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Abstract

Previous approaches to generate shapes in a 3D setting

train a GAN on the latent space of an autoencoder (AE).

Even though this produces convincing results, it has two

major shortcomings. As the GAN is limited to reproduce the

dataset the AE was trained on, we cannot reuse a trained

AE for novel data. Furthermore, it is difficult to add spa-

tial supervision into the generation process, as the AE only

gives us a global representation. To remedy these issues,

we propose to train the GAN on grids (i.e. each cell cov-

ers a part of a shape). In this representation each cell is

equipped with a latent vector provided by an AE. This local-

ized representation enables more expressiveness (since the

cell-based latent vectors can be combined in novel ways)

as well as spatial control of the generation process (e.g. via

bounding boxes). Our method outperforms the current state

of the art on all established evaluation measures, proposed

for quantitatively evaluating the generative capabilities of

GANs. We show limitations of these measures and propose

the adaptation of a robust criterion from statistical analysis

as an alternative.

1. Introduction

Training stable 3D GANs can be challenging and often

better results are obtained by splitting the generation pro-

cess into two parts. First an autoencoder (AE) is trained to

obtain a compressed latent representation, then a GAN is

trained to model the density of this global latent space. This

simplifies the task, as the AE typically generates reasonable

output for a wide range of latent vectors. Training the AE

can be seen as imposing a bias on the generation process to

produce shapes similar to those seen during its training.

This procedure has obtained convincing results both for

the generation of point clouds [1] and implicit functions

[5]. However, using the latent space of an AE as inter-

mediate shape representation has some severe drawbacks.

Small variations of shapes are usually of local nature. As

the latent representation used in prior work is of inherently

global nature, such changes cannot be modeled easily. This

makes it difficult to add any localized modifications or con-

straints into the generation process. Tasks such as condi-

tional generation based on semantic information (e.g. seg-

mentation/part labels) become hard to train. Another prob-

lem is that the AE limits the space of shapes that can be

generated. Indeed every AE, which does not represent the

entire space of possible shapes in its latent space, limits the

expressiveness of the GAN through the bias it imposes. E.g.

if we train a GAN to create tables in such a manner, this is

unlikely to work with the latent space of an AE trained for

chairs.

A more natural choice of representation is to view a

shape as a composition of many different local parts. This

allows the network to choose parts that occur in different

objects and arrange them to create new shapes. Recently,

Jiang et al. [13] learned local latent representations by sub-

dividing the object space into a grid to reconstruct scenes

from point clouds with high fidelity. This can be seen as

only imposing a localized bias on the shape generation pro-

cess. Learning to capture the geometry within a single grid

cell is much simpler than learning to represent the whole

shape. Thus the reconstruction quality of the AE is much

improved.

We argue that this representation has several further ad-

vantages. Training a generative model on this localized la-

tent space enables more variety in the generated shapes, as

latent vectors belonging to different shapes or even different

object classes can be mixed, giving the generator more de-

grees of freedom. Its expressiveness is thus not limited by

the AEs ability to generalize. In fact we do not even need

to train an AE for each specific class. An AE trained on

cells of e.g. tables can still be used to generate chairs, as on

part level both classes share similarities. Furthermore, we

can use convolutional architectures and thus build on exist-

ing research in image generation. Although this argument

applies to voxel based models as well [34], those are lim-

ited by the grid resolution that can fit into memory. As we

can represent complex surfaces per grid cell, we can model

realistic shapes while still keeping the grid resolution low.

Lastly, the spatial decomposition of the latent space allows

us to perform conditional generation based on spatial infor-

mation, such as bounding boxes or semantic labels.

When it comes to evaluating GANs there is no univer-
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sally established measure to quantitatively rate, to what de-

gree such networks are able to approximate a data distribu-

tion. Image GANs are usually evaluated with the inception

score [29] or Fréchet inception distance [11]. The compu-

tation of both measures involves the application of the in-

ception network [32]. Since many different representations

are used to encode 3D shapes (point clouds, voxel grids,

implicit functions, etc.), this is not straightforward to apply

for our use case. While previous quality scores for 3D data

have been proposed, we show that they have some limita-

tions. Therefore, we propose to apply a statistic measure

from a two sample test for multivariate sets [4] to compute

the statistical difference between a set of generated objects

and a test set of unseen shapes from the data distribution.

Our key contributions are as follows:

• We show that localized grid-based implicit functions

are better suited for 3D shape generation with GANs

than global implicit functions for three reasons. First,

they offer higher quality results, since each cell only

has to represent fairly simple geometry. Second, lo-

calized implicit functions can be combined together in

novel ways and therefore offer more flexibility. Third,

localized grid-based implicit functions allow us to con-

trol the generation process spatially, which is difficult

to accomplish with global implicit functions.

• We show that common evaluation techniques for 3D

shape generation have several drawbacks. To allevi-

ate this we propose a new robust score inspired from

statistical analysis.

2. Related Work

Many different representations (and network architec-

tures) for processing 3D shapes have been proposed. In the

context of this paper we will focus on previous work on the

representation of shapes as functions via neural networks as

well as prior work on generation of shapes with GANs.

2.1. Representing Shapes as Functions

There are two families of functions that can be used to

represent shapes: parametric and implicit functions. The

parametric approach to describe a surface (preferably an

orientable 2-manifold in 3D) is to define a function R
2 →

R
3. Evaluating this function (e.g. on a 2D unit square) then

gives positions on the surface of a shape in R
3. Such maps

can be learned and represented by neural networks [31].

Since a single map is often insufficient to represent com-

plex shapes, this idea has been modified in AtlasNet [8] to

instead learn several functions, where each describes part of

a single shape. A different approach is taken by [17] who

instead represent a shape with localized functions in a grid,

where each function models the surface within a grid cell.

Implicit functions come in two types: signed distance

functions R3 → R map each point in 3D to a distance value,

that is by convention negative inside of the shape and posi-

tive outside. The surface of the shape is then the zero level-

set of this function. On the other hand there are binary func-

tions R
3 → {0, 1}, that classify a point as being inside or

outside of a given shape. Methods such as Marching Cubes

[18] can be used in both cases to extract a surface. Recently

several approaches have been published, that apply neural

networks to represent such functions [25, 21, 5]. As a global

function can have difficulties representing a shape with all

its details, several methods have been proposed to mitigate

this problem by using localized functions embedded in a

grid structure. Chibane et al. [6] employ a multi-scale ap-

proach, where feature vectors at different scales and grid

points are interpolated based on the current point position,

while Jiang et al. [13] save a single feature vector per grid

cell and classify a point (in local coordinates) together with

its cell vector. We use a similar approach for our generative

model.

2.2. GANs in 3D

To the best of our knowledge [34] were the first to de-

velop GANs for the 3D setting, choosing voxels as a repre-

sentation. This allowed them to use convolutional networks

both as the generator and discriminator. However, the re-

sults generated by their method are limited by the low res-

olution of 643 grids (mainly due to memory constraints).

Achlioptas et al. [1] developed GANs for point clouds in

two settings. They trained a generator and discriminator di-

rectly on the point clouds but also introduced a two step ap-

proach. They first trained an autoencoder for reconstructing

point clouds and then fitted a generative model to the la-

tent space. For this they proposed both a GAN and a Gaus-

sian Mixture Model. A similar approach is used by [16].

The idea of splitting GAN training into two steps proved to

be applicable to implicit functions as well, as IM-GAN [5]

demonstrated. Very recently [15] showed that it is also pos-

sible to train GANs directly on implicit functions, however

they do not reach the same quality as latent approaches.

3. 3D Shape Generation with Localized Im-

plicit Functions

We propose a two step procedure for the generation of

3D shapes (see Figure 1) similar to [5]. Firstly, we train

an autoencoder that maps inputs to localized implicit func-

tions. Secondly, we train a GAN that learns the distribution

of such functions. We will discuss our autoencoder first and

then describe our proposed unconditional and conditional

generation methods. Details of the different architectures

and the training procedure can be found in the supplemen-

tary material (Appendix B, C).
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Figure 1: Overview of our method: With the help of an AE (Enc & Dec) we can represent 3D shapes as a grid of latent

vectors. Our proposed GAN (G & D) generates new grids of latent vectors, from which shapes can be extracted via the

decoder (Dec). Furthermore, we can optionally (dashed arrows) condition, e.g. on bounding boxes, for spatial control in the

generation process.

3.1. Autoencoder

The architecture we employ for our autoencoder is re-

lated to [13]. Our encoder takes as input high-resolution

binary voxel grids (n3) and after several (strided) convolu-

tions outputs (comparably) low-resolution grids (k3), where

each grid cell is equipped with an h-dimensional latent vec-

tor. Thus each cell of the output encodes the geometry of

an overlapping cubical subset of the high-resolution voxel

grid. In all of our experiments the resolution of the latent

grid is chosen as k = 32 and the number of channels as h =

8.

The decoder evaluates the implicit function represented

by this grid of latent cells at a set of sample points. To this

end, we find the cell a point is contained in and concatenate

its latent vector with the point’s position (in local coordi-

nates of the cell). Then we feed this vector into a MLP with

a scalar output. The resulting score (0 for outside and 1 for

inside of a shape) can be trained with a binary cross entropy

loss.

As independent functions in neighboring cells can lead

to discontinuities of the implicit function at the bound-

ary between cells, we interpolate the results obtained from

neighboring grid cells, leading to smoother results.

f(x,C, θ) =
∑

j∈N

wj Decθ(cj ∈ C, k(x− xj)), (1)

where C is the grid of latent vectors, cj is the vector corre-

sponding to cell j and xj is its cell center, N is the neigh-

borhood of point x and wj the trilinear interpolation weight

of x with regard to the center of cell j. We refer to the

resolution of the latent grid as k. The decoder Dec has pa-

rameters θ. This interpolation is especially important in our

GAN setting, as it simplifies the task of generating match-

ing cells. To make sure that the necessary information for

this is stored in the latent vectors, we choose the receptive

field of the encoder so that each latent grid cell can encode

the geometric information of neighboring cells as well.

3.2. Unconditional Generation

After we have trained an autoencoder, as described in

the previous section, we can now train a GAN on its la-

tent space. Chen et al. [5] learn a single latent vector for

the entire shape and therefore train simple MLPs as genera-

tor and discriminator to generate new vectors and thus new

shapes. We on the other hand generate a full grid of latent

vectors, each describing a local part of the shape, that to-

gether constitute the object. Thus, it is not only important

that the local geometry described by the implicit function

for each grid cell itself is reasonable, it must match with

its neighbors as well. Although these considerations put an

additional burden on the GAN, this approach has a decisive

advantage over previous latent approaches. As it is possible

to arrange the grid cells in various ways, we are less con-

strained by any bias the autoencoder may introduce. This is

because we only need the autoencoder to reconstruct build-

ing blocks instead of entire shapes.

Our task can be seen as being analogous to image gen-

eration, therefore similar considerations apply. Instead of

generating a 2D grid with 3 channels, we generate a 3D grid

with h channels. For this reason we use 3D convolutional

networks as generator and discriminator. The generator is

a simple 3D CNN with strided convolutions, batch normal-

ization and LeakyReLU as non-linearity. We do not use any
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residual layers or skip connections.

In order to provide feedback to the generator at vari-

ous scales, we use three patch discriminators (adapted from

pix2pix [12]) that have residual layers and apply spectral

normalization [23]. All three discriminators have the same

architecture, but do not share parameters. Each discrimina-

tor is run convolutionally over the latent grid, rating each

local patch separately. The scores are then averaged for the

discriminators’ final output. The discriminators work at dif-

ferent input resolutions (323, 163, and 83) and thus inspect

features of different scale. The lower resolutions are com-

puted by trilinear interpolation of the latent vectors. This

training scheme puts a strong focus on local details, empha-

sizing the higher complexity and expressiveness of single

grid cells compared to images or binary voxel grids. The

effectiveness of patch discriminators is shown in Appendix

D.

For better convergence we use a gradient penalty on in-

terpolations between true and fake data as introduced in

[9]. We obtained the best results with zero-centered gradi-

ent penalty [28, 20] and maximum reduction [14]. As loss

we use the standard non-saturating (NS) loss [7].

3.3. Conditional Generation

In many use cases we would like to control certain char-

acteristics of the generated objects. To this end we can

guide the generation process with conditional GANs [22].

These conditions can be of global nature, like class labels,

or more localized. An example for this are architectures

that create images based on information in the form of other

images (e.g. photos from label maps) [12, 33, 26]. For this

purpose the input image is used as a mask providing a pixel-

wise conditioning.

The spatial organisation of our latent space easily allows

us to adapt this approach to 3D data. For our generator we

use the architecture of SPADE [26] adapted to 3D. The key

idea is to compute a cell-wise scale and bias depending on

a mask and apply it to the feature maps at different layers.

We use the same discriminators as for unconditional gener-

ation. The only difference is that we concatenate the mask

with the generated grid in the beginning. We experiment

with different ways to provide these masks (e.g. bounding

boxes, shape parts, silhouettes), depending on the respec-

tive application. The losses and training parameters are the

same as for unconditional generation.

4. Evaluation

In this section we present the measure we use to com-

pare the performance of different GANs as well as motivate

its effectiveness compared to previous measures. Further-

more, we show quantitative and qualitative results of our

unconditional and conditional generation scheme. All eval-

uations are performed on the ShapeNet Core dataset (v1)

[2]. For comparability reasons we follow the training split

and evaluation setup from [5] and generate distributions for

the categories car, chair, plane, rifle and table. As ground

truth we use the voxelized models from [10]. In each cate-

gory we sorted the models by name and used the first 80%

for training and the rest for testing.

4.1. Quality Measures

Several approaches have been suggested to evaluate the

fidelity of generative models. Generally any evaluation

method needs to answer two questions:

1. How to measure the similarity of individual data points

(e.g. 3D shapes)?

2. How to compare two data distributions?

The answer to the first question typically depends on the do-

main, while the answer to the second question is domain ag-

nostic for the most part. In the realm of 3D shapes, several

similarity measures have been proposed. For point cloud

based methods the Chamfer distance (CD) and Earth Mover

distance (EMD) were introduced [1]. On the other hand

[30] proposes to use features extracted from a pretrained

PointNet network [27]. As we generate surfaces instead of

point clouds, using these methods would require to sample

all shapes, by which we lose fine details of the underlying

surface. Chen et al. [5] argue that point based distances do

not align well with visual similarity and instead propose to

use the light field descriptor (LFD) [3] to measure similar-

ity. We follow this reasoning and use the LFD for our eval-

uation. Note that the similarity between LFDs is measured

in a non-Euclidean manner.

Having answered the first question, i.e. how to compare

individual data points, we will now discuss how two distri-

butions can be compared. We use the test set as a proxy of a

different unseen sampling drawn from the data distribution

that generated the training set. We refer to the generated

data set as A and to the test set as B.

Two options for comparing distributions A and B were

introduced by Achlioptas et al. [1]. Coverage is meant to

measure the diversity of A (with regard to B). For each

shape in A we mark the closest neighbor in B according

to the distance defined above. We then count the percent-

age of shapes in B, that have been marked. If our gener-

ative scheme has low diversity, for example due to mode

collapse, the generated shapes would lie close together and

cover only a small subset of the space spanned by B. This

measure however does not evaluate the fidelity of individual

shapes within A, as the actual distance between shapes does

not matter. To take this into account the Minimum Match-

ing Distance (MMD) is introduced. Here we compute the

distance from each shape in B to its closest neighbor in A
and take the mean over those.
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Figure 2: Comparing different distribution measures on two Gaussian distributions with different dimensions (1, 10, 100,

1000) and zero mean. B has a variance of 1, while the variance of A varies.

Another option to compare distributions that is popular

for evaluating GANs on images, is the Fréchet inception

distance (FID) [11]. This measure assumes the distribu-

tions to be Gaussian and thus computes mean and covari-

ance of the descriptors within A and B and then computes

the Fréchet distance. Note that this method assumes Eu-

clidean distance between feature maps and does not work

on general distance measures. Therefore, it cannot be ap-

plied to the LFD.

We argue that these metrics all have shortcomings in

evaluating the quality of a generated distribution. For Cov-

erage and MMD the outliers in A are not penalized in any

way, whereas outliers in B can have a significant impact.

Furthermore, considering only the nearest neighbor is not

sufficient to compare the actual density of distributions, as

differences in local densities do not have much of an im-

pact. On the other hand FID runs into problems, when the

underlying distributions are not Gaussian.

An easy example, where coverage and MMD already

fail, is to compare (based on the Euclidean distance) sam-

ples from two isotropic Gaussian distributions with zero

mean for various dimensions (Figure 2). B was sampled

from a Gaussian with variance 1, while we mimic different

generative models by sampling multiple sets of A from dif-

ferent Gaussians with varying variance. Ideally, the mea-

sures would give the best results for A sampled from a

Gaussian with variance 1. However, the coverage never

reaches 1 even when A and B are drawn from the same dis-

tribution. More critically, depending on the dimension, the

coverage does not have its peak at 1, as would be expected.

The MMD is either not much affected, or has its minimum,

when the variance is minimal. Thus, even in combination,

the two measure are not reliable in order to determine how

likely it is that the two sets come from the same distribution.

To show the deficiencies of the Fréchet distance as an

evaluation measure, we compare different types of distri-

butions, whose values we choose so that they all have zero

mean and unit variance (Table 1). By definition the Fréchet

distance is not able to differentiate between any of these

distributions, as the fitted Gaussians are identical.

Gaussian uniform binary

Gaussian 5.31 5.27 5.24

1.55 52.73 163.58

uniform 5.18 5.16

1.58 135.21

binary 5.06

1.95

Table 1: Comparing different measures on different distri-

butions. Fréchet distance in blue, ECD in black. The sam-

ples are always 100 dimensional, where each value is cho-

sen from a distribution with parameters chosen so that we

have zero mean and unit variance. The binary distribution

consists of the values -1 and 1.

We therefore are interested in a test, that remedies these

issues. It should take local densities into account, consider

the complete distribution of A and B without being too

much affected by outliers and actually decrease when the

two distributions are similar. Furthermore it should be able

to distinguish all kinds of distributions and not be restricted

to Gaussians. Testing whether two sample sets come from

the same underlying distribution is a well known problem

in statistical analysis and referred to as a two sample test.

Since we want to measure the distance between A and B
by considering the likelihood of them being sampled from

the same distribution, this problem is closely related to ours.

We propose to use a statistic introduced in [4] as a distance

measure between our two sets, since it is fairly robust even

for multivariate data. This approach builds a k-minimum

spanning tree of the neighborhood graph of A ∪ B. Edges

in this tree are classified according to whether they connect

shapes within A, within B or between A and B. The fi-

nal score is computed as a weighted difference between the

number of these edges and the edge count we would ex-

pect if A and B were from the same distribution. The ex-

act formula for this measure can be found in Appendix A.

Throughout the rest of this paper we will refer to this mea-

sure as Edge Count Difference (ECD).
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Plane Car Chair Rifle Table Avg. w/o planes Avg.

COV(%) 3DGAN 12.13 25.07 62.32 18.80 29.58

PC-GAN 73.55 61.40 70.06 61.47 77.50 67.61 68.80

IM-GAN 70.33 69.33 75.44 65.26 86.43 74.12 73.36

Our 81.58 80.67 82.08 81.47 86.19 83.10 82.80

Train 85.04 85.67 84.73 84.00 87.13 85.38 85.13

MMD 3DGAN 1,993 4,365 4,476 5,208 4,010

PC-GAN 3,737 1,360 3,143 3,891 2,822 2,804 2,991

IM-GAN 3,689 1,287 2,893 3,760 2,527 2,617 2,831

Our 3,226 1,225 2,768 3,366 2,396 2,453 2,607

Train 2,225 984 2,317 3,085 2,066 2,113 2,135

Table 2: Quantitative evaluation of generative models. As 3DGAN was not trained on plane models, this entry is missing.

Results for the train set are reported to give reference values.

Plane Car Chair Rifle Table

3DGAN 28,855 26,279 6,495 32,116

IM-GAN 6,543 20,606 2,553 3,288 1,018

Our 355 1,062 144 94 188

Train 1 11 1 2 5

Table 3: Quantitative evaluation of generative models with

ECD. We do not report averages, as values for different

dataset sizes are not comparable.

As shown in Figure 2 this measure performs reliably

on the toy example with Gaussian distributions introduced

above. It actually achieves its minimum, when A and B
are sampled from the same distribution. Furthermore it has

no problems distinguishing different distributions with the

same variance (Table 1). As we only need to be able to ob-

tain distances between samples to compute the ECD, we are

not restricted to the Euclidean space and thus can apply this

test together with the LFD.

4.2. Results

To compare our method to the state of the art, we evalu-

ate the results w.r.t. both previous measures Coverage and

MMD (Table 2). We compare to 3DGAN [34] (a voxel

based method), IM-GAN [5], which is a latent-GAN that

works on global implicit functions, as well as PC-GAN [1].

Note that a comparison here is difficult, since this method

produces point clouds that need to be transformed to meshes

first. For all other methods, meshes are created from gener-

ated or sampled voxel grids with marching cubes [18]. The

quantitative results for previous methods are taken from [5].

Furthermore, following [5] all measures are evaluated on

meshes that have been extracted from a voxelisation with

resolution 643. Therefore, the different methods have been

trained and sampled at resolution 643 as well. The size of

the generated dataset is always 5 times the size of the test

dataset. Note that while IM-GAN and PC-GAN trained spe-

cific AEs for each separate class, we trained a single AE on

the train split of the entire shapenet dataset. Table 2 shows

that our method outperforms the state of the art when it

comes to coverage on all but one class, showing the higher

diversity of our generated samples. Furthermore, we always

have a lower MMD showcasing the higher quality of our

sampled shapes.

We also compare against 3DGAN and IM-GAN on the

introduced ECD (Table. 3) Here we average the score of 10

random sub-samplings of the generated set with equal num-

ber to the test set. Qualitative results of the different meth-

ods can be seen in Figure 3. Although the results of IM-

GAN sometimes appear smoother than the ones our method

produces, this comes at the cost of less diversity.

As we can see in Figure 4 on the example of the rifle

dataset, IM-GAN does not fully capture the distribution of

the test set, whereas for our method both distributions are

well mixed. This is supported by our quantitative evalua-

tion, where we strongly outperform IM-GAN on the ECD

even though our qualitative results are comparable.

A reason for the weaker quantitative results of IM-GAN

might be that due to problems during GAN training we are

observing mode collapse. Another possible explanation for

this effect might be found with the strong shape bias the

AE enforces, as this bias can make it harder for the GAN to

faithfully capture the data distribution. This could be due to

the AE mapping larger regions of the latent space to similar

shapes. The localized latent grid structure we employ is less

prone to such problems, as it is able to represent a much

wider variety of shapes.

Conditional Generation As described in Section 3.3, our

method is able to incorporate spatial guidance into the gen-

eration process. As we make use of the grid structure of our

latent space for this, approaches based on a global latent

13564



(a) 3DGAN

(b) IM-GAN

(c) our results

Figure 3: Typical generative results for each model on each category. For 3DGAN we do not show a plane model, since it

was not trained on the plane dataset.
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Figure 4: t-SNE [19] (perplexity = 10) low dimensional em-

beddings of the combined generated and test set from the

rifle dataset. On the left distinct clusters are visible, hinting

at different densities of the sets. This is not the case on the

right.

space are unable to offer such guidance in a straightforward

manner. This guidance can be provided in many different

ways. This information can take the form of binary values,

class labels, or even complex encodings. This flexibility al-

lows for several applications, some of which we will present

in the following.

The simplest possibility to offer guidance is to provide a

single binary variable for each grid cell. With this we can

for example generate shapes that fit into a predefined bound-

ing box. This bounding box is simply discretized to our grid

resolution so that each cell gets the information whether it

is inside or outside of it. Exemplary results of this gen-

Figure 5: Conditionally generated examples shown with

their input bounding boxes. On the right side, we added an

additional ”negative” box, that is supposed to stay empty.

eration process, as well as the bounding boxes they were

conditioned on, can be seen in Figure 5. We can not only

prescribe a bounding box, that should contain all of the ge-

ometry, but allow the user to further restrict the shape space,

by specifying “negative” bounding boxes, that should not

contain any geometry.

If semantic information is available (in our case given

by the PartNet dataset [24]), this can be used for more fine

grained generation (Figure 6). This means we can prescribe

a bounding box for each semantic part of the object. In this
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Figure 6: Example for shapes conditioned on part based

bounding boxes. The differently colored bounding boxes

represent different semantic parts.

Figure 7: Example for silhouette based generation. The

3D masks are extracted from the low resolution silhouettes

shown in the insets.

case, we do not provide binary data, but part labels per grid

cell.

Bounding boxes are however not the only option to pro-

vide this simple guidance. Another possible application,

would be to compute this information from a silhouette,

given as a binary 2D image (Figure 7). For simplicity, we

assume the viewing direction to be axis aligned. The infor-

mation can be presented as a single image, or as multiple

images corresponding to different axes.

In all previous examples, we provided one-hot vectors

per cell. However, complex encodings can be used for this

kind of conditioning as well. As an example, we show the

application of shape completion on chairs. For this we cut

out one semantic part from the object (backrest, armrest,

seat or legs) and train the network to insert this missing

part. This is implemented by conditioning the GAN on the

geometry that is still available. We provide this informa-

tion by using our AE to encode the present geometry into

latent vectors for each cell (Figure 8) As can be seen, our

generated shape follows the provided guidance, where it is

Figure 8: Example for shape completion. On the left we see

the given conditioning, on the right the generated chair.

given, and is reasonably completed, where it is not. For all

examples we obtained the supervision masks from unseen

examples of the test set.

5. Conclusion

We introduced a GAN that generates piecewise implicit

functions organized in grids to represent 3D shapes. By

learning on localized latent representations instead of global

ones (as in previous work) we are able to model the data

generating distribution more closely than prior methods.

We showed this by evaluating our method quantitatively

with measures from prior work as well as with the proposed

usage of ECD. Due to the convolutional nature of our GAN

architecture we are able to incorporate spatial guidance (in

a wide variety of forms) in the generation process. We only

showed few examples, but expect this approach to viable for

a wide range of tasks.

The results generated from global latent representations

appear smoother since they are less likely to capture the de-

tails of the ground truth. As the AE part in our generation

process is able to learn fine details of the underlying shapes,

it tends to reproduce voxelization artifacts from the ground

truth. We therefore expect higher resolution ground truth

shapes to lead to even better results for our method.
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Learning 3D Surface Generation. IEEE Conf. on Com-

puter Vision and Pattern Recognition, 2018.

[9] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin,

and A. C. Courville. Improved training of wasserstein

gans. Advances in Neural Information Processing Sys-

tems, pages 5767–5777, 2017.
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