
Few-shot Open-set Recognition by Transformation Consistency

Minki Jeong Seokeon Choi Changick Kim

Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea

{rhm033, seokeon, changick}@kaist.ac.kr

Abstract

In this paper, we attack a few-shot open-set recogni-

tion (FSOSR) problem, which is a combination of few-shot

learning (FSL) and open-set recognition (OSR). It aims to

quickly adapt a model to a given small set of labeled sam-

ples while rejecting unseen class samples. Since OSR re-

quires rich data and FSL considers closed-set classification,

existing OSR and FSL methods show poor performances in

solving FSOSR problems. The previous FSOSR method fol-

lows the pseudo-unseen class sample-based methods, which

collect pseudo-unseen samples from the other dataset or

synthesize samples to model unseen class representations.

However, this approach is heavily dependent on the com-

position of the pseudo samples. In this paper, we propose

a novel unknown class sample detector, named SnaTCHer,

that does not require pseudo-unseen samples. Based on the

transformation consistency, our method measures the dif-

ference between the transformed prototypes and a modified

prototype set. The modified set is composed by replacing a

query feature and its predicted class prototype. SnaTCHer

rejects samples with large differences to the transformed

prototypes. Our method alters the unseen class distribu-

tion estimation problem to a relative feature transformation

problem, independent of pseudo-unseen class samples. We

investigate our SnaTCHer with various prototype transfor-

mation methods and observe that our method consistently

improves unseen class sample detection performance with-

out closed-set classification reduction.

1. Introduction

Recently, deep neural networks show outstanding per-

formance in various computer vision problems. There are

many reasons for this achievement, but there is no doubt

that a large volume of high-quality datasets has been a great

aid. However, in real-world applications, a large amount

of high-quality data is not always available for various rea-

sons, such as a high labeling cost of experts or the need to

collect rare data.

Few-shot learning (FSL) methods [28, 6, 27, 35] are pro-

Few-shot learning Open-set recognition

Few-shot open-set recognition

Labeled sample Query sample Detected unseen class sample

Decision boundaryMisjudged unseen class sample

Figure 1. A visualization of the few-shot open-set recognition task.

Few-shot learning methods fail to recognize unseen class sam-

ples, and open-set recognition methods require a large amount of

datasets. Few-shot open-set recognition is a generalized few-shot

learning task, where the model has to identify unseen class queries

while classifying seen class queries correctly.

posed to reduce the data dependency. It assumes a severe

condition where a few labeled data are available for train-

ing, such as one to five for each class. Various methods

show remarkable improvements in FSL problems, however,

these methods are limited to closed-set problems where

training samples and testing samples share the same class

pool. On the contrary, in real-world scenarios, there could

be irregular inputs to network models that could damage the

reliability of models. For instance, let us consider an auto-

matic face tag system in images for social network services.

For a new picture, the system should tag the face region of

a friend or ask the user for manual tagging if the person

in the image is not on the friend list. The system requires

two crucial features for better user experience: correct tag-

ging (i.e., correct closed-set classification) and correct ask-

ing (i.e., correct unseen class sample detection). However,

the nature of FSL methods forces to tag the person as one

in the friend list.

Open-set recognition (OSR) manages the unseen class

detection problem in the large-scaled data situations. It

aims to detect unseen class samples (i.e., unseens) from

12566

 55

 60

 65

 70

 75

 80

 85

Classification Accuracy (%) Unseen detection AUROC (%)

Closest

Farthest

Figure 2. Influence of pseudo-unseen data configurations on

FSOSR tasks. Error bars represent 95% confidence intervals.

Closest samples pseudo-unseen data from the nearest classes to

current prototypes, and Farthest collects from the farthest classes.

The gathered pseudo-unseen samples are trained with a prediction

entropy maximization loss widely used in pseudo-unseen based

methods [5, 20, 16].

seen class samples (i.e., seens), while maintaining the clas-

sification capability [2, 7, 21, 29, 23]. These OSR meth-

ods utilize the characteristics of seens from an informative

dataset to organize an unseen class sample detector. How-

ever, the rich data information of seen classes is not guar-

anteed in FSL problems. These OSR methods suffer from

performance degrading under the FSL condition for many

reasons, such as overfitting.

In this paper, we attack the few-shot open-set recogni-

tion (FSOSR) problem. FSOSR aims to distinguish unseen

class samples from seen class samples while maintaining

the classification capability, using a few labeled supports.

We illustrate the concept of FSOSR in Fig. 1. The previ-

ous FSOSR study [16] deals with this problem by training

the feature extractor with pseudo-unseen class samples ag-

gregated from additional non-overlapped classes. However,

we observe that the pseudo-unseen based approach is heav-

ily dependent on the quality of pseudo-unseen samples as il-

lustrated in Fig. 2. Furthermore, these methods assume that

unseen class instances are visually similar to the pseudo-

unseen samples, which is not guaranteed in real-world sit-

uations. These problems are critical for FSL cases since

the target task distribution is unknown during training the

model with the base data.

To this end, we propose a novel unknown detector,

named SnaTCHer, that does not require pseudo-unseen

samples for training. Figure 3 shows the concept of

SnaTCHer. Our method utilizes the transformation con-

sistency [4], where similar samples remain close after the

transformation. The transformer is trained to form a task-

adaptive feature space using class representation vectors

(i.e., prototypes). For the unseen detection, a query firstly

selects its closest transformed prototype. Then, the se-

seen
class
sample

unseen
class
sample <

{ } { }

{ }

{ } { }

{ }

a set of
prototypes

Figure 3. A visualization of our method. Each colored box rep-

resents a prototype or a query feature. SnaTCHer replaces a pre-

dicted class prototype to the query sample in the set of prototypes

(Pk and Pu), then it measures differences between the proto-

type set and the replaced set after the feature transformation T (·).
SnaTCHer rejects samples by the distance from the transformed

prototype set T (P). Our method alters estimating feature distribu-

tion of unseen class samples for the detection to the relative feature

transformation problem.

lected class prototype is replaced with the query feature

vector. Since unseen samples tend to form a distinctive

feature space from known samples, the transformed fea-

tures after the replacement are more likely to be far away

from the transformed prototypes than that of seen class sam-

ples by the transformation consistency. The difference after

the transformation is used to identify unseen class samples.

Note that SnaTCHer does not require additional pseudo-

unseen samples to train the unseen sample detector. Our

method shifts the training paradigm of the unseen sam-

ple detector from estimating unseen sample distributions

to training a feature transformer that uses relationships be-

tween features. This approach is more straightforward than

estimating the unseen sample distribution directly.

We evaluate our method with various transformation

methods [36, 35, 30, 1, 3] including our normalization-

based method. Our SnaTCHer significantly improves the

unseen detection capability, without classification perfor-

mance degradation of various few-shot learning models.

Furthermore, we propose a cross-domain FSOSR bench-

mark that compares inter-domain robustness of FSOSR

methods. Our method achieves the best performance in the

cross-domain evaluation either.

To summarize, our contribution is three-fold:

• We propose a novel unseen sample detector for

FSOSR, named SnaTCHer, based on the transforma-

tion consistency. Our SnaTCHer improves the un-

seen class sample detection capability without pseudo-

unseen samples.

12567

• We show the limitations of pseudo-unseen class

sample-based methods on FSOSR tasks. These meth-

ods heavily depend on the pseudo-unseen data config-

uration.

• We conduct extensive experiments of our method on

various benchmarks, and show our method achieves

the best performance in the unseen sample detection

without performance loss of the classification.

2. Related Work

2.1. Few­shot learning

Few-shot learning methods can be divided into two cat-

egories: adaptation methods and metric-based methods.

There are two main goals for adaptation methods. The first

is to find initial parameters which work well across novel

tasks, and the other is to fastly adapt the parameters us-

ing a few supports. MAML [6] and its variants [27] divide

the update process into the outer loop and the inner loop

to find good initial parameters. The parameters adapt to

current task in the inner loop, and the outer loop updates

the parameters across tasks using the adapted parameters.

Bronskill et al. [3] propose a new normalization technique

for fast adaptation in meta-learning tasks. They propose to

fuse different normalization methods to overcome the limi-

tation of the conventional batch normalization [11] method

in meta-learning tasks.

Metric-based methods aim to find a good distance func-

tion that measures the same class instances closer than dif-

ferent class instances. Vinyals et al. [32] show that neural

networks can measure similarities between samples. Pro-

toNet [28] expands MatchingNet [32] to a problem with

multiple samples per class. It introduces a prototype, which

represents a class. The distance between prototypes and a

query vector is used for the classification. Recent meth-

ods utilize task-specific prototypes. CTM [15] creates task-

adaptive weights for the prototypes, and FEAT [35] applies

a self-attention-based transformation on prototypes.

Since these FSL methods focus on good classification

performance under the closed-set settings, the unseen de-

tection capability is not guaranteed. We examine various

FSL methods and show that our method records better de-

tection capability than a naı̈ve combination of FSL and OSR

methods.

2.2. Open­set recognition

Before deep neural networks rise, OSR methods rely on

image feature descriptors to divide unseen class samples

from seen class samples [13, 8]. OpenMax [2] employs

deep neural networks to OSR by combining Extreme Value

Theory with neural networks. Neal et al. [20] introduce the

pseudo-unseen image generation method. A classifier with

an unseen category is trained with both the synthesized im-

ages and the training samples. Recently, generative model-

based methods gain popularity. C2AE [21] and CGDL [29]

train an autoencoder using all training samples. The recon-

struction error for a given query from the autoencoder is

used to detect unseen class samples. Perera et al. [23] pro-

pose to train a classifier with both an input image and its

reconstruction. They concatenate the input image and the

reconstructed image along the channel dimension, and use it

to classify the image. Since unseen class samples are failed

to reconstruct themselves properly, the concatenated input

gives lower classification probability. These OSR methods

requires to train an unseen sample detector from a train-

ing data [2, 21, 29, 23], or synthesized pseudo-unseen sam-

ples [20]. Both approaches need rich training data, which

does not fit to the FSL situation.

2.3. Few­shot open­set recognition

Compared to FSL and OSR, FSOSR has been hardly ex-

plored. Recently, PEELER [16] modifies a ProtoNet-based

few-shot learning model for FSOSR cases. On the top of

training the distance-based classifier, it adds an open-set

loss term for pseudo-unseen samples which are additionally

sampled from the base data. Our method is in line with

PEELER in terms of the metric-based FSOSR approach.

However, our method does not require pseudo-unseen sam-

ples during training. The pseudo-unseen approach is heav-

ily dependent to the quality of pseudo-unseens, which could

be not enough to represent the true unseen class sample dis-

tribution.

FSOSR and Generalized zero-shot learning (GZSL) [17]

are slightly different. GZSL is similar to FSOSR in that tar-

get class samples are unavailable during the training stage.

However, the semantic relationships between source classes

and target classes are available under the GZSL problems.

On the other hand, in FSOSR, the unseen sample indicates

an unobserved alien class sample. The class information is

unavailable in FSOSR. Also, the goal of FSOSR is detect-

ing out-of-distribution instances as unseen samples, while

GZSL aims to classify target class samples to their corre-

sponding classes.

3. Proposed Method

3.1. Problem setup

Throughout this paper, we interchangeably use the terms

seen and known, and unseen and unknown. For given N
classes with K labeled samples (i.e., supports) per class, a

task (or episode) is represented as an N -way K-shot prob-

lem. We denote the support set as DS = {xS
i , y

S
i }NK

i=1 ,

where xi ∈ XS and yi ∈ YS indicate an instance and

its label, respectively. Different from conventional FSL,

a query set in FSOSR includes unknown queries that are

12568

not included in YS . We denote the known query set as

DK = {xK
i ∈ XK , yKi ∈ YS}NQ

i=1 , where Q is the number

of query samples for each class. The unknown query set

is represented as DU = {xU
i ∈ XU , yUi ∈ YU}NU

i=1, where

YS∩YU = φ, and NU is the number of unknowns. We em-

ploy the episodic learning approach [28] to train our model,

where each mini-batch for training mimics the FSOSR task.

3.2. Revisit previous methods

At first, we briefly explain the outline of metric-based

FSL methods [28, 35] and pseudo-unseen sample-based

OSR methods [20, 7, 16].

A feature extractor F (·) creates support features and

query features. With the support features, a class represen-

tation of each class (i.e., prototype) is created by taking an

average of class-wise features:

pc =
1

K

∑

xS

i
∈XS

c

F (xS
i), (1)

where XS
c is a set of support instances labeled to class c.

The metric-based methods introduce a softmax classifica-

tion using the distance between a query and the prototypes:

p(y = k|x,P) =
exp (−dist (F (x),pc))

∑

i∈YS exp (−dist (F (x),pi))
, (2)

where p(·|·, ·) is a classification probability, dist(·, ·) is

a distance function, x indicates the query, and P =
{p0,p1, ...,pN−1} indicates a set of prototypes. Usually,

Euclidean distance or cosine distance is employed to mea-

sure distances. The class predictions are utilized to up-

date the feature extractor by classification losses such as the

cross-entropy loss [28].

Pseudo-unseen class-based OSR methods use pseudo-

unseen instances to train an unknown sample detector.

The pseudo-unseen samples are either selected from ex-

isting datasets [5, 16] or synthesized from a trained gen-

erator [7, 20]. However, training the unseen sample de-

tector with pseudo-unseen instances assumes that the un-

seens are limited to the pseudo-unseen sample distribu-

tions [7, 20]. This assumption is not guaranteed in vari-

ous real-world environments. Moreover, the pseudo-unseen

data configuration greatly affects the model’s performance

as illustrated in Fig. 2. Recently, reconstruction-based OSR

methods [21, 23, 29] are proposed to exclude the pseudo-

unseen dependency. They train an encoder-decoder struc-

ture, where the encoder encodes a given image to a feature

vector, and the decoder reproduces the input image from

the feature vector. Since the reconstruction model is fit-

ted to the known classes and unknowns are distinct from

knowns in the high-dimensional feature space, the recon-

struction module fails to reproduce unseen samples. How-

ever, training the generative model requires many train-

ing data, which is unavailable in FSL. Under FSL settings,

Algorithm 1: SnaTCHer details

Input: A set of prototypes P , a query feature q, a

distance function dist(·, ·), a transformation

function T (·), a threshold η
1 c : The predicted query class;

2 Pq = P − {pc}+ {q};

3 dSnaTCHer =
∑

c∈YS dist(pq′
c ,p

′
c),

where pq′
c ∈ T (Pq) and p′

c ∈ T (P);
4 if dSnaTCHer > η then

5 The query is unknown;

6 else

7 The query is known;

8 end

there are no class overlaps between base classes and evalu-

ation classes. Therefore, the meta-trained autoencoder with

the base classes fails to reconstruct the evaluation class in-

stances, which degrades the unseen sample detection per-

formance.

3.3. Transformation consistency based unseen class
sample detector

Our method is inspired by the concept of reconstruction-

based OSR methods, which measures differences after data

processing. Since the feature extractor is trained with a

distance-based classifier in the metric-based FSL methods,

a feature from the same class is closer than that of the differ-

ent classes. Therefore, the distance between a query feature

and its class prototype is closer than the distance between

an unknown class feature and the prototype. On top of that,

let us assume that we have a trained feature transformation

function that modifies prototypes to be more distinguish-

able. Then, the transformer gives similar outputs to adjacent

features and distinguishable outputs to distinctive inputs.

Therefore, we can use the prototype-dependent transforma-

tion to score unseen class samples (i.e., distinctive samples).

This idea is similar to the transformation consistency regu-

larization [18], which is widely used in various computer vi-

sion tasks. Based on the concept mentioned above, we pro-

pose a new unknown detection model, named SnaTCHer.

The details are explained in Algorithm 1. With a distance-

based classifier and a prototype transformer, SnaTCHer pre-

dicts the class of the input query. Then, SnaTCHer replaces

the predicted class prototype with the query feature. The

transformer modifies the prototype set and the replaced set,

then measure the difference between them. Finally, for a

certain threshold, we determine whether the query is an un-

seen query or not. Note that training the transformation

function is free from pseudo-unseens. It aims to construct

current task-specific feature space with known samples.

12569

3.4. Task­adaptive transformation function

In the previous sub-section, we explained the details of

SnaTCHer. However, an important question remains: what

is the appropriate transformation function T (·) that changes

P to P ′ = T (P)? Since we measure the difference be-

tween transformed features, the transformer should under-

stand feature distributions. In other words, it has to gather

the same class samples while scattering different class sam-

ples. Furthermore, the transformation function should be

symmetric, which means that the function is independent

of the prototype order (i.e., a set-to-set function). Several

FSL methods use transformation functions that modify pro-

totypes to be more distinguishable for better performance.

Creating more distinct prototypes meets the first condition.

Moreover, they are robust to the prototype orders. This

satisfies the second condition. In this subsection, we ex-

plain various prototype transformation function choices for

SnaTCHer, including our normalization-based method1.

DeepSets [36] proposes to combine symmetric opera-

tions, such as identity or max-pooling operations, to achieve

the permutation robustness. We utilize a modified version

of DeepSets introduced in [35] for FSL.

p′
c = pc + g([pc; max

p
c′
∈PC

c

h(pc′)]),

P ′ = {p′
0,p

′
1, ...,p

′
N−1},

(3)

where g(·) and h(·) are non-linear MLP, [·; ·] indicates a

channel-wise concatenation operation, and PC
c = P−{pc}

is a complementary set of {pc}.

Transformer [31, 35] projects the input feature into

three different spaces (i.e., query, key, and value) with learn-

able transformation matrices. With the projected features,

the overall process is formulated as follows:

R(P) =
1

N
(WV P)

(

s
(

(WQP)
T
(WKP) /

√
m
))T

)

,

P ′ = σ (P +R (P)) ,P ′ = {P ′
0,P

′
1, ...,P

′
N−1},

(4)

where P indicates stacked prototypes, P ′
c is a modified

prototype of class c, m means the feature size, WQ, WK ,

WV ∈ R
m×m are learnable transform matrices, σ(·) indi-

cates layer normalization [1], and s(·) is the softmax func-

tion.

In addition to the symmetric feature transformation mod-

ules, we propose to use normalization functions directly to

modify prototypes. The generalization capabilities of the

normalization methods help form distinctive feature space

for a novel episode. We explain normalization methods

with an input feature tensor t ∈ R
D×H×W , where D, H ,

W are the channel size, height, and width of the input, re-

spectively. The normalization functions transform the input

1Here we share the transformation function symbol T (·) and the set of

transformed prototypes symbol P ′ across all methods for convenience.

feature with a calculated mean µ and a variance σ2:

t̄ = a
t− µ√
σ2 + ǫ

+ b, (5)

where t̄ is the normalized feature, a and b are learnable

transformation parameters, and ǫ is a constant for numeri-

cal stability. We describe various normalization methods to

calculate the mean and variance.

Layer normalization [1] (LN) computes the normaliza-

tion statistics over all elements in the input:

µ(L) =
1

DHW

∑

ti∈t

ti, σ
2(L) =

1

DHW

∑

ti∈t

(ti − µ(L))2.

(6)

We apply layer normalization to individual prototypes to

make the transformation symmetric. The normalized pro-

totypes form P ′ = {p̄(L)
0 , p̄

(L)
1 , ..., p̄

(L)
N−1}, where p̄

(L)
c is

the normalized prototype of class c.
Instance normalization [30] (IN) normalizes features

across each channel:

µ
(I)
d =

1

HW

H−1
∑

h=0

W−1
∑

w=0

tdhw,

σ
2(I)
d =

1

HW

H−1
∑

h=0

W−1
∑

w=0

(tdhw − µ
(I)
d),

(7)

where tdhw ∈ t is an element of the feature. IN is frequently

used in style-robust feature extraction methods such as im-

age style transfer [10] and person re-ID [12], and proved

that it acts like a style normalization [22, 10]. Inspired by

previous observations, we apply IN to stacked prototypes to

normalize task-specific features.

TaskNorm [3] uses a transductive and a non-

transductive normalization simultaneously to compensate

each other. It calculates µ and σ2 from moments of both

normalization methods:

µ(T) = αµBN + (1− α)µ+,

σ2(T) = α(σ2
BN + (µBN − µ(T))2)

+ (1− α)(σ2
+ + (µ+ − µ(T))2),

(8)

where µBN and σ2
BN are calculated from batch normaliza-

tion [11], µ+ and σ2
+ are from a non-transductive normal-

ization such as LN or IN, and α ∈ [0, 1] is a meta-learned

weight parameter. We use LN to calculate µ+ and σ2
+ since

prototypes are feature vectors.

Layer-Task Normalization (LTN). Inspired by Tas-

kNorm and style-normalized feature extraction meth-

ods [12], we design a feature transformation function for

SnaTCHer. It combines IN and LN with a task-dependent

weight, formulated as follows:

p′
c = γ

(

α(P) · p̄(L)
c + (1− α(P)) · p̄(I)

c

)

+ β,

P ′ = {p′
0,p

′
1, ...,p

′
N−1},

(9)

12570

where p̄
(L)
c and p̄

(I)
c indicate normalized prototypes of class

c with LN and IN, respectively. Here we do not apply the

affine transformations to the normalized prototypes. α(·) ∈
[0, 1] is a weight generator, γ ∈ R

D and β ∈ R
D are learn-

able transformation parameters. IN normalizes task-related

information similar to the style normalization. However,

removing task-specific knowledge may lose class-specific

information. Therefore, we introduce the weighted summa-

tion with LN to compensate for the task-normalization. The

balance weight is generated from a meta-learned weight

generator. It is a symmetric function that consumes proto-

types, where the transformation is independent of the stack

order of prototypes. A concept to combine multiple nor-

malization methods to compensate each other is similar to

BIN [19] and TaskNorm [3]. However, our inspiration to

fuse task-normalized and instance-normalized features for

few-shot settings is different from previous works. Also,

the task-adaptive meta-weight generation approach is dif-

ferent.

3.5. Training loss

With a transformation function T (·), the prediction prob-

ability in Eq. 2 is redefined as follows:

p(y = k|x,P ′) =
exp(−dist(F (x),p′

c))
∑

i∈YS exp(−dist(F (x),p′
i))

, (10)

where p′
c ∈ P ′ indicates the transformed prototype. We uti-

lized Euclidean distance with a temperature value of 64 for

the distance function, and employed the cross-entropy loss

function with Eq. 10 to train networks. Moreover, the trans-

formation should cluster each class after the transformation

to satisfy our assumption for the unseen class instance rejec-

tion. Therefore, we add a regularization term R that gathers

class-wise instances after transformation.

R = CE
(

p(x′,C), y
)

(x,y)∈DK∪DS
(11)

where CE(·, ·) indicates the cross-entropy function, x′ ∈
T (XS ∪ XK) is a transformed feature, and C is a set of

class centers after the transformation. With the regulariza-

tion term, the objective loss function is defined as follows:

Ltotal = CE
(

p(x,P ′), y
)

(x,y)∈DK
+ λR, (12)

where λ is a weight hyperparameter.

4. Experiments

4.1. Datasets and evaluation methods

We use miniImageNet [32] and tieredImageNet [25],

which are widely used for few-shot learning evaluations.

Both datasets are the subsets of the ImageNet [26] dataset.

There are 100 classes of 84× 84 natural RGB images in the

miniImageNet dataset. For each class, 600 images exist.

We splitted the 100 classes following the commonly used

dataset split for few-shot learning [24]. We set 64 classes

for base classes, 16 classes for validation, and 20 classes

for evaluation. The tieredImageNet dataset is composed of

608 classes of 84 × 84 natural RGB images. These images

are divided into 351, 97, and 160 classes for training, vali-

dation, and testing, respectively.

Following the previous FSOSR study [16], we use the

closed-set classification accuracy (Acc) and the AUROC of

unknown class sample detection (AUROC) for evaluation.

The accuracy measures the correct classification ratio using

the seen class samples, and the AUROC measures unseen

class instance detection capability using both seen and un-

seen class samples. We set five classes as known classes and

the other non-overlapped five classes as unknown classes

to compose a single 5-way episode during the experiments.

We collected 15 instances for each class as queries, which

leads to 75 known queries and 75 unknown queries for a

5-way episode.

4.2. Implementation details

We utilized the ResNet-12 [9] based architecture for the

feature extraction, following previous FSL methods [14,

35]. The feature extractor creates a 640-dimensional feature

vector for an input image through the last average pooling

layer. We pre-trained the extractor with a simple classifier to

classify all classes in the base dataset. The classifier is a sin-

gle fully-connected layer that creates logits of the classes.

The feature extractor architecture is shared across all trans-

formation methods. The weight generator in LTN consumes

the stacked prototypes and results in a scalar weight. It

is composed of four one-dimensional convolutional layers

with an one-dimensional average pooling layer. The pool-

ing layer is placed after the second convolution to make the

generator robust to the prototype order. The convolutional

layers in the generator use the LeakyReLU [34] function as

non-linearity except the final layer, which uses the sigmoid

function to limit the weight range from zero to one.

We used stochastic gradient descent to train networks

over 20,000 episodes. The initial learning rate is set to

0.002 for transformers and 0.0002 for the feature extrac-

tor with learning rate decaying. The loss weight λ is set to

0.1. During training, we selected the best model with the

validation data to compare with the other methods on the

test data. The comparison results are calculated over 600

evaluation episodes. Please see the supplementary material

for further details.

4.3. Transformer comparison

We evaluate the unseen class sample detection perfor-

mance of the transformation methods on 5-way episodes

of the tieredImageNet dataset, and present the results in

12571

Table 1. For each tranformation method, we compare

SnaTCHer with two other unseen class sample detection

baselines. The first method utilizes the classification prob-

ability to detect unseen samples, which is widely used in

OSR methods [2, 5, 20, 16]. The other method uses the

distance between a query and its predicted class prototype.

This method is based on our assumption on the feature dis-

tributions of knowns and unknowns. We denote the former

as Probability, and the latter as Distance in Table 1. The

result shows that the feature distance-based detection meth-

ods show better performance than Probability. Since the

softmax function utilizes relative differences of logit vector

elements, it sacrifices the absolute feature distance informa-

tion which is important in the FSOSR problem. Compared

with Distance, SnaTCHer shows better performance since

it considers the relationships between a query and all proto-

types, thanks to the transformation. Based on the compar-

ison result, we select FEAT, TaskNorm, and LTN to com-

pare with the other methods. We name them SnaTCHer-F,

SnaTCHer-T, and SnaTCHer-L, respectively.

4.4. Comparison with the other methods

We compare our approach with the state-of-the-art FSL

methods (ProtoNet [28], FEAT [35]), the OSR methods

(NN [13], OpenMax [2]), and the FSOSR method [16].

Since the FSL and OSR methods are not designed for

FSOSR cases, we slightly changed them for the compari-

son. For all FSL methods, we determined the unknown de-

tection score with the negative of the predicted class prob-

ability. For OpenMax, we fitted the Weibull models over

the training episodes and used them to detect unknowns in

the evaluation stage. For NN, we used a ProtoNet-based

classifier to calculate logits. Please see the supplementary

material for the details.

Table 2 shows the comparison result. OSR methods have

poor closed-set accuracy, and FSL methods show low un-

seen detection capabilities than the FSOSR methods. This

result shows the limitations of FSL methods and OSR meth-

ods on FSOSR. FSL methods are fitted to the closed-set

classification tasks, which leads to poor unknown instance

detection capability. On the contrary, OSR methods re-

quire large-scale datasets, which degrades its performance

under the few-shot condition. Compared with the previ-

ous FSOSR method, our method accomplishes both higher

classification accuracy and better unknown detection AU-

ROC simultaneously. Our SnaTCHer accomplishes unseen

detection by training the task-adaptive feature transformer

without pseudo-unseen samples. This paradigm shift en-

ables improving both the classification accuracy and unseen

sample detection capability.

Among the three transformation methods, our

SnaTCHer-L achieves high classification and detec-

tion capability simultaneously. The adaptive fusion of the

Model 1-shot 5-shot

Identity

Probability 60.73± 0.80 64.96± 0.83
Distance 72.40± 0.76 79.22± 0.63

SnaTCHer 72.40± 0.76 79.22± 0.63

DeepSets [36]

Probability 62.66± 0.75 72.46± 0.70
Distance 65.75± 0.72 75.24± 0.61
SnaTCHer 68.21± 0.78 75.63± 0.60

FEAT [35]

Probability 63.60± 0.75 74.27± 0.68
Distance 69.36± 0.78 77.63± 0.65
SnaTCHer 74.28± 0.80 82.02± 0.64

LN [1]

Probability 64.09± 0.76 69.29± 0.76
Distance 68.92± 0.82 68.92± 0.82
SnaTCHer 74.07± 0.82 79.74± 0.72

IN [30]

Probability 60.94± 0.78 66.01± 0.73
Distance 61.89± 0.74 67.93± 0.71
SnaTCHer 71.22± 0.76 79.39± 0.61

TaskNorm [3]

Probability 65.31± 0.72 67.16± 0.77
Distance 69.72± 0.76 74.91± 0.68
SnaTCHer 74.84± 0.79 82.03± 0.66

LTN

Probability 64.94± 0.74 69.66± 0.74
Distance 69.80± 0.77 76.22± 0.70
SnaTCHer 74.95± 0.83 80.81± 0.68

Table 1. The AUROC (%) comparison of unknown detection meth-

ods on various metric-based few-shot learning methods. Identity

indicates the identity transformation.

task-normalization and the layer-normalization effectively

moves the prototypes to be more task-specific, which brings

the performance improvements.

4.5. Further analysis

We illustrate histograms of the normalized distances be-

tween a query and its corresponding prototype in Fig. 4(a).

As we expected, the known samples are closer to its proto-

types than the unknowns. This observation supports our as-

sumption that unknowns form distinguishable feature space.

Figure 4(b) illustrates the histograms of the normalized un-

seen scores. As evident from the figure, SnaTCHer has a

better separation than using the distances directly, because

the difference is amplified via the relationship-based trans-

formation. This result validates the larger AUROC values

of SnaTCHer.

During the experiments, we fixed the number of un-

known classes to five. However, the number of unknown

samples varies in real-world applications. Therefore, we in-

vestigate the performance differences over various unseen

data settings. As illustrated in Fig. 5, SnaTCHer is robust to

the unknown data configuration for both cases.

12572

miniImageNet 5-way tieredImageNet 5-way

1-shot 5-shot 1-shot 5-shot

Model Acc AUROC Acc AUROC Acc AUROC Acc AUROC

ProtoNet [28] 64.01± 0.88 51.81± 0.93 80.09 60.39 68.26 60.73 83.40 64.96
FEAT [35] 67.02± 0.85 57.01± 0.84 82.02 63.18 70.52 63.54 84.74 70.74

NN [13] 63.82± 0.85 56.96± 0.75 80.12 63.43 67.73 62.70 83.43 69.77
OpenMax [2] 63.69± 0.84 62.64± 0.80 80.56 62.27 68.28 60.13 83.48 65.51

PEELER* [16] 58.31± 0.58 61.66± 0.62 75.08 69.85 − − − −
PEELER [16] 65.86± 0.85 60.57± 0.83 80.61 67.35 69.51 65.20 84.10 73.27
SnaTCHer-F 67.02± 0.85 68.27± 0.96 82.02 77.42 70.52 74.28 84.74 82.02
SnaTCHer-T 66.60± 0.80 70.17± 0.88 81.77 76.66 70.45 74.84 84.42 82.03

SnaTCHer-L 67.60± 0.83 69.40± 0.92 82.36 76.15 70.85 74.95 85.23 80.81
Table 2. Average closed-set classification accuracies (%) and average unknown detection AUROCs (%) over 600 episodes. Please see the

supplementary material for the confidence intervals. PEELER* is quoted from the paper, which has a ResNet-18 backbone.

tieredImageNet-CUB CUB-tieredImageNet CUB-CUB

5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot

Model Acc AUROC Acc AUROC Acc AUROC Acc AUROC Acc AUROC Acc AUROC

PEELER [16] 69.51 67.59 84.10 76.10 58.81 57.58 77.66 64.38 59.42 58.63 78.42 66.04
SnaTCHer-F 70.52 83.22 84.74 90.12 57.81 63.87 77.33 69.64 57.98 64.55 77.05 71.05
SnaTCHer-T 70.45 84.95 84.42 91.83 57.84 64.52 77.77 70.63 57.82 65.10 77.66 72.04

SnaTCHer-L 70.85 83.67 85.23 90.23 60.21 63.55 79.27 69.42 59.69 64.75 78.68 70.67
Table 3. Cross-domain FSOSR comparison results. Please see the supplementary material for the confidence intervals.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 0.2 0.4 0.6 0.8 1

Normalized score

knowns

unknowns

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 0.2 0.4 0.6 0.8 1

Normalized score

knowns

unknowns

(a) Distance (b) SnaTCHer

Figure 4. Normalized score histograms for knowns and un-

knowns over 600 5-way 5-shot tasks on tieredImageNet. We use

SnatCHer-L for the comparison. The scores are normalized by the

maximum value of each episode.

 65

 70

 75

 80

 85

 0 2 4 6 8 10

A
U

R
O

C
 (

%
)

Number of unseen classes

(a) 1-shot (b) 5-shot

 65

 70

 75

 80

 85

 0 2 4 6 8 10

A
U

R
O

C
 (

%
)

Number of unseen classes

Figure 5. Ablation study results on 5-way tieredImageNet

episodes. We use SnaTCHer-L for the ablation study.

4.6. Cross­domain FSOSR

Until now, we compared various methods on the same

dataset with different splits. We extend the comparison to

more general situations where the domain of the base data,

seen data and unseen data of the episode are different. We

call this problem a cross-domain FSOSR problem. For the

unseen data domain, we use the CUB [33] dataset, which

is composed of 200 classes of RGB bird images. The last

100 classes are used as a cross-domain dataset. We pre-

pare three evaluation scenarios for cross-domain FSOSR.

The first case samples knowns from tieredImageNet, and

collect unknown instances from the CUB dataset. We de-

note it as a tieredImageNet-CUB case. Similarly, we define

a CUB-tieredImageNet case and a CUB-CUB case to assess

the generalization capabilities of the FSOSR methods. For

the latter two cases, we use the models trained with 5-way

5-shot tieredImageNet episodes for evaluations. Table 3

shows the result. When the known and unknown domains

are different, it is easier to detect unknowns. Therefore AU-

ROC values are large, even over 90% in the tieredImageNet-

CUB 5-shot case. Overall, our methods show higher AU-

ROC values with comparable or better classification perfor-

mance than PEELER for all cases. This result indicates that

our transformation consistency approach is universally ap-

plicable to various FSL problems.

5. Conclusion

In this paper, we have proposed a novel unseen class

sample detection method, named SnaTCHer, to solve few-

shot open-set recognition problems. SnaTCHer is model-

free, and it is straightforward to apply existing metric-based

few-shot learning methods. Moreover, our method does not

require additional pseudo-unknown samples. Our extensive

analysis with various transformation functions validates the

effect of SnaTCHer. Furthermore, comparisons with the

pseudo-unseen dependent method validates our approach to

prevent pseudo-unseen samples is effective.

12573

References

[1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-

ton. Layer normalization. arXiv preprint arXiv:1607.06450,

2016.

[2] Abhijit Bendale and Terrance E Boult. Towards open set

deep networks. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 1563–1572,

2016.

[3] John Bronskill, Jonathan Gordon, James Requeima, Sebas-

tian Nowozin, and Richard E Turner. Tasknorm: Rethink-

ing batch normalization for meta-learning. arXiv preprint

arXiv:2003.03284, 2020.

[4] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-

offrey Hinton. A simple framework for contrastive learning

of visual representations. arXiv preprint arXiv:2002.05709,

2020.

[5] Akshay Raj Dhamija, Manuel Günther, and Terrance Boult.

Reducing network agnostophobia. In Advances in Neural

Information Processing Systems, pages 9157–9168, 2018.

[6] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-

agnostic meta-learning for fast adaptation of deep networks.

In Proceedings of the 34th International Conference on Ma-

chine Learning-Volume 70, pages 1126–1135. JMLR. org,

2017.

[7] Zongyuan Ge, Sergey Demyanov, Zetao Chen, and Rahil

Garnavi. Generative openmax for multi-class open set classi-

fication. In British Machine Vision Conference 2017. British

Machine Vision Association and Society for Pattern Recog-

nition, 2017.

[8] Chuanxing Geng, Sheng-jun Huang, and Songcan Chen. Re-

cent advances in open set recognition: A survey. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, 2020.

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016.

[10] Xun Huang and Serge Belongie. Arbitrary style transfer in

real-time with adaptive instance normalization. In Proceed-

ings of the IEEE International Conference on Computer Vi-

sion, pages 1501–1510, 2017.

[11] Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal co-

variate shift. arXiv preprint arXiv:1502.03167, 2015.

[12] Xin Jin, Cuiling Lan, Wenjun Zeng, Zhibo Chen, and Li

Zhang. Style normalization and restitution for generalizable

person re-identification. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition,

pages 3143–3152, 2020.

[13] Pedro R Mendes Júnior, Roberto M De Souza, Rafael de O

Werneck, Bernardo V Stein, Daniel V Pazinato, Waldir R

de Almeida, Otávio AB Penatti, Ricardo da S Torres, and

Anderson Rocha. Nearest neighbors distance ratio open-set

classifier. Machine Learning, 106(3):359–386, 2017.

[14] Kwonjoon Lee, Subhransu Maji, Avinash Ravichandran, and

Stefano Soatto. Meta-learning with differentiable convex op-

timization. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 10657–10665,

2019.

[15] Hongyang Li, David Eigen, Samuel Dodge, Matthew Zeiler,

and Xiaogang Wang. Finding task-relevant features for few-

shot learning by category traversal. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 1–10, 2019.

[16] Bo Liu, Hao Kang, Haoxiang Li, Gang Hua, and Nuno

Vasconcelos. Few-shot open-set recognition using meta-

learning. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 8798–

8807, 2020.

[17] Shichen Liu, Mingsheng Long, Jianmin Wang, and Michael I

Jordan. Generalized zero-shot learning with deep calibration

network. In Advances in Neural Information Processing Sys-

tems, pages 2005–2015, 2018.

[18] Aamir Mustafa and Rafal K Mantiuk. Transfor-

mation consistency regularization-a semi-supervised

paradigm for image-to-image translation. arXiv preprint

arXiv:2007.07867, 2020.

[19] Hyeonseob Nam and Hyo-Eun Kim. Batch-instance nor-

malization for adaptively style-invariant neural networks. In

Advances in Neural Information Processing Systems, pages

2558–2567, 2018.

[20] Lawrence Neal, Matthew Olson, Xiaoli Fern, Weng-Keen

Wong, and Fuxin Li. Open set learning with counterfac-

tual images. In Proceedings of the European Conference on

Computer Vision (ECCV), pages 613–628, 2018.

[21] Poojan Oza and Vishal M Patel. C2ae: Class conditioned

auto-encoder for open-set recognition. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 2307–2316, 2019.

[22] Xingang Pan, Ping Luo, Jianping Shi, and Xiaoou Tang. Two

at once: Enhancing learning and generalization capacities

via ibn-net. In Proceedings of the European Conference on

Computer Vision (ECCV), pages 464–479, 2018.

[23] Pramuditha Perera, Vlad I Morariu, Rajiv Jain, Varun Man-

junatha, Curtis Wigington, Vicente Ordonez, and Vishal M

Patel. Generative-discriminative feature representations for

open-set recognition. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, pages

11814–11823, 2020.

[24] Sachin Ravi and Hugo Larochelle. Optimization as a model

for few-shot learning. In ICLR, 2017.

[25] Mengye Ren, Sachin Ravi, Eleni Triantafillou, Jake Snell,

Kevin Swersky, Josh B. Tenenbaum, Hugo Larochelle, and

Richard S. Zemel. Meta-learning for semi-supervised few-

shot classification. In International Conference on Learning

Representations, 2018.

[26] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, et al. Imagenet large

scale visual recognition challenge. International journal of

computer vision, 115(3):211–252, 2015.

[27] Andrei A. Rusu, Dushyant Rao, Jakub Sygnowski, Oriol

Vinyals, Razvan Pascanu, Simon Osindero, and Raia Had-

sell. Meta-learning with latent embedding optimization.

12574

In International Conference on Learning Representations,

2019.

[28] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypi-

cal networks for few-shot learning. In Advances in neural

information processing systems, pages 4077–4087, 2017.

[29] Xin Sun, Zhenning Yang, Chi Zhang, Keck-Voon Ling, and

Guohao Peng. Conditional gaussian distribution learning for

open set recognition. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, pages

13480–13489, 2020.

[30] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. In-

stance normalization: The missing ingredient for fast styliza-

tion. arXiv preprint arXiv:1607.08022, 2016.

[31] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-

reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia

Polosukhin. Attention is all you need. In Advances in neural

information processing systems, pages 5998–6008, 2017.

[32] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan

Wierstra, et al. Matching networks for one shot learning. In

Advances in neural information processing systems, pages

3630–3638, 2016.

[33] Catherine Wah, Steve Branson, Peter Welinder, Pietro Per-

ona, and Serge Belongie. The caltech-ucsd birds-200-2011

dataset. 2011.

[34] Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical

evaluation of rectified activations in convolutional network.

arXiv preprint arXiv:1505.00853, 2015.

[35] Han-Jia Ye, Hexiang Hu, De-Chuan Zhan, and Fei Sha. Few-

shot learning via embedding adaptation with set-to-set func-

tions. In Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition, pages 8808–8817,

2020.

[36] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barn-

abas Poczos, Russ R Salakhutdinov, and Alexander J Smola.

Deep sets. In Advances in neural information processing

systems, pages 3391–3401, 2017.

12575

