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Abstract

The problem of using covariates to predict shapes of ob-

jects in a regression setting is important in many fields.

A formal statistical approach, termed Geodesic regression

model, is commonly used for modeling and analyzing re-

lationships between Euclidean predictors and shape re-

sponses. Despite its popularity, this model faces several

key challenges, including (i) misalignment of shapes due

to pre-processing steps, (ii) difficulties in shape alignment

due to imaging heterogeneity, and (iii) lack of spatial cor-

relation in shape structures. This paper proposes a com-

prehensive geodesic factor regression model that addresses

all these challenges. Instead of using shapes as extracted

from pre-registered data, it takes a more fundamental ap-

proach, incorporating alignment step within the proposed

regression model and learns them using both pre-shape and

covariate data. Additionally, it specifies spatial correla-

tion structures using low-dimensional representations, in-

cluding latent factors on the tangent space and isotropic

error terms. The proposed framework results in substantial

improvements in regression performance, as demonstrated

through simulation studies and a real data analysis on Cor-

pus Callosum contour data obtained from the ADNI study.

1. Introduction

The field of statistical analysis and modeling of shapes

has seen tremendous research and progress. This research is

driven by strong applications in computer vision, bioinfor-

matics, computational anatomy, forensics, computer graph-

ics, and so on. Numerous important scientific endeavors

have sought to analyze the shapes of objects and investi-

gate their correlations with objects’ functionality in large-

scale datasets [10, 36, 40, 29]. Shape is broadly defined

to be a characteristic that is left after certain nuisance or

shape-preserving transformations, such as rotations, trans-

lations and scale, have been removed [6, 34, 21], with the

result that shape representation spaces are nonlinear, high-

dimensional, and have quotient space geometry. The last

property stems from the need to be invariant to certain

shape-preserving transformations as rotations, translations

and scale. Consequently, shapes are represented by orbits

under transformation groups, rather than as points in a pre-

shape space. Together, these properties make shape spaces

as non-traditional domains for statistical formulations, in-

cluding definitions of shape statistics (e.g. mean and vari-

ability) [15], clustering analysis [35], classification [8], test-

ing differences in populations [2] and some others.

In recent years, shape regression analysis – the use of

shape variables in statistical regression models – has at-

tracted considerable attention. Consequently several ap-

proaches have been developed to model the relationships

between shape responses and some Euclidean covariates of

interest [25, 24, 32, 14, 17, 22, 7, 42, 33, 43]. The past ap-

proaches can be classified in two broad categories: extrinsic

regression and intrinsic regression. In the extrinsic regres-

sion framework, the shape responses are usually embedded

onto a higher dimensional Euclidean space, where classi-

cal regression models in that space are applied, and then

the estimated models and predictions are projected back

onto the original shape space [25, 24]. However, these ap-

proaches face some drawbacks including (i) lack in preser-

vation the local shape geometry and (ii) non-guaranteed ex-

istence of an inverse and continuous embedding map to the

shape space [37].

In contrast, the intrinsic approaches are natural gener-

alizations of regression models from Euclidean spaces to

non-Euclidean shape geometries, typically using exponen-

tial maps and tangent space representations [32, 14, 17,

22, 7, 42, 33, 43]. To understand this approach better, let

{fyi , xi}
n
i=1 be the observed data, where fyi is an element

of Kendall’s shape space S , and xi ∈ R
p is a Euclidean

variable. Ideally fyi , representing a shape, should be an

orbit [fyi ] of a pre-shape space under the rotation group.

However, the use of quotient space geometry in specifiy-
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ing regression models is difficult and has not been pursued.

Instead, the common approach is to take a representative

element of the pre-shape space, aligned or rotated appropri-

ately through some pre-processing steps. The presumption

is that through this pre-processing the nuisance transforma-

tions have been filtered out. Then, one can apply a com-

monly used geodesic regression model:

fyi = Exp(κ(xi), ǫi), κ(xi) ∈ S, ǫi ∈ Tκ(xi)S, (1)

where Exp(κ(xi), ·) : Tκ(xi)S → S is the exponen-

tial map at κ(xi), and Tκ(xi)S is the corresponding tan-

gent space (some useful concepts from differential geom-

etry can be found in Appendix A). Model (1) involves two

key terms: the conditional mean shape κ(xi) and the error

ǫi ∈ Tκ(xi)S . The conditional mean shape κ(xi) can be

treated as a link function including the typical parametric

setting, i.e., Exp(µ,Bxi), [14, 22, 43] and some other non-

parametric settings [32, 7]. Similarly, the error term ǫi can

be specified using parametric [14], semi-parametric [7], or

completely nonparametric models [22].

The main issue here lies in using (pre-aligned) elements

of pre-shape space, rather than actual orbits as shape rep-

resentations. It is a well-known mathematical fact that op-

timal rotations alignments of objects can not be achieved

via pre-processing. For instance, the optimal alignments

of objects A and B to object C, respectively, do not re-

sult in optimal alignments between objects A and B them-

selves! Rotations have to be solved for during pairwise

shape comparisons. That is why shape spaces are typi-

cally quotient spaces, and not subsets, of pre-shape spaces.

This fundamental issue leads to three key limitations of

geodesic regression models: (i) Misalignment issue in pre-

aligned responses. In practice one observes raw images

rather than getting the shape data directly. The shapes are

extracted from the images using a pre-processing step –

these steps are increasingly being performed using deep

learning networks. Even when the image data are pre-

registered and assumed to be well aligned, the shapes ex-

tracted from this image data exhibit mis-alignment and can

even be noisy [1, 42, 33], which negatively affects regres-

sion performance. To illustrate this issue, we fitted the pop-

ular geodesic regression model to some simulated data later

in the paper (detailed simulation settings can be found in

Section 3.2), and reached an estimated “baseline shape”

presented in Figure 1, where the estimate is found to be

biased when the shape data contains misalignment variabil-

ity. (ii) Non-optimal alignment due to imaging hetero-

geneity. Since most pre-alignment approaches are imple-

mented on imaging data, the presence of imaging hetero-

geneity [19] causes the nuisance transformations to be cor-

related with some covariates of interest, e.g., gender and

age, which makes the pre-alignment non-optimal and ad-

versely affects the regression performance. (iii) Lack of

Misaligned responses

Pre-alignment

Raw images

Geodesic

Regression

Model

Baseline shape estimation

Figure 1. Example of misalignment issue in pre-aligned responses.

spatial correlation structure in modeling. Most existing

methods assume that stochastic terms have isotropic vari-

ability [14, 22]. Although the spatial correlation is con-

sidered in [7] via introduction of a random weighted ma-

trix on the tangent space, its implementation suffered due to

heavy computational burden incurred in choosing the opti-

mal weighted matrix.

This aim of this paper is to propose a Geodesic FActor

Regression Model (Geo-FARM) that addresses all three

challenges. Specifically, the main contributions of this pa-

per are: (i). Instead of treating objects extracted from pre-

aligned functional data as shapes, we treat them as pre-

shapes, i.e., coordinate data after filtering out only the lo-

cation and scale effects. We incorporate full shapes inside

regression models as proper orbits. In practical terms, the

rotational alignments are applied on pre-shapes and learned

inside the regression model itself. (ii). The spatial corre-

lation structure in our Geo-FARM is established as a low-

dimensional representation, including latent factors through

a factor analysis framework on the tangent space and error

term modeled using the isotropic Riemannian Normal (RN)

distribution [28, 14]. (iii). A Monte Carlo Expectation-

Maximization (MCEM) algorithm is used to develop the es-

timation procedure for both parameters and nuisance trans-

formations. In addition, hypothesis testing problems are

discussed to investigate the significance of some covariates

of interest on the shape responses. (iv). The efficacy of our

Geo-FARM is assessed using Monte Carlo simulations and

a real data example on corpus callosum contour data ob-

tained from the ADNI study. A MATLAB-based compan-

ion software will be released to the public through GitHub.

2. Method

2.1. Pre­shape space for planar curves

Let L ∈ L2,k be a 2×kmatrix whose k columns denote k
landmarks from a 2-dimensional object. After removing the

translation and scaling of elements in L2,k, one reaches the

pre-shape space defined as Sk2 = {L ∈ L2,k :
∑k
j=1 Li,j =

0, i = 1, 2, ‖L‖F = 1}, where ‖·‖F is the Frobenius norm.

Sk2 is not the shape space since the pre-shape is not invariant

to the action of the rotation group, SO(2). Noting that there

exists an one-to-one map f(·) such that Sk2 is equivalent to

the unit hypersphere Sm−1 withm = 2k−2, one can utilize
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all the geometric properties on hyperspheres to analyze pre-

shapes [36]. Specifically, Let y ∈ L2,k and f(y) be a point

on a (m-1)-dimensional sphere S
m−1, and v be a tangent

vector at f(y). The exponential map is given by

Exp(f(y), v) = cos(‖v‖)f(y) +
sin(‖v‖)

‖v‖
v. (2)

For another point f(y′) ∈ S
m−1, the inverse exponential

map, or log map, between f(y) and f(y′) is given by

Log(f(y), f(y′)) =
P(y, y′)

‖P(y, y′)‖
arccos〈f(y), f(y′)〉, (3)

where P(y, y′) = f(y′) − f(y)〈f(y), f(y′)〉. In addi-

tion, the parallel transport of the tangent vector v from

Tf(y)S
m−1 to Tf(y′)S

m−1 can be derived as

Γ
f(y′)
f(y) [v] = v −

2vT f(y′)

‖f(y) + f(y′)‖2
(f(y) + f(y′)). (4)

2.2. Geo­FARM

Assume that {yi}
n
i=1 are observed from the pre-shape

space Sk2 and {xi}
n
i=1 are from a Euclidean space R

p. In

order to simultaneously handle the nuisance transforma-

tions and establish the relationship between pre-shape re-

sponses and Euclidean covariates, a novel geodesic regres-

sion model is proposed as:

f(yi ∗ gi) = Exp (Exp(f(µ),Bxi), ǫi) , (5)

where gi ∈ SO(2) denotes the rotation group action that

forms the individual nuisance transformation. µ ∈ Sk2 and

f(µ) ∈ S
m−1 is the base point. All the columns in B,

i.e., {βj}
p
j=1, are tangent vectors at Tf(µ)S

m−1, represent-

ing the effects from the predictors {xi}
n
i=1.

In order to establish the spatial correlation structure,

our Geo-FARM integrates model (5) with a factor analy-

sis framework generalized from Euclidean space to the pre-

shape space:

f(yi ∗ gi)|xi, zi ∼ RN (κ(xi, zi), σ) , zi ∼ N(0, Iq), (6)

where κ(xi, zi) = Exp(f(µ),Bxi + Λzi) and RN is the

isotropic RN distribution [14]. The proposed factor anal-

ysis framework builds the correlation structure with a low

rank representation (q ≪ m) including (i) a low num-

ber of latent factors represented by the columns of Λ, i.e.,

{αj ∈ Tf(µ)S
m−1}qj=1, and (ii) stochastic error term ǫi that

follows the isotropic RN distribution. Then, the joint prob-

ability density function for (f(yi ∗ gi), zi) is given by

h(f(yi ∗ gi), zi) = φ(zi)C(σ) exp{−
1

2σ
×

‖Log (Exp(f(µ),Bxi +Λzi), f(yi ∗ gi)) ‖
2}, (7)

where φ(·) is the q-dimensional standard normal distribu-

tion density function. In addition, the model identifiability

of our Geo-FARM is guaranteed under certain conditions.

Proposition 2.1 Consider the probability density function

of GEO-FARM, i.e., ̺(f(y ∗ g),Θ)
.
=

∫

h(f(y ∗ g), z)dz.

Given the nuisance transformation g and the number of la-

tent factors q, if the design matrix X = (x1, . . . , xn)
T is

full row rank, the density function ̺(f(y ∗ g),Θ) is generi-

cally identifiable in the parameter space.

A graphical illustration of our Geo-FARM is presented in

Figure 2. In summary, there are several advantages of our
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Figure 2. Graphical illustration of Geo-FARM.

Geo-FARM: (i) Compared to the existing geodesic regres-

sion models for well aligned responses [22, 7], our Geo-

FARM can successfully deal with the misalignment issue

in pre-aligned responses via introducing the individual nui-

sance transformation gi. In addition, compared to the tra-

ditional preprocessing approaches, the alignment of each

pre-shape in our Geo-FARM can be refined since the nui-

sance transformation gi is learned based on all the available

information including not only the response yi but also the

other covariates xi. (ii) Through the factor analysis frame in

our Geo-FARM, the variability among pre-shapes in model

(5) can be expressed by two parts: latent variables from

a low dimensional space in the tangent space Tf(µ)S
m−1;

and stochastic error terms with isotropic variance structure

in the tangent space TExp(f(µ),Bxi+Λzi)S
m−1. Compared to

the general RN distribution [28], the number of parameters

that specify the correlation structure has been reduced a lot

from m(m + 1)/2 to mq + 1, where q ≪ m. (iii) Instead

of considering the nuisance transformation gi ∈ SO(m) for

responses f(yi) ∈ S
m−1, our Geo-FARM treats gi as a ro-

tation group action on the pre-shape yi ∈ Sk2 , which avoids

the computational burden caused by the high dimensional

structure of nuisance transformations in [42], Specifically,

gi can be represented by the 2-dimensional orthogonal ma-

trix: Oi(ψ) =

[

cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

]

, where ψ ∈ [−π, π].

Therefore, the dimension of the nuisance transformation

group is reduced from m(m− 1)/2 to 1.
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2.3. Estimation procedure

The maximum likelihood estimate (MLE) of Θ includ-

ing the parameters of interest, Υ
.
= {µ,B,Λ}, the nui-

sance parameter, σ, and the nuisance transformations, G
.
=

{gi}
n
i=1, can be derived through the following complete log-

likelihood function based optimization problem:

Θ̂ = argmaxΥ,σ n log C(σ)−
1
2σ ×

∑n
i=1

infgi ‖Log (Exp(f(µ),Bxi +Λzi), f(yi ∗ gi))‖
2
. (8)

Noting that the presence of optimization over gi inside the

summation ensures that the nuisance transformation is re-

moved using all available information (e.g., yi and xi) in-

stead of a pre-processing over yi. Since the latent variables

{zi}
n
i=1 are unobserved, the objective function in (8) is of-

ten intractable in practice. Here the EM algorithm [9] is

considered by iteratively applying two steps: E-step and M-

step. Specifically, at the t-th iteration, instead of the com-

plete log-likelihood function, the optimization problem in

M-step is established based on the Q-function Q(Θ|Θ(t))
calculated in E-step,

n
∑

i=1

Ezi

[

log h(f(yi ∗ gi), zi)|yi, xi,Θ
(t)
]

, (9)

which is the expectation of complete log-likelihood func-

tion with respect to the latent variables given the observed

data and the current estimate Θ(t). However, the conditional

expectation in (9) does not yield a closed-form solution,

which brings about difficulties in M-step [41]. To address

this issue, we consider the MCEM algorithm [23], where

the Q-function is approximated via Monte Carlo techniques.

Monte Carlo E-step: at the t-th iteration, given the current

estimate Θ(t), we consider the approximated Q-function:

Q̃(Θ|Θ(t)) ∝
1

nz

nz
∑

j=1

n
∑

i=1

log h(f(yi ∗ gi), z
j
i ), (10)

where {zji }
nz

j=1 are generated from the conditional distri-

bution p(zi|yi, xi,Θ
(t)) via the Hamiltonian Monte Carlo

(HMC) sampling method [26]. According to HMC method,

we set up the Hamiltonian dynamic system first. The

Hamiltonian function can be written as

H(zi, r) = U(zi) +
1
2r
T
i ri,

U(zi) = − log p(zi|yi, xi,Θ
(t)), (11)

where U(zi) is called the potential energy function. The

other item 1
2r
T
i ri is called the kinetic energy, where ri are

auxiliary momentum variables drawn independently from

N(0, Iq). Because of the introduction of rk, the Hamiltonian

dynamics can be established as

dzi
dt

= ri,
dri
dt

= −∇ziU(zi). (12)

Then the approximation solution to (12) can be obtained via

the Leap Frog numerical integration method [26] if the item

∇ziU(zi) is calculated. In fact, the gradient term ∇ziU(zi)
can be derived as below

zi − σ(t)−1

Λ
(t)T dvExp(u, v)†Log

(

Exp(u, v), f
(t)
i

)

, (13)

where u = f(µ(t)), v = B
(t)xi+Λ

(t)zi, f
(t)
i = f(yi∗g

(t)
i ),

and dvExp(u, v) is the derivative of Exp(u, v) with respect

to v, and † represents the adjoint of a linear operator. For

spheres, the adjoint derivative has an analytical expression,

i.e., dvExp(u, v)†w = sin(‖v‖)‖v‖−1w⊥ + w⊤ where w⊥

andw⊤ denote the components ofw that are orthogonal and

tangent to v, respectively.

The performance of standard HMC method is highly

sensitive to two user-specified parameters: a step size ε and

a desired number of steps l. In particular, if l is too small

then the algorithm exhibits undesirable random walk behav-

ior, while if l is too large the algorithm wastes computation.

Compared with the standard HMC, the No-U-Turn Sampler

(NUTS) [18], an extension to standard HMC, can avoid set-

ting the tuning parameter l. Specifically, NUTS uses a re-

cursive algorithm to build a set of likely candidate points

that spans a wide swath of the target distribution, stopping

automatically when it starts to double back and retrace its

steps. Because of this, NUTS is adopted in this paper. The

details of NUTS algorithm is omitted here, and readers can

refer to Section 3 and Algorithm 3 in [18].

M-step: the updated estimate Θ(t+1) can be obtained via

maximizing the approximated Q-function Q̃(Θ|Θ(t)). In

order to solve the optimization problem above, here an itera-

tive approach is adopted, where one updates the estimates of

Υ, σ, or G while keeping the other fixed. Thus, we first fo-

cus on techniques for estimating these quantities separately.

Updating Υ(t+1) while keeping G(t) and σ(t) fixed.

Given G(t) and σ(t), Θ(t+1) is updated via the proxi-

mal alternating linearized minimization (PALM) algorithm

[4, 42], where Υ is iteratively updated through the gradient

functions of Q̃(Θ|Θ(t)). Specifically, let c be a positive con-

stant while Kµ, Kβj
, and Kαj

be the Lipschitz constants

of ∇f(µ)Q̃, ∇βj
Q̃, and ∇αj

Q̃, respectively. Given the up-

date Θ(t,k) = {Υ(t,k), G(t), σ(t)} at the k-th iteration, the

iterations of PALM algorithm is provided in Algorithm 1.

Finally, Θ(t) in E-step is updated by Θ(t+1) = Θ(t,k+1)

when certain iteration stopping criterion is satisfied, e.g.,

‖Υ(t,k+1) −Υ(t,k)‖ < 10−4.

Updating G(t+1) while keeping Υ(t+1) and σ(t) fixed.

Since each gi ∈ SO(2) can be written as the orthogonal

matrix O(ψi) related to one parameter ψi ∈ [−π, π], g
(t+1)
i

is updated via minimizing the following objective function:

E(ψi|Υ
(t+1)) =

nz
∑

l=1

∥

∥

∥
Log

(

f
(t+1)
i,l , f(Oi(ψ)yi)

)
∥

∥

∥

2

, (14)

11499



Algorithm 1: PALM algorithm in M-step

while stopping criterion not satisfied do

Update f(µ(t,k+1)) by

Exp
(

f(µ(t,k)),−(cKµ)
−1∇f(µ)Q̃

)

;

Update β
(t,k+1)
j , j = 1, . . . , p, by

Γ
f(µ(t,k+1))

f(µ(t,k))

[

β
(t,k)
j − (cKβj

)−1∇βj
Q̃
]

;

Update α
(t,k+1)
j , j = 1, . . . , q,, by

Γ
f(µ(t,k+1))

f(µ(t,k))

[

α
(t,k)
j − (cKαj

)−1∇αj
Q̃
]

;

Set k = k + 1.

where f
(t+1)
i,l = Exp(f(µ(t+1)),B(t+1)xi+Λ

(t+1)zli), and

ψi ∈ [−π, π]. This univariate minimization problem can be

solved based on the Golden Section Search algorithm [30]

and implemented by the MATLAB function fminbnd.

Updating σ(t+1) while keeping Υ(t+1) and G(t+1)

fixed. We first define that η = −1/2σ and ϕ(η) =
− log C(σ). Then given Υ(t+1) and G(t+1), σ(t+1) is up-

dated via solving the following problem related to η:

min
η
ϕ(η)−

η

nz

n
∑

i=1

E(ψ
(t+1)
i |Υ(t+1)). (15)

where the normalization term ϕ(η) defined for S
m−1 can

be derived with a closed form [41]. Noting that ϕ(η) is

a strictly convex function with respect to η, therefore the

solution to problem (15) exists and is unique [31], which

can be solved based on the Newton-Raphson algorithm [5]

and implemented by the MATLAB function fminunc.

Now we summarize the overall estimation procedure for

our Geo-FARM in the following Algorithm 2.

Algorithm 2: MCEM algorithm for Geo-FARM

Data: pre-shapes {yi}
n
i=1 and covariates {xi}

n
i=1

Result: estimation of Θ
Initialization: Θ(0) and t = 0
while stopping criterion not satisfied do

Monte Carlo E-step

Sample {zji }i,j via HMC method;

Calculate the approximated Q-function in (10);

M-step

Update Υ(t+1) in Algorithm 1;

Update G(t+1) by minimizing (14);

Update σ(t+1) by minimizing (15);

Set t = t+ 1;

Output: Θ̂ = Θ(t).

Here we end the estimation procedure with discussions

on some other issues in MCEM algorithm including the ini-

tialization in MCEM algorithm and criterion for choosing

the number of latent factors.

Initialization in MCEM algorithm. Since the MCEM al-

gorithm is an iterative procedure, its performance strongly

depends on starting points. For our Geo-FARM, good ini-

tialization is crucial for finding the estimates due to the

presence of multiple local maxima of the likelihood func-

tion. Here we consider using the random MCEM algo-

rithm, where multiple starting points are chosen and the

point with the highest log-likelihood function is chosen as

the starting point. In simulation studies and real data analy-

sis, the estimation procedure in [22] is considered for initial-

izing base point parameter f(µ) and coefficients B, while

the factor analysis method is performed in the tangent space

Tf(µ)S
m−1 to initialize the factor loading matrices Λ and

the nuisance parameter σ.

Determining the number of latent factors. Since the

number of latent factors, q, is unknown, the 2-fold cross pre-

dictive log-likelihood method is considered through an ex-

haustive search as our model selection criterion [20]. How-

ever, according to the simulation results in Section 3.2, our

Geo-FARM is not sensitive to the choice of number of latent

variable. In particular, even when the model is misspecified

(e.g. the values of q is larger than 0 but incorrectly selected),

our Geo-FARM still performs well in terms of its estima-

tion accuracy. Therefore, in our simulation studies and real

data analysis, we prefixed the number of latent factors as 1,

which will release the potential computational burden due

to the large value assigned for q.

2.4. Hypothesis testing

In medical image data analysis, people are interested

in investigating the relationship between the pre-shape re-

sponses and some covariates of interest. This type of scien-

tific questions are formulated into the following hypothesis

testing problem on each βj , j = 1, . . . , p:

H0 : βj = 0 vs. H1 : βj 6= 0. (16)

For this testing problem, we consider using the Wald test

statistic [7]. Specifically, for testing problem (16), the test

statistic is constructed as

Tj = e
T
j B̂

T [ej ⊗ Im]Ω̂B [ej ⊗ Im]T B̂ej , , (17)

where ej is a p × 1 vector with the j-th element 1 and rest

0. Ω̂B is the corresponding partition of estimated inverse

covariance matrix of all the estimated parameters in Geo-

FARM. It can be shown that Tj is asymptotically χ2 dis-

tributed with m − 1 degree of free under H0. In practice,

when the sample size is not on a large scale, the paramet-

ric bootstrap procedure can be used to derive the empirical

distribution of Tj and the p-value [11].
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On the other side, since we claim that our Geo-FARM

can help refine the alignment as the nuisance transforma-

tions are learned based on both pre-shapes and covariates,

we would like to check if the mean shape extracted from

our Geo-FARM is significantly different from that extracted

from the pre-aligned data. In order to achieve this goal,

The Hoteling T 2 test statistic is adopted and implemented

through a bootstrap hypothesis testing approach [2] and its

R package shapes (http://cran.r-project.org/

web/packages/shapes/index.html).

3. Numerical experiments

The corpus callosum (CC) contains homotopic and het-

erotopic interhemispheric connections and is essential for

communication between the two cerebral hemispheres [27,

20]. Connection with most of the cortex has made CC a tar-

get of investigation of brain integrity in Alzheimer’s disease

[3, 12, 7]. In this section, both simulation studies and real

data analysis are conducted to assess the performance of

Geo-GARM using the CC contour data of ADNI-1 study.

In simulation studies, the synthetic data is generated from

the real dataset.

3.1. Data preprocessing

We use FreeSurfer [13] to process each T1-weighted

MRI, including motion correction, non-parametric non-

uniform intensity normalization, affine transform to the

MNI305 atlas, intensity normalization, skullstripping, and

automatic subcortical segmentation. Some quality control

procedures are done on each output image data. Then,

through the package CCSeg [38], each T1-weighted MRI

image and tissue segmentation results are used to extract

the planar CC contour data on the midsagittal slice , which

contains 50 landmarks (See Figure 3).

Figure 3. CC contour data preprocessing.

Table 1. Demographic information of preprocessed ADNI-1 CC

contour data, including gender and age (in years).

NC (223) AD (186) All (409)

Gender (F/M) 107/116 88/98 195/214

Avg. Age (Std.) 76.2 (4.9) 75.4 (7.4) 75.9 (6.2)

After the quality control, we obtain CC contour data

from 409 subjects including 223 normal control (NC) and

186 AD. The demographic information of the preprocessed

CC contour data set is presented in Table 1.

3.2. Simulation studies

We generate the data {xi, yi, gi}
n
i=1 from the model (6)

as follows. Without special saying, we set n = 100. In

order to mimic the ADNI-1 CC contour data, the true val-

ues of parameters in (6) are learned from the real data itself.

Specifically, we first fit Geo-FARM to the CC contour data

of all the normal controls in ADNI-1, where two predictors,

i.e., gender (xi1) and normalized age (xi2), are included.

Then, we use the obtained parameter estimators of µ,B,Λ,

and σ as their true values in our simulation setting. Mean-

while, the number of latent factors is also learned from the

model fitting, i.e., q = 2. Next, the covariates xi1 and xi2
are generated according to their data types, i.e., xi1 is gen-

erated from Bernoulli distribution with parameter p = 0.5,

while xi2 is generated from uniform distribution U(0, 1).
In order to generate the sphere data f(yi ∗ gi) from the RN

distribution, the sampling algorithm proposed for spherical

normal distribution [16] is considered. After that, we gen-

erate the nuisance transformations gi via sampling the rota-

tion angle ψ in orthogonal matrixOi(ψ). Specifically, given

an upper bound ψ̄, the rotation angle ψ for each data point

is uniformly generated from [−ψ̄, ψ̄]. In order to investigate

the effect of nuisance transformations on the estimation per-

formance, multiple scenarios are considered here via setting

different values of ψ̄, i.e., ψ̄ ∈ {0, 5, 10, 15, 20, 25, 30}. Fi-

nally, we generate 50 datasets for each simulation scenario.

Here two other approaches are considered here for com-

parison: (i) multivariate general linear models (MGLM)

on Riemannian manifolds [22] and (ii) multivariate regres-

sion with gross errors (MRGE) on manifold-valued data

[42]. Specifically, MGLM can be treated as an gener-

alization of multiple linear regression models from Eu-

clidean space to Riemannian space, while MRGE aims to

improve MGLM by considering gross errors on manifold

responses. For comparison, we introduce several loss func-

tions here: (i) the sum of squared geodesic errors (SSGE),

i.e.,
∑n
i=1 ‖Log(Exp(f(µ),Bxi),Exp(f(µ̂), B̂xi))‖

2, to

assess the prediction accuracy of the pre-shapes; (ii) the

norm ‖B − Γ
f(µ)
f(µ̂)B̂‖F to assess the estimation accuracy

of B̂; (iii) geodesic distance between f(µ) and f(µ̂), i.e.,

‖Log(f(µ), f(µ̂))‖ to assess the estimation accuracy of µ̂;

and (iv) the median absolute deviation (MAD) of △ψ
.
=

{|ψi − ψ̂i|}
n
i=1, i.e., median(△ψ), to assess the detection

accuracy of nuisance rotations. The simulation results for

all different scenarios are presented in Figure 4. It can be

found that (i) when the pre-shapes are slightly misaligned,

all the three methods perform well; (ii) when the misalign-

ment is getting severe (i.e., ψ̄ increases), our Geo-FARM

11501



(a) (b) (c) (d)

Figure 4. Comparison of three methods (MGLM, Geo-FARM, and MRGE) for different settings of ψ̄ (ψ̄ ∈ {0, 5, 10, 15, 20, 25, 30}): (a)

Median SSGE; (b) Frobenius norm ‖B − Γ
f(µ)

f(µ̂)B̂‖F ; (c) geodesic distance between f(µ) and f(µ̂); and (d) MAD of △ψ .

(a) (b) (c)

Figure 5. Comparison the performance of Geo-FARM with MGLM on pre-aligned pre-shapes with ψi = ψ̃ixi1 and ψ̃i ∼ U(−ψ̄, ψ̄): (a)

Median SSGE; (b) Frobenius norm ‖B − Γ
f(µ)

f(µ̂)B̂‖F ; and (c) geodesic distance between f(µ) and f(µ̂).

is more robust compared to other two approaches in terms

of both prediction accuracy and parameter estimation ac-

curacy; (iii) although MRGE considers detecting and cor-

recting the gross errors on pre-shapes through penalization

approach, its performance is almost as worse as MGLM be-

cause it is very sensitive to the data structure and choice of

tuning parameter; (iv) Geo-FARM shows great performance

in detecting the nuisance rotations for all different scenar-

ios. Therefore, our Geo-FARM shows its great power in

both misalignment detection and parameter estimation.

Next, we compare our Geo-FARM with the typical pro-

cedure that conduct the geodesic regression analysis on pre-

aligned manifold valued data [39]. Specifically, for compar-

ison with our Geo-FARM, the simulated pre-shapes are first

aligned to their Karcher mean, then the MGLM is adopted

to conduct the regression analysis on the pre-aligned data.

Here the individual rotation angle ψi is generated through

ψi = ψ̃i ∗ xi1, where ψ̃i is uniformly generated from

[−ψ̄, ψ̄]. This simulation mechanism indicates that the nui-

sance transformations are correlated to the covariate infor-

mation. The simulation results for all different scenarios are

presented in Figure 5. It can be found that, our Geo-FARM

outperforms the pre-alignment based approach in terms of

the estimation accuracy, which means that our Geo-FARM

benefits from the fact that the estimate of the nuisance trans-

formation can be refined based on all the available informa-

tion including pre-shapes and covariates.

Finally, we investigate the robustness of our Geo-FARM

in choosing the number of latent factors. Three different

scenarios are considered here: ψ̄ = 0, ψ̄ = 10, and ψ̄ = 20.

We manually specified four different values for q, i.e., 0,

1, 2, and 3, where 2 is the ground truth in our simulation

settings. The four loss functions defined above are con-

sidered here as well. The simulation results for different

choices of q are presented in Figure 6. Couple of find-

ings are listed here: (i) when no latent factors are speci-

fied in our Geo-FARM (an isotropic covariance structure

used instead), the estimation performance gets worse and

worse when the misalignment is getting severe; (ii) when

the latent factor structure is considered but the number of

factors is misspecified, the estimation performance of our

Geo-FARM almost keeps the same as that when q is set to

the true value. Therefore, the latent factor structure in our

Geo-FARM is of great importance while the choice of the

number of factors is not that critical with respect to the es-

timation performance.
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Figure 6. Comparison the performance of Geo-FARM for different choices of q (i.e., 0, 1, 2, and 3, where 2 is the ground truth in our

simulation settings) under three scenarios (Scenario A: ψ̄ = 0, Scenario B: ψ̄ = 10, and Scenario C: ψ̄ = 20): (a) Median SSGE; (b)

Frobenius norm ‖B − Γ
f(µ)

f(µ̂)B̂‖F ; (c) geodesic distance between f(µ) and f(µ̂); and (d) MAD of △ψ .

3.3. Real data analysis

Here we apply Geo-FARM on ADNI CC CC contour

data, where the pre-shape data were extracted by remov-

ing the translation and scaling information from the origi-

nal landmarks. In addition, three covariates of interest are

included in the regression model, i.e., gender, age (stan-

dardized), diagnostic status (AD), and an interaction term

age×AD. Then a sequence of estimated shapes from age

50 to age 95 is presented for each of the four subgroups

(1. Male & NC; 2. Female & NC; 3. Male & AD; and 4.

Female & AD) in Figure 7.

Male & NC Female & NC

Male & AD Female & AD

55 95

Figure 7. Estimated shapes from age 55 (blue) to age 95 (red) is

presented for each of the four subgroups (1. Male & NC; 2. Fe-

male & NC; 3. Male & AD; and 4. Female & AD).

Comparing the sequences of estimated shapes from dif-

ferent sub-groups, some differences can be found between

the normal control groups and AD groups. In order to inves-

tigate the relationship between the pre-shape responses and

all the covariates of interest. The hypothesis testing prob-

lem is (16) considered and the test statistics along with the

p-values are reported in Table 2. It can be found that, there

are strong AD effect and age-dependent AD effect on the

shape responses while the gender effect is not significant.

Finally, we would like to compare the pre-aligned pre-

shapes and the post-aligned pre-shapes derived from Geo-

FARM in terms of the mean shape. Here we adopt the boot-

strap hypothesis testing approach through the R package

shapes, where the number of bootstrap is set to 500. Then

the test statistic is 0.0209 and the related p-value is 0.0412,

Table 2. Hypothesis testing results.

gender age AD age×AD

test stat. 101.21 118.37 131.61 128.75

p-value 0.365 0.0693 0.0111 0.0172

which indicates that there is significant difference between

the pre-aligned pre-shapes and the post-aligned pre-shapes

in terms of the mean shape. In other word, our Geo-FARM

does borrow covariate information in learning the nuisance

transformations.

4. Conclusion

This paper proposes a geodesic factor regression model

for misaligned pre-shape responses, where the additional

nuisance rotational effects are built within the proposed

model and learned based on both pre-shapes and covariates

of interest. In addition, the spatial correlation structure is

specified through a low dimensional representation includ-

ing latent variables on the tangent space and isotropic error

terms. Both Monte Carlo simulation studies and real data

analysis on ADNI CC contour data show that the proposed

model outperforms most existing approaches.

A. Preliminaries from differential geometry

Let M be a dM-dimensional complete Riemannian

manifold with distance function distM. We denote the tan-

gent space at y ∈ M by TyM and the inner product of

u, v ∈ TyM by 〈u, v〉. For any v ∈ TyM, there is a

unique geodesic curve γ : [0, 1] → R, with initial condi-

tions γ(0) = y and γ′(0) = v. The geodesic is only guar-

anteed to exist in a neighborhood of y, where the largest

neighborhood is denoted by Ny ∈ M. The exponen-

tial map at y, Exp(y, ·) : TyM → Ny , is locally diffeo-

morphic and defined as Exp(y, v) = γ(1). The log map

Log(y, ·) : Ny → TyM is defined as the inverse of expo-

nential map. For any y′ ∈ Ny , the Riemannian distance

distM(y, y′) = ‖Log(y, y′)‖.
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