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Abstract

6D pose estimation in space poses unique challenges

that are not commonly encountered in the terrestrial set-

ting. One of the most striking differences is the lack of at-

mospheric scattering, allowing objects to be visible from a

great distance while complicating illumination conditions.

Currently available benchmark datasets do not place a suf-

ficient emphasis on this aspect and mostly depict the target

in close proximity.

Prior work tackling pose estimation under large scale

variations relies on a two-stage approach to first estimate

scale, followed by pose estimation on a resized image patch.

We instead propose a single-stage hierarchical end-to-end

trainable network that is more robust to scale variations.

We demonstrate that it outperforms existing approaches not

only on images synthesized to resemble images taken in

space but also on standard benchmarks.

1. Introduction

Reliable 6D pose estimation is key to automating many

spatial maneuvers, such as docking or capturing inert ob-

jects as shown in Fig. 1. An important consequence of

such maneuvers is that they dramatically change the scale

and aspect of the observed target. Although 6D pose es-

timation is an active area of research in computer vision

and robotics, this important aspect has not received sig-

nificant attention thus far—for example, most benchmark

datasets [8, 20, 42, 9] feature objects whose depth varies

within a limited range. The lack of atmospheric scattering

enabling observation from great distances also leads to other

challenges: harsh contrast, under- and over-exposed areas,

and significant specular reflections from reflective materi-

als used in space engineering (aluminium and carbon fiber

panels, etc.).

To address such challenges, the European Space Agency

(ESA) and Stanford University recently organized a satellite

pose estimation challenge based on the Spacecraft Pose Es-

timation Dataset (SPEED) [19]. The best-performing meth-

ods in this competition use a two-step approach to handle

(a) (b) (c)

Figure 1: Docking and space cleaning. (a, b) Two different views

of the Agena target vehicle during the first space docking. The

appearance of Agena is strongly affected by the large scale and

viewpoint changes, suggesting that different image features should

be used for 6D pose estimation. In 1966, this docking procedure

was controlled manually. (c) In 2025, the ClearSpace One chaser

satellite will be launched to retrieve and de-orbit a non-operational

satellite, so as to showcase the feasibility of removing space de-

bris. In this case, the capture will be fully automated. The syn-

thetic image shown here highlights the challenges the algorithm

will have to handle, such as reflections, over-exposure of some

parts of the images, and lack of details in others.

large depth variation: a detector finds an axis-aligned box

bounding the target, which is resampled to a uniform size

and finally processed by a 6D pose estimator.

This approach is suboptimal in several ways. First, de-

tection and pose estimation are treated as separate pro-

cesses, which precludes joint training. Second, it provides

supervisory signals only to the final layer of the encoder-

decoder architecture being used instead of to all levels of the

decoding pyramid, which would increase robustness. Third,

many similar feature extraction computations are performed

by both processes, which results in an unnecessary dupli-

cation of effort. Finally, these methods rely on the domi-

nant approach to deep learning based 6D object pose esti-

mation [33, 11, 2] consisting of training a network to mini-

mize the 2D reprojection error of predefined 3D keypoints,

which cannot cope with large depth range variations: As

shown in Fig. 2, reprojection error is strongly affected by

the distance of individual keypoints to the camera, and not

explicitly taking this into account degrades performance.

To address these shortcomings, we introduce a sin-

gle hierarchical end-to-end trainable network depicted by

Fig. 3 that yields robust and scale-insensitive 6D poses.
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Figure 2: Problem with minimizing the 2D reprojection error.

(a) The red lines denote the 2D reprojection errors for points p1

and p2. Because one is closer to the camera than the other, these

2D errors are of about the same magnitude even though the corre-

sponding 3D errors, shown in blue, are very different. (b) For the

same object at different locations, the same 2D error can generate

different 3D errors. This makes pose accuracy dependent on the

relative position of the target to the camera.

To use information across scales, it progressively down-

scales the learned features, derives 3D-to-2D correspon-

dences for each level of the resulting pyramid, and finally

uses a RANSAC-based PnP strategy to infer a single re-

liable pose from these sets of correspondences. This is a

departure from most networks that estimate pose only from

the final layer. To address the issue in Fig. 2, we minimize

a training loss based on 3D positions instead of 2D pro-

jections, making the method invariant to the target distance.

We use a Feature Pyramid Network (FPN) [24] as our back-

bone but, unlike in most approaches relying on such net-

works, we assign each training instance to multiple pyramid

levels to promote the joint use of multi-scale information.

In short, our contribution is a new 6D pose estimation

architecture that reliably handles large scale changes under

challenging conditions. We will show that it outperforms all

state-of-the-art methods on the established SPEED dataset

while also being much faster. Furthermore, we introduce a

larger-scale satellite pose estimation dataset featuring more

realistic and more complex images than SPEED, and we

show that our method delivers the same benefits in this

more challenging scenario. Finally, we demonstrate that our

method outperforms the state of the art even on images with

smaller depth variations, such as those of the challenging

Occluded LINEMOD dataset. Our code and new dataset

will be publicly released.

2. Related Work

The most commonly-used sensors for 6D pose estima-

tion in space remain cameras, may they be RGB, monochro-

matic, or, although more rarely, infrared. We therefore fo-

cus on image-based 6D pose estimation in both our work

and the discussion below.

The standard framework to perform 6D pose estimation

Input Image Hierarchical Processing Multi-Scale Fusion Pose Result

Figure 3: Our single-stage approach. We use an encoder-decoder

architecture to progressively downsample the image and then to re-

expand it. At each level of the decoder, we establish 3D-to-2D cor-

respondences. Finally, we use a RANSAC-based PnP strategy [21]

to infer a single reliable pose from these sets of correspondences.

consists of first establishing 3D-to-2D correspondences,

and then compute the pose using a PnP solver [27, 41, 30].

While many hancrafted methods have been designed to ex-

tract the required correspondences [26, 39, 40], they tend

to produce low-quality output under challenging conditions

(objects lacking spatial variation, strong highlights, etc.).

As such, most modern 6D object pose estimation meth-

ods establish such correspondences using a neural network.

This network is usually trained to predict the image loca-

tion of the 3D object bounding box corners, either in a

single global fashion [18, 33, 37, 42], or by aggregating

multiple local predictions to improve robustness to occlu-

sions [29, 16, 11, 31, 43, 23]. Whether global or local,

these methods were designed to be effective on standard

computer vision benchmarks, which feature minimal scale

changes. As we will show in our experiments, they there-

fore perform poorly when the depth range at which the ob-

ject is depicted varies dramatically across different images.

The few works that have attempted to handle the scale

issue rely on an object detection network as a preprocessing

component [22, 23, 2]. While the zoom sampling strategy

introduced in [23] aims to account for the object detection

noise when training the pose network, it still does not reflect

the true distribution of the patches output by the detection

network, and the resulting framework does not unify the de-

tection and pose estimation stages. While this could in prin-

ciple be achieved via a Spatial Transformer Network [15],

such a change would significantly complicate the archi-

tecture, introducing redundant operations across the detec-

tion and pose estimation modules and eventually preclud-

ing real-time inference. Our main contribution entails using

the inherent hierarchical structure of a single network with

shared weights across the levels to handle the scale prob-

lem. We demonstrate this to be both robust and efficient.

Hierarchical processing, such as image pyramids [1, 13,

17], is a classical idea for multi-scale image understand-

ing [14, 12]. Recently, this idea has been translated to

the deep learning realm via Feature Pyramid Networks

(FPNs) [24], which are now a standard component of many

object detection frameworks [25, 38, 45]. Here, we lever-
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(a) The SPEED dataset (b) The proposed SwissCube dataset

Figure 4: Comparison of datasets. (a) The SPEED dataset [19]

was generated with a non-physics-based renderer and only poorly

reflects the complexity of illumination in space. (b) We introduce

a SwissCube dataset that was created via physics-based rendering.

age this idea for 6D object pose estimation. However, unlike

most object detection methods that explicitly associate each

pyramid level to a single, predefined scale, we introduce

a dynamic sampling strategy where each training instance

leverages all pyramid levels, albeit with different weights.

This allows us to fuse the predictions from the different lev-

els at inference, leading to more robust 6D pose estimates.

We focus our experiments on 6D pose estimation of

space-borne objects, because robustness to scale is highly

important in that context, particularly when approaching

non-cooperative targets (e.g. space trash) that require mo-

tion synchronization. The space engineering community

has its own literature on the topic of 6D pose estimation.

While it has evolved in a manner that resembles progress

in computer vision, it has mostly focused on handcrafted

methods [44, 5, 32, 35], with only a few works propos-

ing deep learning based approaches [2]. The main reason

for this is the lack of large amounts of annotated data for

space-borne objects. Recently, this was addressed by the

SPEED dataset [19] released by ESA and Stanford Univer-

sity as part of a satellite pose estimation challenge. This

dataset, however, has several limitations. First, it does not

provide the 3D model of the satellite, and while it can be

reconstructed from the images, the final pose estimate will

depend not only on the pose estimation algorithm but also

on the quality of this reconstruction. Second, the SPEED

images were synthesized by a non-physics-based rendering

technique, only poorly reflecting the complexity of illumi-

nation in space, as illustrated in Fig. 4. Finally, the depth

distribution of the SPEED dataset is not uniform, with only

few images depicting the satellite at a large distance from

the camera. However, accurate pose for farther objects

can be critical for space rendezvous; they give the docker

or chaser enough time to adjust its own motion and pre-

pare for the actual operations. We propose a novel satellite

pose estimation dataset that addresses this bias, and consti-

tutes the second contribution of this article. The images in

this dataset were created using a physically-based spectral

light transport simulation involving an accurate reference

3D model of a cube satellite that accounts for the effects of

the Sun, Earth, stars, etc.

3. Approach

Our goal is to estimate the 3D rotation and 3D transla-

tion of a known rigid object depicted in an RGB image. To

this end, we design a deep network that regresses the 2D

projections of predefined 3D points. However, rather than

regressing the 2D projections at a single, fixed scale, which

lacks robustness to large depth variations, we use a Fea-

ture Pyramid Network (FPN) [24], perform the regression

at multiple scales, and fuse the resulting multiple estimates

in a robust pose prediction.

In the following sections, we first present the FPN ar-

chitecture our network builds on and then introduce a

sampling-based training strategy to leverage every pyramid

level for each training instance. Finally, we discuss our fu-

sion approach to obtaining a single pose estimate during in-

ference.

3.1. Pyramid Network Architecture

Most 6D pose estimation deep networks rely on an

encoder-decoder architecture. Therefore, to handle large

scale variations for 6D object pose estimation, instead of re-

lying on an additional object detection network, we use the

inherent hierarchical architecture of the encoder network,

which extracts features at different scales. Specifically, we

use Darknet-53 [34] as backbone in our framework and em-

ploy the same network architecture as in the FPN [24] de-

signed for object detection, which consists of k = 5 lev-

els of feature maps, {F1,F2,F3,F4,F5}, each with an in-

creasingly large receptive field.

Instead of computing a single pose estimate from the fea-

ture map F5 only, we regress the 2D locations of the object

3D keypoints from every level of this pyramid. To this end,

we rely on the segmentation-driven approach of [11], and

make the feature vector at every spatial location in each fea-

ture map to output the 2D projections of the 3D keypoints,

represented as an offset from the center of the correspond-

ing cell, and an objectness score for each object class. The

feature vector at each cell therefore is a C × (2 × 8 + 1)
dimensional vector consisting of 8 2D offsets and an ob-

jectness indicator for C object classes. To encode a seg-

mentation mask, all feature cells need to be involved in the

objectness prediction, including those that contain no target

objects. By contrast, as discussed below, only selected cells

are involved in training the pose regressor.

3.2. Ensemble­Aware Sampling

Large-scale variations impose drastic difficulties on the

network for accurate prediction for every scale. The stan-

dard approach to training an FPN follows a divide-and-

conquer strategy, consisting of dividing the whole training

set of instances into several non-overlapping groups accord-

ing to the object size and then assigning different groups
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(a) Standard strategy [24] (b) Proposed strategy

Figure 5: Sampling strategies during training. Let the circles

denote all the training instances sorted in increasing order of depth

from left to right. (a) The traditional sampling strategy assigns

each instance to a single pyramid level according to its size during

training. For example, the red instance is fed only to pyramid level

F2, thus encouraging only this level to yield a reasonable predic-

tion for this sample. (b) We propose to assign each instance to

multiple pyramid levels, encouraging every pyramid level to pro-

duce a reasonable pose estimate for every instance.

to different pyramid levels during training, as illustrated in

Fig. 5(a). This simple strategy may be sufficient for object

detection where one can simply choose level producing the

best prediction based on the objectness scores during test-

ing. However, for 6D pose estimation, it prevents one from

leveraging the predictions of the multiple levels jointly to

improve robustness, because, for a given scale, most levels

will yield highly noisy estimates as they weren’t trained for

objects at that scale.

To address this issue, we design a sampling strategy that

allows every feature vector within the object segmentation

mask at each level to participate in the prediction with a

certain probability, as in Fig. 5(b). Let sk, for 1 ≤ k ≤ 5,

be a reference object size for level k of the pyramid, chosen

based on the object size distribution in the target dataset.

For example, in our SwissCube dataset, we take sk to be

16, 32, 64, 128, and 256, respectively. Then, for an object

of size S taken to be the largest of the width and height of

its 2D bounding box, we uniformly randomly sample

Nk = α
e−λ∆2

k

∑5

j=1
e−λ∆2

j

(1)

feature vectors at level k among those within the object seg-

mentation mask, with

∆k = | log2
S

sk
| and α = 10 . (2)

The hyper-parameter α specifies the maximum number of

active feature vectors on any level, and λ ≥ 0 controls

the distribution of the number of active cells across levels.

When λ = 0, all Nks are equal, thus using the same number

of feature cells at each pyramid level, independently of the

object size. By contrast, when λ is large, that is, λ > 20,

the sampling strategy degenerates to the “hard assignment”

commonly-used by FPNs. In Fig. 6, we show how each Nk

varies as a function of S for different λ values. Note that, for

1632 64 128 256
0

5

10

S (λ = 1)

N1

N2

N3

N4

N5
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0

5
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S (λ = 10)
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Figure 6: Sample count Nk at each pyramid level as a function

of the object size S. Typically, when λ > 20, Nk degenerates to

the simple “hard” assignment strategy that FPN adopts. Note that

for a given object size, multiple Nks are non-zero, which translates

to soft assignments to the different pyramid levels.

a given object size, multiple pyramid levels will be involved

in training, thus making them robust to scale variations.

3.3. Loss Function in 3D Space

As mentioned before, every feature vector selected by

our sampling procedure is then used to regress the 2D

projections of the 8 corners of the 3D object bounding

box. When regressing 2D locations, most existing meth-

ods [33, 11] seek to directly minimize the error in the im-

age plane, that is, the loss function
∑n

i=1
|ui − ûi|, where

ui is the ground-truth 2D projection and ûi the predicted

one. However, as illustrated by Fig. 2, this loss function is

suboptimal, particularly in the presence of large depth vari-

ations, because it puts more emphasis on some keypoints

than on others and also depends on the object’s relative po-

sition.

To overcome this, we introduce a loss function in 3D

space, which is invariant to the depth of 3D keypoints. Un-

der a perspective camera model, the projection of a 3D ob-

ject keypoint pi in the image is given by

λi

[

ui

1

]

= K(Rpi + t), (3)

where ui is the 2D image location, λi is a scale factor, K is

the 3× 3 matrix of camera intrinsic parameters, and R and

t are the rotation matrix and translation vector representing

the 6D object pose. Then, let

v̂i = K−1[ûi, v̂i, 1]
⊤ (4)

pc
i = Rpi + t (5)

be the 3D camera ray passing through the predicted 2D lo-

cation ûi = [ûi, v̂i] and the corresponding 3D keypoint pi

expressed in the camera coordinate system, respectively,

where R and t are the ground-truth rotation matrix and

translation vector. We can then map the re-projection error

into 3D space by computing

ei = pc
i − V̂ip

c
i

= (I− V̂i)p
c
i ,

(6)
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where

V̂i =
v̂iv̂

⊤

i

v̂⊤

i v̂i

(7)

is a matrix projecting a 3D point orthogonally to the camera

ray v̂i [27], as illustrated in Fig. 2. Finally, we take our pose

regression loss to be

Lreg =

n
∑

i=1

sl1(ei). (8)

where sl1(·) is the smoothed L1 norm [6]. As shown in

Fig. 10, this 3D error is consistent across all 3D keypoints

and less influenced by the depth and relative position of the

observed object. Furthermore, it can be computed by simple

algebraic operations and can thus easily be incorporated in

an end-to-end learning formalism.

Ultimately, we combine this loss function with that su-

pervising the predicted objectness score, which yields the

overall training loss

L =

5
∑

k=1

{Lobj(k) + Lreg(k)}, (9)

where Lobj(k) and Lreg(k) are the objectness loss and pose

regression loss at level k, respectively. In this work, we take

the loss Lobj to be the focal loss [25].

3.4. Inference via Multi­Scale Fusion

Thanks to our ensemble-aware sampling strategy, our

trained network can produce valid pose estimates at ev-

ery pyramid level for any test image, independently of its

scale. These estimates can be selected by thresholding the

objectness score predicted for each feature vector at each

level, and in practice we use a threshold τ = 0.3. In

principle, these estimates could then be fused directly by

a RANSAC+PnP strategy [21] or using the learning-based

method of [10]. For simplicity, we use the RANSAC+PnP

approach, but in conjunction with our ensemble-aware sam-

pling scheme.

To apply this scheme at test time, we first need to esti-

mate the object size. To this end, we choose the feature vec-

tor leading to the highest objectness score, and compute the

size S from the corresponding predictions of the 8 bound-

ing box corner projections. Given this size, we then select,

for each pyramid level k, the Nk feature cells that give the

highest objectness score. This lets us construct a set of 3D-

to-2D correspondences {pi ↔ uijk} for every 3D keypoint

pi, where uijk is the 2D location predicted for pi by cell

Cj on feature map Fk, with 1 ≤ i ≤ 8, 1 ≤ j ≤ Nk and

1 ≤ k ≤ 5. Finally, we use a RANSAC based PnP algo-

rithm to obtain a robust 6D pose estimate from these corre-

spondences. We will show in our experiments that this out-

performs the prediction obtained from any individual pyra-

mid level.

4. Experiments

In this section, we first evaluate our framework on the

SPEED dataset, and then introduce the SwissCube dataset,

which contains accurate 3D mesh and physically-modeled

astronomical objects, and perform thorough ablation studies

on it. We further show results on real images of the same

satellite. Finally, to demonstrate the generality of our ap-

proach we evaluate it on the standard Occluded-LINEMOD

dataset depicting small depth variations.

We train our model starting from a backbone pre-trained

on ImageNet [4], and, for any 6D pose dataset, feed it 3M

unique training samples obtained via standard online data

augmentation strategies, such as random shift, scale, and

rotation. To evaluate the accuracy, we will report the in-

dividual performance under different depth ranges, using

the standard ADI-0.1d [11, 10] accuracy metrics, which en-

codes the percentage of samples whose 3D reconstruction

error is below 10% of the object diameter. On the SPEED

dataset, however, we use a different metric, as we do not

have access to the 3D SPEED model, making the computa-

tion of ADI impossible. Instead, we use the metric from the

competition, that is, eq + et, where eq is the angular error

between the ground-truth quaternion and the predicted one,

and et is the normalized translation error. Furthermore, be-

cause the depth distribution of SPEED is not uniform, with

only few images depicting the satellite at a large distance

from the camera, we only report the average error on the

whole test set, as in the competition. The source code and

dataset are publicly available at https://github.com/cvlab-

epfl/wide-depth-range-pose.

4.1. Evaluation on the SPEED Dataset

Although the SPEED dataset has several drawbacks, dis-

cussed in Section 2, it remains a valuable benchmark, and

we thus begin by evaluating our method on it. As the test

annotations are not publicly available, and the competition

is not ongoing, we divide the training set into two parts,

10K images for training and the remaining 2K ones for test-

ing. We evaluate the two top-performing methods from the

competition, [2] (DLR) and [11] (SegDriven-Z), on these

new splits using the publicly-available code, and find their

errors to be of similar magnitude to the ones reported on-

line during the challenge. Note that our method, as DLR

and SegDriven-Z, uses the 3D model to define the key-

points whose image location we predict. We therefore ex-

ploit a method of [7] to first reconstruct the satellite from

the dataset.

Table 1 compares our results to those of the two top-

performing methods on this dataset. Note that DLR com-

bines the results of 6 pose estimation networks, followed by

an additional pose refinement strategy to improve accuracy.

We therefore also report the results of our method with and

without this pose refinement strategy. Note, however, that
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Accuracy
Model Size FPS

Raw Refinement

SegDriven-Z [11] 0.022 - 89.2 M 3.1

DLR [2] 0.017 0.012 176.2 M 0.7

Ours
640× 0.018 0.013 51.5 M 35

960× 0.016 0.010 51.5 M 18

Table 1: Comparison with the state of the art on SPEED. Our

method outperforms the two top-performing methods in the chal-

lenge and is much faster and lighter.

we still use a single pose estimation network. Furthermore,

for our method, we report the results of two separate net-

works trained at different input resolutions. At the resolu-

tion of 960×, we outperform the two state-of-the-art meth-

ods, while our architecture is much smaller and much faster.

To further speed up our approach, we train a network at a

third (640×) of the raw image resolution. This network re-

mains on par with DLR but runs 20+ times faster.

4.2. Evaluation on the SwissCube Dataset

To facilitate the evaluation of 6D object pose estimation

methods in the wide-depth-range scenario, we introduce a

novel SwissCube dataset. The renderings in this dataset ac-

count for the precise 3D shape of the satellite and include

realistic models of the star backdrop, Sun, Earth, and tar-

get satellite, including the effects of global illumination,

mainly glossy reflection of the Sun and Earth from the satel-

lite’s surface. To create the 3D model of the SwissCube,

we modeled every mechanical part from raw CAD files, in-

cluding solar panels, antennas, and screws, and we carefully

assigned material parameters to each part.

The renderings feature a space environment based on the

relative placement and sizes of the Earth and Sun. Cor-

rect modeling of the Earth is most important, as it is of-

ten directly observed in the images and significantly affects

the appearance of the satellite via inter-reflection. We ex-

tract a high-resolution spectral texture of the Earth’s surface

and atmosphere from published data products acquired by

the NASA Visible Infrared Imaging Radiometer Suite (VI-

IRS) instrument. These images account for typical cloud

coverage and provide accurate spectral color information

on 6 wavelength bands. Illumination from the Sun is also

modeled spectrally using the extraterrestrial solar irradi-

ance spectrum. The spectral simulation performed using

the open source Mitsuba 2 renderer [28] finally produces

an RGB output that can be ingested by standard computer

vision tools.

The renderings also include a backdrop of galaxies, neb-

ulae, and star clusters based on the HYG database star cata-

log [3] containing around 120K astronomical objects along

with information about position and brightness. The irradi-

ance due to astronomical objects is orders of magnitude be-

low that of the Sun. To increase the diversity of the dataset,

Sun Earth

Earth’s Shadow

Target
Observer

Earth’s Orbit

Figure 7: Settings for physical rendering of SwissCube. We

physically model the Sun, the Earth, and the complex illumination

conditions that can occur in space.

and to ensure that the network ultimately learns to ignore

such details, we boost the brightness of astronomical ob-

jects in renderings to make them more apparent.

Following these steps, we place the SwissCube into its

actual orbit located approximately 700 km above the Earth’s

surface along with a virtual observer positioned in a slightly

elevated orbit. We render sequences with different rela-

tive velocities, distances and angles. To this end, we use

a wide field-of-view (100◦) camera whose distance to the

target ranges uniformly between 1d to 10d, where d indi-

cates the diameter of the SwissCube without taking the an-

tennas into accounts. The high-level setup is illustrated in

Fig. 7. Note that the renderings are essentially black when

the SwissCube passes into the earth’s shadow, and we detect

and remove such configurations.

We generate 500 scenes each consisting of a 100-frame

sequence, for a total of 50K images. We take 40K images

from 400 scenes for training and the 10K image from the

remaining 100 scenes for testing. We render the images

at a 1024×1024 resolution, a few of which are shown in

Fig. 8. During network processing, we resize the input to

512×512. We report the ADI-0.1d accuracy at three depth

ranges, which we refer to as near, medium, and far, cor-

responding to the depth ranges [1d-4d], [4d-7d], and [7d-

10d], respectively.

4.2.1 Effect of our Ensemble-Aware Sampling

We first evaluate the effectiveness of our ensemble-aware

sampling strategy, further comparing our approach with the

single-scale baseline SegDriven [11], which uses the same

backbone as us. Note that the original SegDriven method

did not rely on a detector to zoom in on the object, but

was extended with a YOLOv3 [34] one in the SPEED com-

petition, resulting in the SegDriven-Z approach evaluated

above. For our comparison on the SwissCube dataset to

be fair, we therefore also report the results of SegDriven-Z.

Moreover, we also evaluate the top performer on the SPEED

dataset, DLR [2], on our dataset.

Fig. 9 demonstrates the effectiveness of our sampling
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Figure 8: Qualitative results on the SwissCube dataset. Our method yields accurate pose estimates at all scales.

Near Medium Far All

SegDriven [11] 41.1 22.9 7.1 21.8

SegDriven-Z [11] 52.6 45.4 29.4 43.2

DLR [2] 63.8 47.8 28.9 46.8

Ours 65.2 48.7 31.9 47.9

Table 2: Our method outperforms all baselines on SwissCube.

strategy. Our results with different λ values, which controls

the ensemble-aware sampling, show that large values, such

as λ > 10, yield lower accuracies. With such large values,

our sampling strategy degenerates to the one commonly-

used in FPN-based object detectors. This therefore evi-

dences the importance of encouraging every pyramid level

to produce valid estimates at more than a single object scale.

Note also that λ = 0, which corresponds to distributing ev-

ery training instance uniformly to all levels, does not yield

the best results, suggesting that forcing every level to pro-

duce high-accuracy at all the scales is sub-optimal. In other

words, each level should perform well in a reasonable scale

range, but these ranges should overlap across the pyramid

levels. This is achieved approximately with λ = 1, which

we will use in the following experiments.

Table 2 summarizes the comparison results with other

baselines. Because it does not explicitly handle scale, Seg-

Driven performs poorly on far objects. This is improved by

the detector used in SegDiven-Z. However, the performance

of this two-stage approach remains much worse than that of

our framework. Our method outperforms DLR as well, even

though our method is 20+ times faster than DLR. Fig. 8 de-

picts a few rendered images and corresponding poses esti-

mated with our approach.

4.2.2 Effect of our Multi-Scale Fusion

To better understand the role of each pyramid level during

multi-scale fusion, we study the accuracy obtained using the

predictions of each individual pyramid level. Intuitively, we

expect the levels with a larger receptive field (feature maps

with low spatial resolution) to perform well for close ob-
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Figure 9: Effect of ensemble-aware sampling. In general, the

more cross-level samples are involved in training, that is, the

smaller λ is, the better the results.

Near Medium Far All

L1 0 25.2 31.8 19.5

L2 36.5 48.4 27.7 38.2

L3 62.3 47.4 19.9 42.6

L4 59.2 20.2 1.7 26.3

L5 25.5 0.9 0 8.3

Fusion 65.2 48.7 31.9 47.9

Table 3: Effect of the multi-scale fusion. Each pyramid level

favors a specific depth range, which our multi-scale fusion strategy

leverages to outperform every individual level.

jects, and those with a small receptive field (feature maps

with high spatial resolution) to produce better results far-

away ones. While the results in Table 3 confirm this intu-

ition for Levels L1, L2 and L3, we observe that the perfor-

mance degrades at L4 and L5. We believe this to be due to

the very low spatial resolution of the corresponding feature

maps, 8×8, and 4×4, respectively, making it difficult for

these levels to output precise poses. Nevertheless, the accu-

racy after multi-scale fusion outperforms every individual

level, and we leave the study of a different number of pyra-

mid levels to future work.

4.2.3 Effect of the 3D Loss

In Table 4, we compare the results obtained by training our

approach with either the commonly-used 2D reprojection

loss or our loss function in 3D space. Note that our 3D loss

outperforms the 2D one in all depth ranges, and the farther

the object, the larger the gap between the results of the two
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Near Medium Far All

2D loss 64.6 42.0 24.0 43.1

3D loss 65.2 48.7 31.9 47.9

Delta +0.6 +6.7 +7.9 +4.8

Table 4: Effect of the 3D loss. The proposed 3D loss outperforms

the 2D one in every depth ranges. The farther the object, the more

obvious the advantage of the 3D loss.
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Figure 10: Pose error as a function of the object position. The

performance of the 2D loss clearly degrades for objects near the

image center, whereas that of our 3D loss doesn’t. See Fig. 2(b)

for the underlying geometry. Note that as the object moves closer

to the image boundary, it becomes truncated, which degrades the

performance of both losses.

loss functions. In Fig. 10, we plot the average accuracy as a

function of the object image location. The performance of

the 2D loss degrades significantly when the object is located

near the image center, whereas the accuracy of our 3D loss

remains stable for most object positions. Note that, The

reason both of them become worse in the right part of the

figure is due to the object truncation by image borders.

4.3. Results on Real Images

In Fig. 11, we illustrate the performance of our approach

on real images. Note that these real images were not cap-

tured in space but in a lab environment using a mock-up

model of the target and an OptiTrack motion capture system

to obtain ground-truth pose information for a few images.

We then fine-tuned our model pre-trained on our synthetic

SwissCube dataset using only 20 real images with pose

annotations. Because this procedure only requires small

amounts of annotated real data, it would be applicable in

an actual mission, where images can be sent to the ground,

annotated manually, and the updated network parameters

uploaded back to space.

4.4. Evaluation on Occluded­LINEMOD

Finally, to demonstrate that our approach is general,

and thus applies to datasets depicting small depth varia-

tions, we evaluate it on the standard Occluded-LINEMOD

dataset [20]. Following [10], we use the raw images at res-

olution 640×480 as input to our network, train our model

Figure 11: Qualitative results on real data. Our model easily

adapts to real data, using as few as 20 annotated images.

PVNet SimplePnP Hybrid Ours

Ape 15.8 19.2 20.9 22.3

Can 63.3 65.1 75.3 77.8

Cat 16.7 18.9 24.9 25.1

Driller 65.7 69.0 70.2 70.6

Duck 25.2 25.3 27.9 30.2

Eggbox∗ 50.2 52.0 52.4 52.5

Glue∗ 49.6 51.4 53.8 54.9

Holepun. 39.7 45.6 54.2 55.6

Avg. 40.8 43.3 47.5 48.6

Table 5: Comparison on Occluded-LINEMOD. We compare our

results with those of PVNet [31], SimplePnP [10] and Hybrid [36].

Symmetry objects are denoted with “∗”.

on the LINEMOD [8] dataset and test it on Occluded-

LINEMOD without overlapped data. Although our frame-

work supports multi-object training, for the evaluation to be

fair, we train one model for each object type and compare it

with methods not relying on another refinement procedure.

Considering the small depth variations in this dataset, we

remove the two pyramid levels with the largest reception

fields from our framework, leaving only F1, F2 and F3. As

shown in Table 5, our model outperforms the state of the art

even in this general 6D object pose estimation scenario.

5. Conclusion

We have proposed to use a single hierarchical network

to estimate the 6D pose of an object subject to large scale

variations, as would be the case in a space scenario. Our

experiments have evidenced that training the different level

of the resulting pyramid for different object scales and fus-

ing their predictions during inference improves accuracy

and robustness. We have also introduced the SwissCube

dataset, the first satellite dataset with an accurate 3D model,

physically-based rendering, and physical simulations of the

Sun, the Earth, and the stars. Our approach outperforms the

state of the art in both the wide-depth-range scenario and

the more classical Occluded-LINEMOD dataset. In the fu-

ture, we will concentrate on other important aspects of 6D

object pose estimation in space, such as removing jitter by

6D pose tracking, and training a usable model with fully-

unsupervised real data.
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