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Figure 1: This paper presents a novel approach to estimate high fidelity depths of dressed humans from a single view image

by leveraging a new data resource: a number of social media dance videos that span diverse appearance, clothing styles,

performances, and identities. We show an example of a sequence of this data and the corresponding human mask along with

the estimated depth (the darker, the closer) and the reconstructed surface.

Abstract

A key challenge of learning the geometry of dressed hu-

mans lies in the limited availability of the ground truth

data (e.g., 3D scanned models), which results in the perfor-

mance degradation of 3D human reconstruction when ap-

plying to real-world imagery. We address this challenge by

leveraging a new data resource: a number of social me-

dia dance videos that span diverse appearance, clothing

styles, performances, and identities. Each video depicts dy-

namic movements of the body and clothes of a single person

while lacking the 3D ground truth geometry. To utilize these

videos, we present a new method to use the local transfor-

mation that warps the predicted local geometry of the per-

son from an image to that of another image at a different

time instant. This allows self-supervision as enforcing a

temporal coherence over the predictions. In addition, we

jointly learn the depth along with the surface normals that

are highly responsive to local texture, wrinkle, and shade

by maximizing their geometric consistency. Our method is

end-to-end trainable, resulting in high fidelity depth esti-

mation that predicts fine geometry faithful to the input real

image. We demonstrate that our method outperforms the

state-of-the-art human depth estimation and human shape

recovery approaches on both real and rendered images.

1. Introduction

Clothes are an integral part of our everyday life to func-

tion, express, and protect ourselves. With the increasing

prevalence of VR and AR, the ability to precisely model

the complex geometry of dressed humans is becoming the

key to authentic social tele-presence. To capture the local

geometry, e.g., wrinkle and fabric texture, photogrammetry

based on massive camera infrastructure (e.g., 40-500 cam-

eras to cover full body shape) [12, 25, 55] has been used,

resulting in production-level rendering [9,32] and 3D fabri-

cation [3, 5]. Despite its promise, the practical deployment

of such massive camera systems in our daily environment is

still challenging because of its hardware requirements and

computational complexity. Single view reconstruction is an

immediate remedy to address this challenge where 3D rep-

resentation of humans can be learned from the scanned hu-

man 3D models [1–3]. Nonetheless, the amount of these
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data is limited (e.g., a few hundreds of static models), which

do not span diverse poses, appearance, and complex cloth

geometry resulting in the performance degradation of 3D

human reconstruction when applying to real-world imagery.

In this paper, we present a method to reconstruct high fi-

delity 3D geometry of dressed humans in the form of depths

and surface normals from a single view image by exploiting

hundreds of dance videos shared in social media (e.g., Tik-

Tok mobile application) as shown in Figure 1.

The main characteristics of these dance videos are that 1)

each video depicts a sequence of diverse poses of a single

person; and 2) 3D ground truth is not available, i.e., exist-

ing fully supervised methods are not applicable. We con-

jecture that since the geometry of dressed humans is an in-

herent semi-rigid structure, the local geometry of the same

person approximately remains constant up to some trans-

formations. For instance, the cloth movement on the left

upper arm region undergoes, by large, a rigid transforma-

tion when its pose changes. Therefore, it is possible that the

geometric consistency over different poses can be applied

to learn from the real dance videos. We estimate a trans-

formation for each body part that can warp its 3D geometry

from one image to another image at a different time instant.

This allows us to self-supervise the predicted geometry of

the dressed humans without 3D supervision.

While modern learning based depth estimators are capa-

ble of recovering holistic scene geometry, it is shown [30]

that it often fails to encode fine local geometry such as com-

plex cloth wrinkles and face profile features, which consti-

tutes the dominant factor of realism. On the other hand, sur-

face normals are highly responsive to fine visual structures

such as texture and wrinkles [54]. We exploit the geometric

relationship of depths and surface normals to learn jointly

(e.g. matching the surface normal to the curvature of the

depth).

Our end-to-end trainable method takes as input an RGB

image, corresponding human foreground, and human UV

coordinates and outputs a high fidelity depth that captures

fine wrinkles and shapes that is faithful to the input image.

We design a network called HDNet that learns the spatial

relationship between the image and UV coordinate to pro-

duce an intermediate surface normals. These predicted sur-

face normals are, in turn, used to predict the high fidelity

depths of dressed humans. We use a Siamese design of HD-

Net to measure the self-consistency of a pair of geometric

predictions. To that end, our method is semi-supervised by

leveraging both 3D scanned models and real dance videos.

We demonstrate that our method outperforms the state-of-

the-art human depth estimation approaches on both real and

rendered images.

We present four core contributions: (1) a new dataset

called TikTok dataset that consists of more than 300 se-

quences of dance videos shared in a social media mobile

platform, TikTok, totaling more than 100K images along

with the human mask and human UV coordinates; (2) a

novel formulation that warps the 3D geometry of dressed

humans from one image to the other image at a different

time instant to measure self-consistency, which allows us to

utilize the real dance videos; (3) HDNet design that learns

to predict fine depths reflective of surface normal prediction

by enforcing their geometric consistency; (4) strong quali-

tative and quantitative prediction on real world imagery.

2. Related Works

Our fundamental contribution lies at the intersection of

human body reconstruction, single view depth estimation,

and human 3D datasets.

Human Body Reconstruction There are two predominant

representations in human body reconstruction: parametric

and non-parametric. Similar to face modeling [16], para-

metric mesh models such as SCAPE [8] and SMPL [33]

are an attractive choice of the human body representa-

tion, which can be used for single view human reconstruc-

tion [13, 26, 29, 39, 41, 44, 56] and synthetic data genera-

tion [51, 52]. While the parametric representation effec-

tively limits the space of solutions where learning based

approaches can be readily applicable and show remark-

able performance, the reconstructed geometry has limited

resolution, which prevents from expressing fine details of

dressed humans. This has been addressed by refining

parametric models with residual geometry [6, 7, 28, 35].

Depth [30, 50] or volumetric representation [23, 60] as a

non-parametric representation can describe the geometry of

dressed humans. Unlike parametric models, obtaining the

ground truth data is challenging: Li et al. [30] addressed by

exploiting a large community dataset of Mannequin Chal-

lenge, and Tang et al. [50] incorporated semantic labels

(pose and segmentation) to regularize their depth estimator.

Single View Depth Estimation Single view depth estima-

tion is a core task of scene understanding where sophisti-

cated designs of convolutional neural networks (CNNs) en-

able predicting scene geometry [34,49]. To capture fine de-

tails of depth reconstruction, additional cues such as surface

normals have been incorporated [18, 36, 40, 42, 43, 50, 59,

61]. Iterative least squares [50] and kernel regression [42]

have been used to fuse the surface normals and depths,

and coarse-to-fine learning is used to densify LiDAR data

for outdoor scenes or missing depth data [43] for indoor

scenes [59]. Recently, integrating the surface normal into

the depth prediction [54] (e.g. identifying whether a normal

representation is realistic or not using GAN [21]) has shown

to be effective in restoring local geometry such as cloth

wrinkles and face profile features. Unlike previous work,

we focus on recovering sub-centimeter detailed geometry

tailored to dressed humans by jointly learning depths and

surface normals and leveraging a large dataset of social me-

dia dance videos.

Human 3D Datasets While there are a number of RGBD
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datasets for structural scene understanding [14, 17, 48, 57],

a limited amount of data address the problem of the ge-

ometry prediction for dressed humans in the wild. A few

RGBD datasets [11, 15, 31, 47] are designed for humans

action recognition. However, these data lack the geomet-

ric details such as cloth wrinkles. For human geometry,

the 3D scanned models [1–3] or multiview generated mod-

els [53, 58] can be used to generate photorealistic images

from multiple views, which has been used for training a ge-

ometry predictor with full supervision [45, 46]. However,

the amount of data is still limited to a few hundreds of static

models, which prevents from learning a generalizable pre-

diction model. In this paper, we introduce a new source of

data: real dance videos from the Internet to generalize the

human depth estimation to different view points, human ap-

pearance, clothing styles and poses.

3. Method

Given a single image of a dressed human I, we recon-

struct its high fidelity depth, i.e., z = g(x; I), where x ∈ R2

is the xy-location in the image, and z ∈ R+ is the depth at

the corresponding location.

Existing approaches learn g directly from the ground

truth data, which shows two limitations in estimating depths

of clothed humans. (1) While existing depth estimators are

highly responsive to predict holistic scene geometry, it is

shown [30] that its expressibility is limited at encoding fine

local geometry such as irregular and complex wrinkles, that

constitute the dominant factor of realism. (2) It requires a

large amount of 3D ground truth data (e.g., ScanNet [17]

and KITTI [19, 20]). Such large ground truth data for hu-

mans that span diverse appearance, cloth styles, and poses

do not exist (e.g., a few hundreds of posed scanned mod-

els [1–3]).

3.1. Self-supervised Human Depths from Videos

We present a new method to address these limitations by

leveraging large video data of real humans in motion. Albeit

lacking of 3D ground truth, each video depicts the move-

ment of a single person across time where her/his geometry

approximately remains constant up to local transformations.

Consider a coordinate transform h(u) = x that maps

a canonical human body surface coordinate u ∈ R2 (UV

surface coordinate) to the corresponding point x in an im-

age. A key feature of the UV surface coordinate is that it is

invariant to poses, clothes, and appearance.

We parametrize a 3D point p ∈ R3 reconstructed by the

depth prediction using the UV coordinate, i.e.,

pi(u) = zK−1x̃ = g(hi(u); Ii)K
−1h̃i(u), (1)

where K ∈ R3×3 is the camera intrinsic parameter, ·̃ ∈ P2

is the homogeneous representation [24], and x is the pixel

location in the image domain corresponding to u in the UV

domain. The subscript i indicates the time instant.

Bilinear interpolation

ℒ𝒘𝒘
Estimated depth j

Estimated depth i Part based warped depth

Interpolated warped depth

UV correspondences 

of left arm

𝐈𝐈𝑖𝑖

𝐈𝐈𝑗𝑗
Figure 2: Given the depth estimate at the ith time instant,

we use a part based transformation that warps the 3D local

geometry of the image to the image at the jth time instant.

The green boxes in two images show the UV correspon-

dences of the left arm. The depths of the left arm are re-

constructed in 3D and transformed to the jth time to form

the part based warped depths. We apply bilinear interpola-

tion on the foreground range, resulting in the warped depths

that can supervise the depth estimate at the jth time instant

through the warping loss Lw.

We transform a set of points in the kth body part at the

ith time instant to the jth time instant:

pi→j(u) = Wk
i→j(pi(u)), u ∈ Uk (2)

where W is a 3D part based warping function, and Uk is

the set of UV coordinates associated with the kth body part.

The body part is defined as a region of the body where its

local geometry approximately undergoes a rigid transfor-

mation, e.g., lower arm. An analogous warping is used for

non-rigid tracking [37] without the part based representa-

tion, which allows mapping between consecutive frames.

With the part based warping, we substantially extend the

time horizon by parametrizing the 3D point using the UV

coordinate, which does not require an offline iterative clos-

est point method between the consecutive frames.

We use the Special Eucliean Transform (SE3) to model

Wk
i→j(pi) = Rk

i→jpi + tki→j where R and t are the rota-

tion and translation1. Among the correspondences pi(u) ↔
pj(u), we pre-define a subset of correspondences that rep-

resent the overall transformation for each part. With the

pre-defined correspondences, we compute the transforma-

tion by minimizing the following error:

minimize
R,t

∑

l

∥∥pj(vl)−Wk
i→j(pi(vl))

∥∥2 , vl ∈ Vk ⊂ Uk,

1An affine transformation used in the non-rigid tracking [37] can be a

complementary to the SE3.
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Tang et al. Ours Ground truthImage

Figure 3: We compare our method with Tang et al. [50] on

the surface normals derived from the depths. While two

methods use the surface normals to enhance the depths, un-

like Tang et al., our method jointly learns surface normals

and depths by supervising them with each other, which pro-

duces more realistic and less noisy prediction that preserves

the detailed geometry of wrinkles and face.

where Vk is the subset of the UV coordinates that repre-

sent the overall transformation. We minimize the objective

using least squares [10]. In practice, we choose the sparse

correspondences in the subset by discretizing the UV co-

ordinates. This transformation is computed online, i.e., the

transformation changes as the depth prediction is updated at

each training iteration.

Figure 2 illustrates the self-supervision via warping the

3D geometry of humans between two frames of a video.

By having the estimated depth, we use the UV coordinates

to warp the local geometry for each part from the ith time

instant to the jth time instant resulting in a sparse warped

depth. We apply bilinear interpolation on the foreground

range to get a dense warped depths that can supervise the

depth estimate at the jth time instant by minimizing warp-

ing loss Lw.

We minimize the following loss to measure geometric

discrepancy between two time instances:

Lw =
∑

l

∑

(i,j)∈Vl

∑

k

∑

u∈Uk

‖pj(u)− pi→j(u)‖
2, (3)

where Vl is the set of time instances within the lth video.

Equation (3) allows us to utilize a large amount of real

videos without the 3D ground truth via self-supervision, i.e.,

the estimated depth in one pose can be used to supervise the

depth in the other pose. This makes the depth estimation

responsive to real data of diverse human poses and appear-

ances.

3.2. Joint Learning of Surface Normal and Depth

Surface normal estimation is highly responsive to the lo-

cal texture, wrinkle, and shade [50,54]. We jointly estimate

surface normal and depth to benefit from each other. We es-

timate the surface normals of an image I, i.e., n = f(x; I)
where n ∈ S2 is the unit surface normal vector represented

in the camera coordinate system.

Surface normal n̂(x) is the curvature that is perpendic-

ular to the tangential plane of the corresponding 3D point

p(x) (we override the notation p(u) in Equation (1)), i.e.,

n̂(x) =
∂p(x)

∂x
×

∂p(x)

∂y
/

∥∥∥∥
∂p(x)

∂x

∥∥∥∥
∥∥∥∥
∂p(x)

∂y

∥∥∥∥ , (4)

where n̂ denotes the surface normal estimate derived by the

depth estimate.

We ensure geometric consistency between the predicted

surface normals and the derived surface normals from the

depth estimates by minimizing their geometric error:

Ls =
∑

Ii∈D

∑

x∈R(Ii)

cos−1

(
nT(x)n̂(x)

‖n(x)‖‖n̂(x)‖

)
, (5)

where R(I) is the coordinate range of the image I, and D
is the image dataset including the dance videos and scanned

3D models.

Note that the relationship between surface normal and

depth has been used to obtain the details of depth estimates.

GeoNet [42] has leveraged the derived surface normals to

refine the surface normal estimate for an indoor scene un-

derstanding. In the human domain, Tang et al. [50] uses

the surface normal prediction to refine the human depth in

a post-processing manner. Unlike these methods, we use

the surface normal estimates to supervise the depths and the

depth estimates to supervise the surface normals by enforc-

ing their geometric consistency in the training phase. This

end-to-end online pipeline enables learning the depths from

the real videos without the ground truth depth. Figure 3

illustrates the comparison of the surface normal generated

from the predicted depth of our method and Tang et al. [50].

Our result is realistic, which captures the wrinkles of the

cloth fabric compared to Tang et al. [50].

3.3. Network Design

We minimize the following overall loss to learn the depth

and surface normal estimators from real videos and 3D

scanned models:

L = Lz + λnLn + λsLs + λwLw, (6)

where λn, λs, and λw are relative weights between losses.

In addition to self-consistency losses (λw and λs), we utilize

the 3D ground truth data from the 3D scanned models [2].

This depth and surface normal can be learned by minimiz-

ing the following error between ground truth normal N(x)
and the prediction.

Lz =
∑

Ii∈Ds

∑

x∈R(Ii)

‖Z(x)− g(x; I)‖2, (7)

Ln =
∑

Ii∈Ds

∑

x∈R(Ii)

‖N(x)− f(x; I)‖2, (8)
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ℒ𝒛𝒛

Normal estimator

ℒ𝒏𝒏
Eq (4)

ℒ𝒔𝒔Depth estimator

HDNet : Concatenation

(a) Network design of HDNet.

𝑊𝑊𝑖𝑖→𝑗𝑗HDNet HDNetℒ𝒘𝒘
(b) HDNet self-supervision using two images from different time instances.

Figure 4: (a) Our network HDNet takes as input an image with the correspondending human foreground and UV coordinates

and predicts the high fidelity depth of the human. The HDNet is composed of the depth and surface normal estimators. The

surface normal estimator takes the input image and the foreground human mask and outputs the surface normal estimation.

The surface normal estimation is, in turn, used as an input along with the image, foreground human mask, and part based UV

coordinate to the depth estimator. We enforce the geometric consistency between the estimated depths and surface normals.

(b) We build a Siamese design of HDNet to leverage real dance videos. The estimated depth of one image is warped to the

other image at a different time instant using a part based transformation. We measure the geometric consistency between the

predicted depth and warped depth through Lw.

where Ds is the 3D scanned dataset with the ground truth

depths Z(x) and surface normals N(x).

Network Design and Details We design our neural network

called HDNet (Human Depth Neural Network) that allows

us to utilize both real videos and 3D scanned model data as

shown in Figure 4(a). HDNet is composed of two estima-

tors: surface normal and depth estimators. The surface nor-

mal estimator f(x; I) takes as input an RGB image and its

foreground mask, and outputs the surface normal estimates.

The depth estimator, g(x; I), in turn, takes as input a triplet

of an RGB image, foreground mask, and UV coordinate,

and outputs the depth estimates. The geometric consistency

between the surface normal and depth is enforced by mini-

mizing Ls. For the 3D scanned model data, both estimators

are supervised by the ground truth surface normal and depth

(Ln and Lz), respectively.

For the real videos, we build a Siamese network with

HDNet where two triplets from two time instances within

the same video are used for the depth estimates as shown

in 4(b). The UV coordinates from both images are used to

compute the special Euclidean transformation that is used

to warp the depth from one image to the other image. At

each time instant, we make five image pairs by randomly

selecting time instances that have the UV coordinates of at

least five common visible body parts while each contains

more than 50 overlapping UV coordinates.

For the two estimators, we use the stacked hourglasses

network [38] as a backbone network. The image and its

foreground mask are cropped from the input image and re-

sized to 256×256, and h is approximated by the inverse of

the UV map obtained by DensePose [22]. We use Adam op-

timizer [27] with the following parameters for the training.

Batch size: 10; learning rate: 0.001; the number of epochs:

380; λn: 1; λs: 0.5; and λw: 5; GPU model: NVIDIA

V100.

4. TikTok Dataset

We learn high fidelity human depths by leveraging a col-

lection of social media dance videos scraped from the Tik-

Tok mobile social networking application. It is by far one

of the most popular video sharing applications across gen-

erations, which include short videos (10-15 seconds) of di-

verse dance challenges as shown in Figure 5. We manu-

ally find more than 300 dance videos that capture a single

person performing dance moves from TikTok dance chal-

lenge compilations for each month, variety, type of dances,

which are moderate movements that do not generate exces-

sive motion blur. For each video, we extract RGB images

at 30 frame per second, resulting in more than 100K im-

ages. We segmented these images [4], and computed the

UV coordinates. The dataset and code can be found in

https://www.yasamin.page/hdnet_tiktok.
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Tang et al. dataset [50] RenderPeople dataset [2] Vlasic et al. dataset [53]

Method D. error N. error R. error D. error N. error R. error D. error N. error R. error

Li et al. [30] 1.59±1.11 0.68±0.13 0.10±0.05 3.54±3.78 0.48±0.13 0.10±0.06 5.55±5.98 0.76±0.13 0.27±0.10

Tang et al. [50] 1.21±1.61 0.54±0.12 0.08±0.12 3.66±3.29 0.59±0.10 0.12±0.05 2.29±2.03 0.73±0.09 0.23±0.07

PIFu [45] 1.52±1.07 0.57±0.09 0.10±0.06 2.28±1.86 0.43±0.09 0.09±0.04 3.04±2.97 0.69±0.09 0.22±0.06

PIFuHD [46] 1.45±0.86 0.60±0.09 0.09±0.05 2.33±1.92 0.47±0.09 0.09±0.04 3.50±3.43 0.80±0.09 0.19±0.05

Ours 1.21±0.81 0.51±0.07 0.08±0.05 1.11±0.75 0.27±0.05 0.05±0.02 1.21±0.98 0.44±0.07 0.13±0.04

Table 1: Quantitative Results. D. error (normalized error), N. error (rad) and R. error represent depth error, normal error, and

reconstruction error respectively (mean±std).

Figure 5: TikTok Dataset. We present a new dataset called TikTok dataset that consists of more than 300 sequences of dance

videos shared in a social media mobile platform, TikTok, totaling more than 100K images along with the human mask and

human UV coordinates.

5. Experiments

We evaluate our method both quantitatively and qualita-

tively compared with the state-of-the-art methods of human

depth estimation and human shape recovery on real and syn-

thetic data.

Training Datasets We use two datasets for training: 340

subjects from 3D scanned model (RenderPeople) [2] with

3D ground truth and our TikTok dataset without 3D ground

truth (Section 4). We render the 3D scanned mesh mod-

els from approximately 100 viewpoints sampled uniformly

across a camera rig (6m diameter) that encircles each sub-

ject with 16.5mm focal length. Total 34,000 and 100,000

images are used for training from RenderPeople and Tik-

Tok data, respectively.

Evaluation Datasets We use three datasets to compare the

performance of ours and baseline methods: Tang et al. [50],

RenderPeople [2], and Vlasic et al. [53]. 1) Training

dataset of Tang et al. This dataset is made of sequences

of depth and RGB image pair for 25 subjects. We randomly

choose around 70 frames for each subject, totaling 1300 im-

ages. 2) RenderPeople dataset This dataset is made of 3D

scanned models with texture. We choose 6 subjects that are

not part of our training data and render the images from

100 viewpoints, totaling 600 images. We use a ray trac-

ing algorithm to compute the ground truth depth and render

the human textured model. 3) Vlasic et al. dataset This

dataset consists of 10 sequences of different people viewed

from 8 views. Each video includes average of 200 frames

of diverse activities such as swing dancing, samba danc-

ing, jumping, squat, and marching. The dataset provides

the RGB images and the meshes along with the camera pa-

rameters. We use a ray tracing algorithm to generate the

ground truth depth from the meshes. We randomly choose

total of 2000 images from this dataset. This dataset is in

particular challenging because the viewpoints are substan-

tially different from the existing datasets, i.e., a subject is

viewed from an oblique view.

Evaluation metric We evaluate the performance in two as-

pects: (1) accuracy of depths, surface normals, 3D recon-

struction, and (2) impact of joint training of surface normal

and depth (Ls) and integration of real dance videos (Lw).

We use mean squared error and mean absolute angular er-

ror as a metric for depth and surface normal, respectively.

The surface normals are computed via Equation (4) and

compared with the ground truth. In addition, we measure

the 3D error by reconstructing the estimated depth. Since

depths are reconstructed up to scale, we scale the recon-

structed depth to match to the ground truth, i.e., the pre-

dicted depth is translated to the median of ground truth and

scaled to match the minimum/maximum depths.

We followed the evaluation protocol of Li et al. [30],

i.e., no retraining of the baseline models. We catego-

rize the baseline methods into two: human depth estima-
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Image Li et al. Tang et al. PIFu PIFuHD Ours

(a) Qualitative comparison on TikTok dataset

Image Li et al. Tang et al. PIFu PIFuHD Ours

(b) Error map

Figure 6: (a) We compare our method with the baseline

methods (Li et al. [30], Tang et al. [50], PIFu [45], and

PIFuHD [46]) on the TikTok dataset. (b) We measure the

normalized error of estimated depths on the training data of

Tang et al [50].

tion [30,50], and human shape recovery [45,46]. The quan-

titative comparison is summarized in Table 1.

i) Human shape recovery We compare our method with

non-parametric human shape recovery designed for dressed

humans (PIFu [45] and PIFuHD [46]) using an implicit

function. Note that these methods predict not only the

frontal body surface but also occluded body surface where

we measure error only for the visible region. We apply a

ray tracing method to identify the frontal surface where we

measure the depth and surface normal.

ii) Human depth estimation We compare with depth estima-

tion baselines that are tailored to dressed humans, which are

most relevant to our work. Li et al. [30] used a large com-

munity dataset called MannequinChallenge dataset to train

Image Li et al. Tang et al. PIFu PIFuHD Ours Ground truth

Figure 7: Qualitative results of Li et al. [30], Tang et al. [50],

PIFu [45], PIFuHD [46] and ours. We show the results on

the evaluation datasets: (1) Tang et al. training dataset [50]

(first row), (2) RenderPeople dataset [2] (middle row) and

Vlasic et al. dataset [53] (last row).

the stacked hourglasses [38], and Tang et al. [50] leveraged

surface normals and depths to preserve detailed dressed hu-

man shapes. Since these two methods were designed for

human depths, in particular, Li et al. [30] shows strong per-

formance on both depths and surface normals.

Figure 6(a) shows the evaluation of our method com-

pared to the baseline methods on TikTok dataset. We can

get the most representative depth estimation compared to

other methods. Figure 6(b) visualizes the error map of our

depth prediction and other baseline methods on Tang et. al.

dataset [50]. Figure 7 shows the qualitative results of our

method and the baseline methods on the evaluation datasets.

We normalize the error ê with respect to the ground truth

depth, i.e., ê = |z−Z|/Z where z and Z are the zero-mean

predicted and ground truth depths, respectively.

Ablation study We conduct an ablation study to analyze

the impact of the losses in training: Lz , Lw and Ls. We

consider three combinations: Lz, Lz+Ls, and Lz+Ls+Lw.

We use the Tang et al. dataset [50] for the evaluation. We

scale the predicted depth to match to the ground truth, i.e.,

the predicted depth is translated to the median of ground

truth and scaled to match the minimum/maximum depths.
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Image ℒ𝒛𝒛 + ℒ𝒔𝒔 + ℒ𝒘𝒘 ℒ𝒛𝒛 + ℒ𝒔𝒔
Figure 8: Ablation study on loss functions. from left to right: the image, the full method results, and the results without

self-supervision.

Figure 9: Qualitative results of our method on web images.

From left to right: image, predicted depth, recosntructed

surface and surface normal.

Table 2 summarizes the comparison of the combinations.

On the one hand, Lw enforces the network to learn the ge-

ometric consistency from the videos. This loss is highly ef-

fective, allows learning from a limited amount of 3D data.

On the other hand, Ls enforces to learn to recover the de-

tails, which can further reduce the depth and surface normal

errors. Our method that leverages all three losses shows the

most accurate prediction in reconstructing the depths and

surface normals (last row of Table 2).

Figure 8 shows the qualitative results of our ablation

study on two examples of TikTok data. From left to right

Losses D. error N. error R. error

Lz 1.486±1.083 0.597±0.099 0.096±0.060

Lz + Ls 1.290±0.874 0.523±0.084 0.087±0.054

Lz + Ls + Lw 1.212±0.812 0.512±0.076 0.083±0.051

Table 2: Ablation study on Tang et al. dataset [50]. D. er-

ror (normalized error), N. error (rad) and R. error represent

depth error, normal error, and reconstruction error respec-

tively (mean±std).

we have the image, the final method results and the results

without self supervision.

We also visualize the performance of our method on a

set of web images in Figure 9. Our method is generalizable

to gray scale images, paintings, and images with multiple

people.

6. Conclusion

This paper presents a new method to utilize large data of

video data shared in social media to predict the depths of

dressed humans. Our formulation allows self-supervision

of depth prediction by leveraging local transformations to

enforce geometric consistency across different poses. In

addition, we jointly learn the surface normal and depth to

generate high fidelity depth reconstruction. A new dataset

called TikTok dataset is collected, consisting of more than

300 sequences of dance videos shared in a social media mo-

bile platform, TikTok, totaling more than 100K images. Our

method produces strong qualitative and quantitative predic-

tion on real world imagery compared to the state-of-the-art

human depth estimation and human shape recovery.
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