Partition

Due to the limited memory of modern GPUs, the first

and foremost challenge is to partition the original large-

scale point clouds, such that computational efficiency and

segmentation accuracy can be well balanced. The early

PointNet/PointNet++ techniques [37, 38] typically divide

the point clouds into 1×1 meter blocks. This is however

highly time consuming for such a large input tile, and causes

the object geometry to be fragmented across blocks. On

the other hand, if the raw point clouds are divided into ex-

tremely large blocks, the high number of points are unable

to be fed into the limited GPUs. To reduce the total number

of points within each block, grid or random down-sampling

are applied in [51, 23]. Many other methods tend to use

different sampling and partitioning tricks. Overall, there is

no standard and principled preparation steps in literature to

partition the large-scale point clouds.

To demonstrate the impact of different data partition

schemes, we organize the data preparation into two sepa-

rate steps as follows.

• Step 1. To downsample the raw point clouds at the very

beginning. There are two options in literature: 1) grid

downsampling [51], and 2) random downsampling [23].

Both can significantly reduce the total amount of points,

but each have their relative merits.

• Step 2. To obtain individual input set of points to feed

into the networks. There are two choices: 1) constant-

number input sets (i.e., the number of points is fixed),

and 2) constant-volume input sets (i.e., the volume of the

point set is fixed). In particular, constant-number input

sets are usually obtained by querying a fixed number of

points with regard to the set center [51, 23], while the

constant-volume input sets are extracted by collecting all

points of a fixed-size cube [37, 38].

By using two representative baselines PointNet [37] and

RandLA-Net [23], we evaluate how the four different com-

binations of both Step 1 and Step 2 affect the accuracy

of segmentation. In all the experiments, the grid size for

downsampling is 0.2m, the random downsampling ratio is

1/10, the size for constant-volume sets is 8×8m2, and the

constant-number sets have 4096 points.

Analysis. Table 3 shows the semantic segmentation

scores of the eight groups of experiments on the testing split

of SensatUrban. It can be seen that:

• Both PointNet or RandLA-Net based baselines achieve

much higher scores when the input sets are number con-

stant, compared with cases of constant volume.

• Using grid downsampling to reduce the raw 3D point

clouds demonstrates marginally better results than ran-

dom downsampling for both PointNet and RandLA-Net.

Overall, our experiments show that the data preparation

is indeed of great importance. A simple combination of grid

sampling and number-consistent block partition can bring

about up to 10% improvement for mIoU scores. In this re-

gard, we firmly believe that more studies should be con-

ducted to further explore the effective ways for data prepa-

ration.

5.2. Geometry vs. Appearance

One of the key differences between our SensatUrban and

the existing LiDAR-based datasets [56, 43, 5] is the avail-

ability of true RGB color for every 3D point. Intuitively,

the colored point clouds tend to be more informative and

can provide the networks with additional features for better

segmentation accuracy. However, networks may overfit the

appearance and fail to learn robust features from the geom-

etry. Taking only 3D coordinates as the input, the recent

ShellNet [68] achieves surprisingly good results, highlight-

ing the power of geometry. To investigate whether and how

the appearance impacts the final segmentation performance,
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PointNet [37] (w/o RGB) 83.50 33.52 28.85 67.35 92.66 84.72 16.02 0.00 13.65 2.68 17.09 0.33 54.54 0.00 0.00 26.04

PointNet [37] (w/ RGB) 90.57 56.30 49.69 83.55 97.67 90.66 22.56 43.54 40.35 9.29 50.74 29.58 68.24 29.27 0.00 80.55

PointNet++ [38] (w/o RGB) 90.85 56.94 50.71 79.05 98.37 94.22 66.76 39.74 37.51 0.00 51.53 38.82 81.71 5.80 0.00 65.68

PointNet++ [38] (w RGB) 93.10 64.96 58.13 86.38 98.76 94.72 65.91 50.41 50.53 0.00 58.40 46.95 82.31 38.40 0.00 82.88

SPGraph [24] (w/o RGB) 84.81 42.12 35.29 69.60 94.18 88.15 34.55 20.53 15.83 16.34 31.44 10.54 55.01 0.98 0.00 21.57

SPGraph [24] (w RGB) 85.27 44.39 37.29 69.93 94.55 88.87 32.83 12.58 15.77 15.48 30.63 22.96 56.42 0.54 0.00 44.24

KPConv [51] (w/o RGB) 91.47 57.43 51.79 80.43 98.82 94.93 74.17 44.53 32.11 0.00 54.32 37.83 84.88 14.48 0.00 56.79

KPConv [51] (w RGB) 93.92 71.44 64.50 87.04 99.01 96.31 77.73 58.87 49.88 37.84 62.74 56.60 86.55 44.86 0.00 81.01

RandLA-Net [23] (w/o RGB) 88.90 67.96 51.53 77.30 97.92 91.24 51.94 47.46 45.04 9.71 49.79 34.21 79.97 21.13 0.00 64.18

RandLA-Net [23] (w RGB) 91.24 74.68 58.14 82.23 98.39 92.69 56.62 49.00 54.19 25.10 60.98 38.69 83.42 38.74 0.00 75.80

Table 4: Quantitative results of five selected baselines on our SensatUrban dataset.Overall Accuracy (OA, %), mean class

Accuracy (mAcc, %), mean IoU (mIoU, %), and per-class IoU (%) are reported.

we conduct the following ten experiments using five dif-

ferent baselines namely PointNet/PointNet++ [37, 38], SP-

Graph [24], KPConv [51], and RandLA-Net [23]. These are

either trained using only geometrical information (i.e., 3D

coordinates) or both 3D coordinates and RGB information.

Analysis. Table 4 presents the quantitative results of the

five baselines with respect to the different types of input

point clouds. It can be seen that:

• All of PointNet/PointNet++, KPConv and RandLA-Net

achieve significantly better segmentation accuracy when

the networks are trained given both point coordinates and

RGB information. Fundamentally, this is because a num-

ber of urban classes (e.g., bridge, footpath, water, etc..)

are virtually impossible to be discriminated between, if

only supplied with 3D coordinates.

• For SPGraph, the performance depends largely on the ge-

ometrical partition which purely relies on the point co-

ordinates, hence the inclusion of RGB does not yield a

significant performance boost.

For all techniques, the presence of color information is

critical to improve the accuracy of semantic segmentation in

urban-scale scenarios. This highlights the advantage of our

SensatUrban over the existing LiDAR based datasets such

as DALES [56] and also suggests that future aerial mapping

campaigns should consider including RGB.

5.3. The Impact of Imbalance Class Distribution

Regardless of whether RGB is included or not, there still

remain significant performance gaps between different cate-

gories. For example, the score of vegetation is around 99%,

while the bike is completely unable to be recognized. Fun-

damentally, urban areas are dominated by a small number

of categories such as vegetation, and road, while the minor

yet important classes such as bike account for a minute por-

tion of points. This extremely skewed distribution is another

significant challenge arising from SensatUrban.

To alleviate this problem, a typical solution is to use

more sophisticated loss functions. We evaluate the effec-

tiveness of five off-the-shelf loss functions, with Point-

Net and RandLA-Net as baselines. The loss functions

are: cross-entropy, weighted cross-entropy with inverse fre-

quency [12], or with inverse square root (sqrt) frequency

[41], Lovász-softmax loss [6], and focal loss [28].

Analysis. Table 5 shows the quantitative results of the

two baselines with the five different loss functions. It can

be seen that the inclusion of advanced loss functions indeed

improves the segmentation performance. The mIoU scores

gain up to 5%. Notably, for the extremely challenging cate-

gory bike, the baseline RandLA-Net trained with weighted

cross-entropy and sqrt [41] obtains more than 20% improve-

ment. This shows that data imbalance can be alleviated, to

an extent, by using off-the-shelf loss functions. However,

even this increased performance is hardly satisfactory, and

we suggest that it is still an open question to explore more

effective solutions to fully tackle this challenge.

5.4. Cross­City Generalization

A common issue of deep neural networks lies in their

(in)ability to directly generalize to unseen scenarios. To

this end, our SensatUrban includes large-scale point clouds

from two different urban areas, which allows us to fully

evaluate their generalization ability. We conduct experi-

ments based on 5 baselines: PointNet/PointNet++ [37, 38],

SPGraph [24], KPConv [51], and RandLA-Net [23].

• Train Birmingham/Test Birmingham: Each of the 5 base-

lines is only trained on the training split of Birmingham,

and then tested on the testing split of the same region.

• Train Birmingham/Test Cambridge: The above well-

trained 5 baseline models are directly tested on the testing

split of Cambridge.

Analysis. Table 6 compares the quantitative results of

our experiments. It can be seen that the segmentation

performance of all baselines drops significantly when the

trained models are directly applied to novel urban scenarios.

The mIoU scores have up to 20% gaps for most approaches.
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PointNet+ce 90.57 56.30 49.69 83.55 97.67 90.66 22.56 43.54 40.35 9.29 50.74 29.58 68.24 29.27 0.00 80.55

PointNet+wce [23] 88.13 68.05 51.24 81.01 97.12 87.87 24.46 45.76 47.78 34.93 49.82 29.58 61.28 31.78 0.00 74.67

PointNet+wce+sqrt [2] 89.72 67.97 52.35 82.87 97.33 90.42 28.32 44.94 48.39 32.07 49.58 32.63 65.11 32.59 2.60 73.71

PointNet+lovas [6] 89.58 67.50 52.53 82.74 97.27 90.28 28.11 43.89 48.53 33.58 49.68 32.21 64.01 33.05 1.46 78.13

PointNet+focal [28] 89.46 67.33 52.37 82.47 97.34 90.25 28.36 51.87 46.40 30.50 48.62 32.43 65.00 32.23 1.21 74.10

RandLA-Net+ce 93.10 64.30 57.77 85.39 98.63 95.40 62.55 54.85 56.49 0.00 58.13 45.90 82.24 30.68 0.00 80.70

RandLA-Net+wce [23] 91.24 74.68 58.14 82.23 98.39 92.69 56.62 49.00 54.19 25.10 60.98 38.69 83.42 38.74 0.00 75.80

RandLA-Net+wce+sqrt [2] 92.51 79.92 62.80 84.94 98.47 95.07 59.01 62.18 56.76 28.96 57.36 44.47 84.67 41.67 24.31 78.49

RandLA-Net+lovas [6] 92.56 76.99 61.51 84.92 98.55 94.64 63.17 52.37 55.43 36.37 59.35 45.79 84.28 41.24 2.66 80.89

RandLA-Net+focal [28] 92.49 77.26 60.41 85.03 98.38 94.74 59.49 58.70 57.11 25.97 58.19 42.74 82.26 42.00 2.71 77.97

Table 5: Quantitative results achieved by PointNet [37] and RandLA-Net [23] with different loss functions. Overall Accuracy

(OA, %), mean class Accuracy (mAcc, %), mean IoU (mIoU, %), and per-class IoU (%) are reported.
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PointNet [37] 87.33 54.76 48.73 80.91 94.58 87.40 33.69 0.51 66.23 16.98 49.55 36.08 74.59 1.49 0.00 91.51

PointNet++ [38] 89.85 64.24 57.39 84.34 97.11 89.74 61.56 3.78 68.08 41.95 54.43 51.54 84.73 14.43 0.00 94.34

SPGraph [24] 80.13 42.87 36.95 65.75 93.33 87.24 41.28 0.00 42.69 20.94 2.28 32.05 64.06 0.00 0.00 30.76

KPConv [51] 91.44 68.41 61.65 86.00 97.66 92.90 75.07 0.91 69.74 55.50 57.94 60.73 89.48 21.44 0.00 94.13

RandLA-Net [23] 90.77 72.11 59.72 85.14 96.89 90.77 59.45 1.52 75.83 48.88 62.58 48.65 86.31 28.82 0.00 91.51

PointNet [37] 86.06 38.56 29.70 74.94 94.57 85.38 8.62 13.42 16.47 0.00 38.64 14.27 36.96 0.09 0.00 2.75

PointNet++ [38] 89.46 44.64 36.93 77.68 97.28 91.95 54.59 0.52 15.84 0.00 42.08 29.00 67.71 0.24 0.00 3.16

SPGraph [24] 82.02 24.83 20.70 61.72 88.26 78.27 8.29 0.00 0.00 0.00 0.64 1.87 30.00 0.00 0.00 0.00

KPConv [51] 90.62 48.71 40.51 78.88 98.33 94.24 76.20 0.01 14.70 0.00 41.77 39.32 74.22 0.39 0.00 8.61

RandLA-Net [23] 88.92 51.57 40.29 78.46 97.12 89.93 46.77 28.76 20.03 0.00 46.98 18.70 65.99 24.91 0.00 6.15

Table 6: All baselines are trained on the Birmingham split. The top five records show the testing results on the testing split

of Birmingham, while the bottom five rows show the scores on the testing split of Cambridge. Overall Accuracy (OA, %),

mean class Accuracy (mAcc, %), mean IoU (mIoU, %), and per-class IoU (%) are reported.

Interestingly, the major categories such as ground and build-

ing do not observe severe performance drops, while the

classes such as rail, street and water have the worst gen-

eralization scores. From this, we hypothesize that: 1) the

imbalanced semantic distribution plays a key role in pre-

venting the model generalization, mainly because the model

tends to fit with major classes and fails to learn robust fea-

tures of minor categories; 2) the more variable morphology

of some urban classes such as parking and water are hard to

be generalized from one dataset to another. Due to a lack of

realistic datasets, few studies have been conducted to inves-

tigate this critical issue of generalization. It is thus an open

question of how to robustly label novel urban-scale regions.

6. Summary and Outlook

In this paper, we introduce a large and rich urban-scale

dataset including two accurately labelled regions covering

4.4km2 and an extra unlabelled region covering 3.2km2

provided for the self/semi-supervised learning schemes.

Through extensive benchmarking, we highlight a number

of open challenges, which include how to sample and parti-

tion the large point clouds, whether to acquire RGB (color)

information or not, the impact of a significantly imbal-

anced class distribution, and the lack of robust general-

ization to unseen scenarios. Other pressing challenges in-

clude instance-level and panoptic segmentation. In the near-

future, we envisage that autonomous aerial vehicles will in-

telligently navigate through dense cities, urban, and rural ar-

eas, and as such, real-time photogrammetric reconstruction

and segmentation are also of key consideration. Accurate

and high resolution 3D maps of reality are also necessary

ingredients for emerging cyberphysical areas such as smart

cities, intelligent transport and digital twins. It is our hope

that our SensatUrban dataset and benchmark will be a step-

ping stone towards advancing research in related areas.
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