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Abstract

We present a new method for few-shot human motion

transfer that achieves realistic human image generation

with only a small number of appearance inputs. Despite re-

cent advances in single person motion transfer, prior meth-

ods often require a large number of training images and

take long training time. One promising direction is to per-

form few-shot human motion transfer, which only needs a

few of source images for appearance transfer. However, it is

particularly challenging to obtain satisfactory transfer re-

sults. In this paper, we address this issue by rendering a

human texture map to a surface geometry (represented as a

UV map), which is personalized to the source person. Our

geometry generator combines the shape information from

source images, and the pose information from 2D keypoints

to synthesize the personalized UV map. A texture genera-

tor then generates the texture map conditioned on the tex-

ture of source images to fill out invisible parts. Further-

more, we may fine-tune the texture map on the manifold of

the texture generator from a few source images at the test

time, which improves the quality of the texture map with-

out over-fitting or artifacts. Extensive experiments show

the proposed method outperforms state-of-the-art methods

both qualitatively and quantitatively. Our code is avail-

able at https://github.com/HuangZhiChao95/

FewShotMotionTransfer.

1. Introduction

Human motion transfer [7, 9, 12, 17, 22, 27, 34, 44, 45]

generates videos of one person that takes the same motion

as the person in a target video, which has huge potential

applications in virtual characters, movie making, etc. The

rapid growth of generative networks [11] and image transla-

tion frameworks [15, 40] enables generating photo-realistic

images for human motion transfer. Basically, one would ex-

tract the pose sequence of the target video and take the pose

as the input to generate the video for a new person.
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Figure 1. Method overview. Our method contains three key com-

ponents: a geometry generator for generation of a personalized

UV map, a texture generator to fill out incomplete texture, and

a neural renderer rendering the human image. Detailed network

structures are illustrated in Figure 2.

The appearance of the new person can be provided in two

ways. One type of models aim to train an individual model

for a specific person. To obtain such a model, one needs

to collect a large number of images for the new person and

trains a network to translate the pose to the image of the

person [7, 39]. Then the appearance information is stored

in the weights of the network and the image of new pose can

be directly generated by taking the new pose as input. How-

ever, such methods need a large amount of training data and

training time to obtain a model for the new person, which

hinders the applications of these approaches.

For the other type, the information of appearance is pro-
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vided by taking a few images of the new person as input.

Few-shot human motion transfer requires the network to

learn the complicated relationship between human appear-

ance and pose by only looking at few human images. The

relationship is very hard to learn and generalize to unseen

people. Therefore, directly conditioning the output image

on the pose and the appearance leads to poor quality. Some

approaches warp the input appearance to the output with op-

tical flows [38] or affine transformations [3, 44] to generate

a coarse pose of the new person. However, the mapping

is usually inaccurate and fails to recover realistic human

from the intermediate warping result. Even if the architec-

ture gets more and more complicated, there are still many

artifacts in the images of few-shot human motion transfer.

The appearance of one person at different pose is the

same. Therefore, we can directly transfer the pixels from

the source pose to the target pose without generating the

pixels. DensePose [2] provides the UV map of one per-

son so that the texture can be transferred between different

poses to synthesize the human at the new pose. However,

directly using the original model to transfer the texture fails

to generate realistic human image [2, 28].

The DensePose can be trained to better fit the generation

of human and achieves high quality avatars [31]. However,

their method is only suitable for single person and cannot

be directly used for few-shot synthesis. On the one hand,

their generator is not able to synthesize accurate geometry

(i.e. IUV representation) of different people whose shapes

are different. On the other hand, their method cannot pro-

duce complete texture map from only few the source human

images. We propose a new method that generalizes the al-

gorithm for the few-shot scenario and get better results than

previous few-shot approaches. As shown in Figure 1, we

use a geometry generator to generate personalized UV map

given a target pose and a few source images. Meanwhile, a

texture generator merges each incomplete texture map and

hallucinates the invisible. Then the texture map is rendered

to the UV map to generate an image with target pose and

source appearance. The decoupling generation of personal-

ized geometry and texture leads to better quality of motion

transfer.

We summarize our contributions as follows:

1. We propose a geometry generator to predict an accu-

rate personalized UV map and a texture generator to gen-

erate a complete texture map. These two generators work

collaboratively for rendering high quality human images.

2. By training on multiple videos of multiple persons

and fine-tuning on a few examples of an unseen person, our

method successfully transfers geometry and texture knowl-

edge to the new person.

3. Experiments demonstrate that our method generates

better human motion transfer results than state-of-the-art

methods both qualitatively and quantitatively.

2. Related Work

Human Motion Transfer. There have been a lines of

work about synthesizing a human image in an unseen pose

[3, 7, 10, 23, 28, 32]. Most of the methods implement

a generator condition on 2D keypoints (or connection of

the keypoints) of the pose. One type of the methods train

different models for different persons. EDN [7] utilize

pix2pixHD [40] framework to translate 2D skeleton to the

image of a specific person. Vid2Vid [39] uses more compli-

cated network for generation of the video, which contains

foreground-background separation and optical flow warp-

ing module. While single person model generates photo-

realistic picture of the human, it requires collecting training

data for each person and takes long time to train.

Another type of the methods train single model to trans-

fer motion for all persons. As appearance information needs

to be obtained from the source images, which makes the

task much more complicated, many papers add additional

modules for synthesizing intermediate images and use them

as one input for later generative networks. The additional

modules include affine transformation [3, 44], flow warping

[38], DensePose transfer [28] and SMPL transfer [22, 24].

Our method also uses DensePose for modeling the geom-

etry of the pose, but we directly render the texture to the

DensePose to produce final outputs instead of using it as

the intermediate layer. While our method requires accurate

personalized UV map and high quality texture map, we omit

directly generating the pixel. Multi-stage methods also gen-

erate the coarse intermediate images with neural network

generators [26, 32, 45]. In addition, Siarohin et al. [34]

and Liu et al. [24] modify blocks of the network to adapt

the task. MonkeyNet [33] does not depend on the 2D pose.

Instead, it extracts and maps the keypoints of the source

and target image and animates any objects by the motion

of these keypoints. Moreover, fine-tuning on a few source

images of one person can improve the quality of the output

[21]. Fine-tuning is also part of our method. However, we

mainly fine-tune the texture map, which seldom overfits to

the few source images at test time.

Human Avatars. Full-body human avatars are usually

represented by textured animatable 3D human models.

There have a large group of works on building 3D model

from single-view or multi-view images [1, 4, 14, 20, 25].

Many 3D models of human are based on SMPL [25], a

parametrized model describing the shape and pose of hu-

man. Lazova et al. [20] build fully-textured avatars from a

single input image. Starting from SMPL, it uses neural net-

work to model the displacement of geometry and complete

partial texture of human. PIFu [30] learns an implicit func-

tion to align surface and texture so that human avatar can be

reconstructed from single-view or multi-view images. Ali-

aksandra et al. [31] learn the translation from skeleton to

UV map from a video. And full texture is generated by di-
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rectly optimizing the output image of neural rendering. Our

method is close related to [31], but we need to train one

model for all persons in a few-shot setting instead of train-

ing a single model for each person. So our model should

be able to synthesize personalized geometry and hallucinate

unseen texture map.

3. Personalized Geometry and Texture Model

Given a target pose P and a few images of the source

person I1, ..., Ib, our goal is to learn a model f that synthe-

sizes an image

Î = f(P, {Ij}
b
j=1), (1)

in which the generated person has the pose P and the ap-

pearance of source images I1, ..., Ib. In this paper, we as-

sume the source person images share a fixed background,

so we can separate the generation of human image Ĩ and

background B as:

Î = (1−m)⊙B +m⊙ Ĩ , (2)

where m is the soft mask indicating the human image fore-

ground Ĩ , and ⊙ represents element-wise product. The

mask m can be easily obtained with an off-the-shelf person

segmentation model like DeepLab V3 [8].

3.1. Neural Human Rendering

Ĩ can be directly generated from the pose P with an

image-to-image translation network [3, 7, 15]. However,

these methods fail to model complex geometric changes

and detailed textures of the person, resulting in low-quality

outputs especially when only few training samples of the

source person are available. To mitigate this issue, we takes

a neural rendering based approach [31, 37] by dividing the

image synthesis into two parts: generation of a personalized

human geometry (UV map) and generation of personalized

human texture (texture map). And the person image can

be generated by sampling the texture map according to the

UV map as shown in Figure 1. On the one hand, while hu-

man geometry varies across different persons, the variation

is much smaller than that of person images. Therefore, gen-

erating personalized geometry is easier than directly gener-

ating the human image. Texture map, on the other hand, is

fixed for one person without complex geometric changes.

So it can be effectively learned from the source textures.

DensePose [2] descriptors have been widely adopted for

disentangling the generation of human geometry and texture

[28, 31]. We follow this line of work and subdivide human’s

body into n = 24 non-overlapping parts. The k-th body

part (k = 1, 2..., n) is parameterized by a 2D coordinate

(C2k, C2k+1) (i.e., a UV map) and associated with a texture

T k as shown in Figure 1. Then, we can render the k-th part

with bilinear interpolation:

Rk[x, y] = T k[C2k[x, y], C2k+1[x, y]]. (3)

For pixel [x, y] of the image, we assign a score Sk[x, y] to

the k-th part of the DensePose, representing the probability

that the pixel belongs the k-th part.
∑n+1

k=1
Sk[x, y] = 1,

where Sn+1[x, y] indicates the probability that [x, y] be-

longs to the background (i.e., (1−m) in Equation (2)). By

summing up the rendered part weighted by its probability,

we generate the image of the human as:

Ĩ =

n∑

k=1

Sk[x, y]Rk[x, y]. (4)

In this work, we design a geometry generator (Sec-

tion 3.2) to estimate body part score Sk and its UV map

(C2k, C2k+1), as well as a texture generator (Section 3.3)

for generating body part texture T k. These two generators

can be trained collaboratively and render the human image

with transferred motion using Equations (3) and (4).

3.2. Geometry Generator

As shown in Figure 2(a), the body UV geometry not only

depends on the target pose P but also needs to be person-

alized, varying across different persons. To this end, our

geometry generator Gφ takes the pose P as input to gener-

ate the geometry with desired pose, and at the same time, it

also takes the source human images Ĩ1, ..., Ĩb to model per-

sonalized details (e.g., hair style, clothing, body shapes):

C = GC
φ (P, {Ĩ1, Ĩ2, ..., Ĩb}),

S = GS
φ(P, {Ĩ1, Ĩ2, ..., Ĩb}), (5)

where b is the number of source human images provided

as input to the geometry generator. We denote Ck for the

k-th channel of C ∈ R
48×H×W , and C2k, C2k+1 are the

U- and V-coordinate for the k-th body part, respectively.

S ∈ R
25×H×W , whose k-th channel Sk is the soft assign-

ment mask for k-th part of the DensePose, represents the

probability that a pixel belongs to which part of the body.

Note that during training, P is different from the poses of

Ĩ1, ..., Ĩb, so that the network is forced to rely the on the

target pose P when extracting geometric information.

As shown in Figure 2(a), the geometry generator con-

tains three encoders and one decoder: an image context en-

coder EI , a pose attention encoder EW , a target pose en-

coder EP , and a geometry decoder DG. The target pose en-

coder EP extracts the information of target pose P as input

to the geometry decoder DG to ensure the generated geom-

etry reflects the desired pose. The image context encoder

EI extracts personalized body information from Ĩ1, ..., Ĩb.

The pose attention encoder EW then compares the similar-

ity between target pose P and source poses P1, ..., Pb to

determine which source images should be paid more atten-

tion to for incorporating personalized shape details in the

generated geometry output by DG.
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Figure 2. Architecture of our proposed geometry generator (Section 3.2) and texture generator (Section 3.3). The generated geometry and

texture are finally used to render a reconstructed human image (Section 3.1).

We implement our geometry generator with a U-Net [29]

like architecture. And we perform the above feature interac-

tion at each corresponding layer of the three encoders and

the decoder (i.e., layers with the same spatial resolution).

Consequently, the architecture captures multi-level features

from the input images and poses at different resolutions,

which helps to generate high quality geometry with accu-

rate personalized shape and pose.

More specifically, the encoder EI , EW , EP and decoder

DG have the same number of layers L. We define El as l-th

layer of the encoder, and Dl as (L − l)-th layer of the de-

coder. At l-th layer of the encoders, we calculate the feature

for (l + 1)-th layer as:

al+1

j = El
I(a

l
j), ql+1

j = El
W (qlj), (6)

wl
j = (qlj)

⊤ ⊗ ql, dla =
∑

k w
l
j ⊗ alj , (7)

dl+1
p = Dl

G([d
l
a, d

l
p]), (8)

where j = 1, ..., b is the index of the source images, a0j =

Ĩj , q0j = Pj , and d0p = EP (P ). ⊗ denotes matrix multipli-

cation. In Equation (6), El
I and El

W encode features from

previous layer. Equation (7) shows how we merge the per-

sonalized shape information from different source images

using an attention mechanism. As different source images

carry different shape information, when predicting the ge-

ometry C and S, we give different weights to these inputs

according to their similarities with the target pose P . For

instance, if P describes the side view of the person, it may

be hard to infer the detailed shape geometry from front-side

images. So, we should give more attention to the images

whose pose is similar to the target pose. In Equation (7),

we reshape alj and qlj into R
Cl×Nl where Cl is the number

of channels and Nl = Hl × Wl denotes the spatial size of

the feature map, then we perform matrix product with ⊗.

At last, as shown in Equation (8), dla is reshaped back into

Cl ×Hl ×Wl, concatenated with dlp, and fed into Dl
G.

3.3. Texture Generator

Our texture generator is responsible for generating a full

human texture map T given the source images. An intuitive

approach would be directly extracting a DensePose texture

map from each source image Ij and aggregating them (e.g.,

through spatial average or max pooling) to get a merged

texture map. However, such merged texture map is usu-

ally incomplete since not all body parts are visible from the

given source images. Plus, due to inaccurate DensePose

estimation, this texture map is unrealistic and lacks of fine

texture details. To solve this problem, we introduce a tex-

ture generator Hθ that takes the textures T1, ..., Tb extracted

by DensePose from source images I1, ..., Ib to synthesize

the complete texture T in a learnable fashion:

T = Hθ(T1, T2, ..., Tb). (9)

The architecture of our texture generator is a vanilla

encoder-decoder as shown in Figure 2(b). We reshape the

input texture Tj from 24×3×HT ×WT to 72×HT ×WT

and feed it to Hθ. The encoder ET encodes each texture

Tj to the bottleneck embedding denoted as tj . We merge

the textures of different source images by taking average of
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their embedding features:

t =
1

b

b∑

j=1

tj . (10)

Note that the architecture allows different numbers of in-

put textures. And t is then fed into decoder DT to produce

the complete texture map of size 72×HT ×WT , which is

finally reshaped into T ∈ R
24×3×HT×WT . Our texture gen-

erator not only produces the complete texture map T , but

also defines a manifold of human body textures. As we will

discuss later, we may fine-tune the embedding t at test-time

to improve the quality of texture map T .

4. Training

Our training process consists of three stages: an initial-

ization stage, a multi-video training stage, and an optional

few-shot fine-tuning stage.

4.1. Initialization

Training our geometry and texture generators with

image-level reconstruction loss from scratch is infeasible,

as the model does not have any prior information about hu-

man body. For example, it is impossible for the geometry

generator to learn body semantics and output a human mask

S, of which each channel corresponds to a specific body

part, without any explicit supervision. Thus, we follow [31]

and use the output of an off-the-shelf DensePose extractor

[2] to initialize our networks.

Geometry Generator. For a target ground truth image I

we aim to reconstruct, we take the pseudo ground truth

body part mask S∗ and UV-coordinate C∗ extracted by the

DensePose model as the supervision signal to initialize the

geometry generator Gφ by minimizing:

LC =

24∑

k=1

(‖S∗k ⊙ (C2k − C∗2k)‖1+

‖S∗k ⊙ (C2k+1 − C∗2k+1)‖1), (11)

LS =LCE(S, S
∗), (12)

where C and S are the outputs of our geometry generator

as in Equation (5). LC is the L1 norm between C∗ and C

on the given body part. And LS is the cross-entropy loss as

used in semantic segmentation that guides the generator to

predict the same body part masks as S∗.

Texture Generator. The texture generator is initialized by

requiring its output to have the same texture on the visible

part of its inputs. Suppose σj is the binary mask indicating

the visible part of the input texture Tj , we optimize Hθ with

the following pixel L1 loss:

LT =

b∑

j=1

‖σj ⊙ (T − Tj)‖1 (13)

Mask s Coordinate C

(a) With Regularization

Mask s Coordinate C

(b) Without Regularization

Figure 3. Impact of adding regularization terms (Equations (16)

and (17)) to the loss. The belly and leg regions are messy without

regularization.

4.2. Multi­video Training

After the initialization, our model can roughly generate

human geometry and texture. However, the generated ge-

ometry is similar to the pre-trained DensePose outputs that

lack personalized shape details. Also, the texture map is

only coarsely rendered, missing important detailed textures

that are necessary for generating realistic humans.

To this end, we train our generators on multiple training

videos after the initialization. In each training mini-batch,

we only sample data from one person so that the texture T

and feature da can be shared across different target pose P .

Besides, training time is saved as T and da only need to be

generated once for all target pose in this mini-batch. We

consider the following losses during training.

Image Loss. Image loss makes the reconstructed human

Ĩ to be closer the ground truth human image m ⊙ I∗ in

both image space and the feature space of a neural network

[16]. Suppose Φv is an intermediate feature of a pre-trained

VGG-19 network [35] at different layers. The image loss is:

LI = ‖Ĩ−m⊙I∗‖1+
N∑

v=1

‖Φv(Ĩ)−Φv(m⊙I∗)‖1, (14)

Mask Loss. The mask loss is a cross-entropy (CE) loss

between the generated background mask S25 and a pseudo

ground truth background mask 1 − m output by a SOTA

segmentation model [8]:

LM = LCE(S
25, 1−m). (15)

Generator Regularization Loss. The rendering process

makes the optimization of geometry and texture ambigu-

ous. There would be infinite combinations of geometry and

texture map to render the same human image. As the neural

network have high flexibility, we need to constrain dramatic

changes of texture, coordinates and mask. Otherwise, the

geometry and texture generators are prone to overfitting and

cannot generalize to unseen people and poses. As shown in

Figure 3, the mask and coordinate gets irregular without the

regularization. Thus, we introduce a regularization loss that

is similar the losses at the initialization stage to prevent the
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network from generating unrealistic results or overfitting.

The regularization loss contains a texture term:

LRT =

b∑

j=1

‖σj ⊙ (T − Tj)‖1, (16)

a coordinate term:

LRC =

24∑

k=1

(‖Sk ⊙ (C2k − C∗2k)‖1+

‖Sk ⊙ (C2k+1 − C∗2k+1)‖1),

(17)

and a body part mask term that ensures S do not deviates

too much from S∗ output by the DensePose model on the

foreground mask:

LRM = LCE((1− S∗25)⊙ S, (1− S∗25)⊙ S∗), (18)

The total loss can be expressed as follows:

L = λILI +λMLM +λRTLRT +λRCLRC +λRMLRM ,

(19)

where λ’s are the weights balancing the contribution of each

loss term. Note that we do not add adversarial loss during

image reconstruction as we find it would add instability to

the training of geometry generator.

4.3. Few­shot Fine­tuning

The model trained at our multi-video training stage can

be readily used for generating human motion transfer results

on unseen people and poses. Fine-tuning on a few source

images at test time is an optional step that greatly improves

the quality of the synthesized images.

Since we only need to generate one texture map T for

one person at test time, fine-tuning of texture map seldom

overfits. If the texture map gets closer to the texture of

source images, the texture of synthesized human at other

pose becomes more photo-realistic.

We fine-tune the embedding t in Equation (10) to pro-

duce a smooth and realistic texture map. Compared with

directly optimizing texture map T as in [31], fine-tuning

embedding causes few artifacts to the texture map and it

is able to hallucinate incomplete textures as shown in Fig-

ure 7. During test time fine-tuning, we first initialize t by

averaging the embedding of source textures T1, ..., Tn. And

generate complete image Î with Equation (2) and fine-tune

t by minimizing:

L̂I = ‖Î − I∗‖1 +

N∑

v=1

‖Φv(Î)− Φv(I∗)‖1 (20)

Ltest = λI L̂I + λMLM + λRCLRC + λRMLRM . (21)

We do not add LRM as we do not hope to constrain the op-

timization of texture map at test time. Meanwhile, we also

fine-tune the geometry generator Gφ and through Ltest for

few steps since the geometry generator can already general-

ize pretty well to unseen person geometries and fine-tuning

for a long period may lead to overfitting. We also fine-tune

background B through Ltest as it can eliminate artifacts for

merging backgrounds.

5. Experiments

Dataset. We collect 62 solo dance videos with almost static

background from YouTube. The videos contain several sub-

jects with different genders, body shapes, and clothes (ex-

amples can be found in Figure Figure 6). Each video is

trimmed into a clip lasting about 3 minutes. We further di-

vide them into training and test set with no overlapping sub-

jects. Training set contains 50 videos with 283,334 frames

and test set contains 12 videos with 70,240 frames.

Preprocess. For each frame I in the dataset, we crop the

center part of the image and extract the 25 body joints with

OpenPose [5, 6]. The joints are connected to form a “stick-

man” image as the input pose P . UV coordinate C∗ and

mask S∗ are extracted with DensePose model [2]. Dense-

Pose just gives a coarse segmentation of the human. We use

Deeplab V3 [8] to get foreground mask m separate fore-

ground human image Ĩ . Source texture T̃ is produced by

warping the image I according to C∗.

Implementation Details. All video frames are resized to

256×256 while the size of body part texture map is set to

128 × 128. The input pose is a “stickman” image with 26

channels and each channel contains one “stick” of the pose.

The encoder and decoder for geometry and texture gener-

ators are built on basic convolution-relu-norm blocks, and

we include more detailed illustrations in the supplementary

material. Geometry generator contains about 60M parame-

ters and that of texture generator is around 34M.

Both generators are training using Adam [19] optimizer

with (β1, β2) = (0.5, 0.999). Learning rate starts at 0.0002.

The initialization stage lasts for 10 epochs and the learning

rate decays half at the 5th epoch. We train the multi-video

stage for 15 epochs with learning decaying half at the 5th

and the 10th epoch. At test time, we randomly select 20

images from one video as the source images. The number

of fine-tuning steps is 40 for geometry generator and is 300

for the texture embedding. We generate the background B

by directly merging visible background from source images

and fill the left invisible parts with deepfillv2 [42].

Compared Methods. We compare our method with state-

of-the-art human motion transfer approaches: Posewarp [3],

MonkeyNet [33], FewShotV2V [38] and Liquid Warping

GAN (LWG) [24]. We use the source code provides by the

authors to train the model. For those providing pre-trained

models (Posewarp, LWG), we use it as initialization and

train on our dataset for fair comparison. Otherwise, we train

the model from scratch. At test time, we fine-tune all these
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Source Person Target Pose Posewarp MonkeyNet LWG FewShotV2V Ours

Figure 4. Qualitative comparison of our method to state-of-the-art methods. More video results can be found in the supplementary material.

Source Images=1 Source Images=5 Source Images=20 Source Images=50 Source Images=100

Figure 5. Synthesized human with different number of source images.

Table 1. Quantitative evaluation metrics on our test set. ↑ repre-

sents higher is better, and ↓ means lower is better.

Methods
Reconstruction Motion Transfer

SSIM↑ LPIPS↓ FReID↓ PoseError↓
Posewarp [3] 0.808 0.175 5.73 12.46

MonkeyNet [33] 0.763 0.234 13.40 41.49

LWG [24] 0.760 0.238 9.99 14.45

FewShotV2V [38] 0.694 0.332 8.24 10.50

Oursw/o Fine-tuning 0.837 0.166 4.91 6.48

Oursw/ Fine-tuning 0.861 0.157 3.78 6.58

OursDirect Merge 0.843 0.183 4.40 8.09

OursTexture Map 0.881 0.151 3.23 7.27

Table 2. User study of human motion transfer. The numbers in-

dicate the percentage of clips that the users prefer our method to

each of the competing method. Chance is 50%.

Posewarp MonkeyNet LWG FewShotV2V

98.40% 99.47% 87.50% 90.43%

models on the source images. As only FewShotV2V ac-

cepts multiple inputs, for other methods, the source image

is chosen to be the first one.

5.1. Quantitative Comparisons

Evaluation Metrics. For each video in the test set, we con-

sider two evaluation settings: reconstruction and motion

transfer. For the reconstruction, we set the pose sequence

from the video of the source person as the target motion.

The generator is asked to reconstruct images to be the same

as the ground-truth video. We compare the similarity of

the synthesized and ground-truth image using SSIM [41]

and Learned Perceptual Similarity (LPIPS) [43]. For mo-

tion transfer, we extract the pose sequence from one video

in the test set and let a person in other videos imitate the

pose sequence. We compare the quality of the images in

two aspects: Pose Error [7, 38] and FReID [24]. Pose Error

is the average L2 distance (in pixels) of 2D pose keypoints

between of synthesized human and target pose, which es-

timates the accuracy of the transferred motion. FReID is

a Fréchet Distance [13] on a pre-trained person-reid model

[36], which measures the quality of generated appearance.

The results are shown in Table 1. Our method achieves

higher similarity in reconstruction and lower discrepancy

of pose and appearance in motion transfer.

User Study We run all the methods on 30 randomly chosen

5-second video clips for human motion transfer and ask 8

people to perform user study. In each trial, given the motion

transfer results of the five methods on the same video clip,

the users are asked to select the method with the best gen-

eration quality. The percentage of trials that our method is

preferred is shown in Table 2. We can find that our method

is favored in most of the clips.

5.2. Qualitative Comparisons

Figure 4 visually compares our method with others. Our

method outperforms state-of-the-art methods in terms of the

image quality and pose accuracy. Posewarp fails to con-

struct some parts of the body. FewShotV2V cannot gener-

alize to new person with small number of training videos

(their paper used 1500 videos). It only outlines the appear-

ance of source person with plenty of artifacts. While LWG

can synthesize a person with regular shapes, it is not able to

generate person with complicated shape such as dress and
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Figure 6. More examples of our method. Our method can generate personalized geometry and realistic texture for a wide variety of source

persons. More video results can be found at https://youtu.be/ZJ15X-sdKSU .

Table 3. Performance with varied numbers of source images.

Source Images 1 5 20 50 100

SSIM↑ 0.845 0.852 0.861 0.867 0.870

LPIPS↓ 0.167 0.174 0.157 0.158 0.153

FReID↓ 4.29 3.97 3.78 3.60 3.41

Pose Error↓ 6.86 6.68 6.58 6.53 6.58

long hair, as detailed shape information cannot be modeled

by HMR [18] used in LWG. Furthermore, HMR cannot ac-

curately estimate the target pose, making generated results

temporally discontinuous. Our method is capable of model-

ing the complicated personalized geometry of each person

and preserve detailed appearance.

Figure 6 shows more examples of motion transfer gen-

erated by our method, which produces geometry with accu-

rate pose and personalized shape details for a large variety

of people. Besides, the texture is well preserved for the syn-

thesized human, resulting in high-fidelity motion transfer.

5.3. Ablation Study

Number of Source Images. We vary the number of source

images at test time from 1 to 100 and present the results in

Figure 5 and Table 3. Our method achieves high quality mo-

tion transfer with only one source image, and the generation

quality improves as more source images are utilized.

Texture Map. Figure 7 shows the learned texture maps

and human images of four strategies: directly averaging

the source textures, without fine-tuning, fine-tuning texture

map, and fine-tuning the embedding. Quantitative met-

rics are shown in Table 1 (Oursw/o Fine-tuning means fig. 7(b),

Oursw/ Fine-tuning means fig. 7(d)). Although fine-tuning tex-

(a) Direct Merge (b) No Fine-tune (c) Texture Map (d) Embedding

Figure 7. Texture maps of different fine-tuning schemes.

ture map has better quantitative metrics, the noises of the

texture make the synthesized video quite unnatural for hu-

man eyes. Texture generator fills in the invisible parts of the

source texture and fine-tuning the embedding further im-

proves the quality without suffering from visual artifacts.

6. Conclusion

We proposed a novel method for few-shot human motion

transfer, which decouples the task into generation of person-

alized geometry and texture. We designed a geometry gen-

erator that can extract shape information from source person

images and inject it into generating personalized geometry

of the source person in the target pose. In addition, a tex-

ture generator merges source textures and fills in invisible

texture map. Extensive experiments demonstrate that the

proposed method outperforms previous approaches for syn-

thesizing realistic human motion. We see our method may

be limited in coping with non-rigid moving parts like whip-

ping hair or shaking dress. One future direction is to have

the geometry generator take multiple continuous frames as

input, and learn the temporally consistent motion.
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