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Abstract

Adversarial attack arises due to the vulnerability of deep

neural networks to perceive input samples injected with im-

perceptible perturbations. Recently, adversarial attack has

been applied to visual object tracking to evaluate the robust-

ness of deep trackers. Assuming that the model structures of

deep trackers are known, a variety of white-box attack ap-

proaches to visual tracking have demonstrated promising

results. However, the model knowledge about deep trackers

is usually unavailable in real applications. In this paper,

we propose a decision-based black-box attack method for

visual object tracking. In contrast to existing black-box ad-

versarial attack methods that deal with static images for im-

age classification, we propose IoU attack that sequentially

generates perturbations based on the predicted IoU scores

from both current and historical frames. By decreasing the

IoU scores, the proposed attack method degrades the accu-

racy of temporal coherent bounding boxes (i.e., object mo-

tions) accordingly. In addition, we transfer the learned per-

turbations to the next few frames to initialize temporal mo-

tion attack. We validate the proposed IoU attack on state-

of-the-art deep trackers (i.e., detection based, correlation

filter based, and long-term trackers). Extensive experiments

on the benchmark datasets indicate the effectiveness of the

proposed IoU attack method. The source code is available

at https://github.com/VISION-SJTU/IoUattack.

1. Introduction

Visual object tracking is one of the fundamental com-

puter vision problems with a wide range of applications.

The convolutional neural networks (CNNs) have signifi-

cantly advanced visual tracking performance. Meanwhile,

the enigma of interpreting CNNs has perplexed existing vi-

sual tracking algorithms as well. For example, injecting

imperceptible perturbations into input images leads deep

neural networks to predict incorrectly [37, 43, 48]. To in-
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Figure 1. IoU attack for visual object tracking. State-of-the-art

deep trackers (i.e., SiamRPN++ [22], DiMP [1], and LTMU [5])

effectively locate target objects in the original video sequences as

shown in (a). Our IoU attack decreases their tracking accuracies

by injecting imperceptible perturbations as shown in (b).

vestigate the robustness of visual tracking algorithms with

deep models, recent approaches [3, 44, 16, 24] assume that

the model structures of deep tracking algorithms are known

and carry out white-box attack on them. Despite the demon-

strated promising results, the concrete structures and param-

eters of deep trackers are barely known in real applications.

In this paper, we investigate black-box adversarial attack for

visual tracking, where the model knowledge of deep track-

ers is unknown.

Prevalent black-box attack algorithms inject impercep-

tible perturbations into input images to decrease network

classification accuracies. Although these methods are ef-

fective to attack static images, they are not suitable to at-

tack temporally moving objects in videos. This is because
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deep trackers maintain temporal motions of the target object

within tracking models (i.e., the correlation filters [6, 35] or

deep binary classifiers [30, 17, 23, 22]). When localizing

the target object, these deep trackers produce temporally

coherent bounding boxes (bbxs). Meanwhile, deep track-

ers constrain the search area to be close to the predicted bbx

from the last frame. As existing black-box methods rarely

degrade temporally coherent bbxs, perturbations produced

based on CNN classification scores are not effective for vi-

sual tracking. An intriguing direction thus arises to inves-

tigate the black-box attack on both individual frames and

temporal motions among sequential frames with a holistic

decision-based approach.

In this paper, we propose IoU attack for visual track-

ing. IoU attack is a decision-based black-box attack method

which focuses on both image content and target motions in

video sequences. When processing each frame, we start im-

age content attack with two bbxs. One is predicted by the

deep tracker using the original frame, which is perturba-

tion free. The other one is predicted by the same tracker

using the same frame with noisy perturbations. These two

bbxs are used to compute an IoU score as feedback to our

IoU attack. For each frame, we use an iterative orthogonal

composition method for image content attack. During each

iteration of orthogonal attack, we first randomly generate

several tangential perturbations whose noise levels are the

same. Then, we compute their IoU scores and select the

tangential perturbation with the lowest score. The selected

perturbation is the most effective one to attack the current

frame at the current iteration. We then increase the selected

perturbation in its normal direction to add a small amount of

noise, which is the normal perturbation. We compose both

tangential and normal perturbations to generate the pertur-

bations for the current iteration of orthogonal attack.

For target motion attack, we compute an IoU score be-

tween the bbxs from both the current and the previous

frames. This IoU score is integrated into the tangential per-

turbation identification process. To this end, our orthogonal

attack deviates a deep tracker from its original performance

of both the current and historical frames. We transfer the

learned perturbations to the next few frames as perturbation

initialization to reinforce temporal motion attack. As a re-

sult, the deviation from the original tracking results ensures

the success of black-box attack on deep trackers shown in

Figure 1. We extensively validate the proposed IoU attack

on state-of-the-art methods including detection based [22],

correlation filter based [1], and long-term [5] trackers. Ex-

periments on benchmark datasets demonstrate the effective-

ness of the proposed black-box IoU attack.

2. Related Work

In this section, we briefly introduce recent state-of-the-

art trackers and their basic principles. Besides, we also re-

view recent adversarial attack methods, especially for the

aspect of black-box attack.

2.1. Visual Object Tracking

Visual object tracking has received widespread attention

in the last decade and brings about a series of new bench-

mark datasets [42, 18, 28, 29, 11]. Existing trackers can be

generally categorized as offline trackers and online update

trackers. Offline trackers do not update their model param-

eters during the inference, leading to a higher speed. These

trackers consider tracking as a discriminative object detec-

tion problem. They generate candidate regions and clas-

sify the target or background to locate. Bounding box re-

gression [34] is always used to locate precisely. Among

them, siamese based methods [23, 22, 39, 47, 13, 4, 38, 40]

are typical structures consisting of a template branch and

a search branch. SiamRPN [23] draws a region proposal

network to formulate a one-shot detection by comparing

the similarity between two branches. SiamRPN++ [22] ap-

plies a deeper network ResNet instead of commonly-used

AlexNet to improve the tracking accuracy and maintain the

real-time speed.

Online update trackers constantly update their models

during the inference to adapt to the current scenarios [31].

MDNet [30, 36, 32] regard tracking as a classification to dis-

tinguish the target and background. During the inference,

they collect the samples from previous frames to enhance

the target appearance. UpdateNet [46] formulates an update

strategy into siamese based trackers to maintain the tempo-

ral motion between frames. Besides, correlation filter based

methods also belong to online update trackers. They typ-

ically learn the discriminative correlation filter by deep or

hand-craft features to estimate the target location. Recently,

DiMP [1] learns a discriminative learning loss to exploit

both target and background appearance information for tar-

get model prediction. PrDiMP [7] proposes a probabilistic

regression formulation to address the modeling label noise.

Furthermore, existing long-term trackers [45, 5] inte-

grate an online update module to improve the tracking per-

formance. The re-detection module is mostly introduced to

handle the disappearance and reappearance of the target, in-

volving more challenges into adversarial attack. LTMU [5]

is a long-term tracker with a meta-updater, which learns to

guide the tracker’s update to gain helpful appearance infor-

mation for accuracy. In this work, we implement our ad-

versarial attack on three representative trackers [22, 1, 5] to

illustrate the generality of our black-box attack method.

2.2. Adversarial Attack

Convolution Neural Networks (CNNs) have been de-

ployed in various tasks of computer vision today. How-

ever, recent studies [12, 37] notice that CNNs are sensi-

tive to the imperceptible perturbations in adversarial exam-

6710



ples. The intentional light-weight perturbations deteriorate

the performance dramatically. Existing adversarial attack

methods [12, 27, 15, 8, 33] mainly focus on static image

tasks like classification, segmentation and detection. Ex-

cept for attacking digital images, some studies implement

physical attacks [10, 41] in concrete applications (e.g., au-

tonomous driving). They generate a distractor in the real

world to cause CNNs models to misclassify or fail to de-

tect, leading to a security problem.

Overall, existing adversarial attack methods are mainly

divided into two categories: white-box and black-box at-

tack. In white-box attack, the adversary assumes to gain all

knowledge of the attacked target, such as the learned param-

eters, the concrete structure, etc. Compared with white-box

attack, black-box attack has limited knowledge of the model

but is closer to the practical scenarios. It is often modeled

on querying the method by inputs, acquiring the final labels

or confidence scores. Black-box attack roughly fails into

transfer-based, score-based, and decision-based attack [9].

Transfer-based attack [25] utilizes the transferability of ad-

versarial examples generated by white-box models. Score-

based attack knows the predicted probability of classifica-

tion, relying on approximated gradients to generate adver-

sarial examples [15]. In decision-based attack, only the final

label of classification is accessible [2] to the threat model.

For black-box attack in visual object tracking, we assume

that only the outputs of trackers (i.e., predicted bounding

boxes) are available.

In the field of visual object tracking, some methods

[3, 44, 16, 24, 14] explore the adversarial attack on differ-

ent trackers. Chen et al. [3] propose a one-shot adversarial

attack method by optimizing the batch confidence loss and

the feature loss to modify the initial target patch. Yan et

al. [44] design an adversarial loss to cool the hot regions on

the heatmaps and shrink the predicted bounding box. All

adversarial attack methods motioned above are summarized

as white-box attack. In the real world, it is hard to know

the concrete knowledge of trackers, causing the white-box

attack methods less practical. In this work, we propose a

novel decision-based black-box adversarial attack method

for visual tracking. Motion consistency is taken into our at-

tack method to further deteriorate the tracking performance.

3. Proposed Method

The proposed IoU attack aims to gradually decrease IoU

scores (i.e., bbx overlap values) during iterations by using

the minimal amount of noise. Figure 2 shows an intuitive

view of the proposed IoU attack.

3.1. Motivation

Current studies on black-box attack mainly focus on

static image recognition while the temporal motions of vi-

sual tracking are untouched. This is limited to attack deep
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Figure 2. An intuitive view of IoU attack in the image space. In

(a), we show that the increase of noise level positively correlates

to the decrease of IoU scores but their directions are not exactly

the same. The IoU attack method iteratively finds the intersec-

tion points (i.e., intermediate images) between each contour line

of noise increase and IoU decrease. These intermediate images

gradually decrease IoU scores with the lowest amount of noise.

In (b), we show the orthogonal composition during each iteration.

We generate noise hypothesis tangentially according to the current

contour line (i.e., #1) and increase a small amount of noise in the

normal direction (i.e., #2). The intersection point will be identified

from the hypothesis that yields the lowest IoU at the same noise

level. The updated perturbation in each iteration is the composi-

tion of #1 and #2.

trackers as the target object motion is maintained tempo-

rally. Meanwhile, deep trackers utilize temporally coherent

schemes (i.e., search region constraint, and online update)

to ensure tracking accuracy. The image content and tempo-

ral motions are equally important for black-box attack on

visual tracking.

The proposed IoU attack is to make the prediction results

of one tracker deviate from its original performance. This

is because of the tracking scenario where there is only one

ground-truth bounding box (bbx) available (i.e., bbx annota-

tion on the first frame). We define the original performance

of one tracker is that it predicts one bbx on each frame with-

out noise addition. By adding heavy-noisy perturbations,

we make the same tracker predict another bbx and compute

the spatial IoU score based on these two bbxs. Meanwhile,

we use the bbx from the current frame and the one from the

previous frame to compute a temporally coherent IoU score,

which is then fused with the spatial IoU score. As state-

of-the-art trackers demonstrate premier performance on the

benchmarks, gradually decreasing the IoU scores by involv-

ing consecutive video frames indicates that their tracking

performance deteriorates significantly. The IoU measure-

ment suits different trackers as long as they predict one bbx

for each frame.
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3.2. IoU Attack

Figure 2 shows an intuitive view of how the proposed

IoU attack gradually decreases the IoU scores between

frames. Given a clean input frame, we first add heavy uni-

form noise on it to generate a heavy noise image where

the IoU score is low. Along the direction from the clean

image to the heavy noise image, the IoU scores gradually

decrease while the noise level increases. The direction of

IoU decrease positively correlates to that of noise increase

but they are not exactly the same. IoU attack aims to pro-

gressively find a decreased IoU score while introducing the

lowest amount of noise. The contour lines of IoU shown

in Figure 2(a) indicate the tracker performance with regard

to different noise perturbations, which can not be explic-

itly modeled in practice. From another perspective, IoU at-

tack aims to identify one specific noise perturbation leading

to the lowest IoU score among the same amount of noise

levels. The identification process is fulfilled by orthogonal

composition illustrated as follows.

We denote the original image on the t-th frame as I0,

the heavy noise image as H , and the intermediate image

on the k-th iteration as Ik. In the (k+1)-th iteration, we

first randomly generate several Gaussian distribution noise

η ∼ N (0, 1) and select the tangential perturbation η from n
of them as:

d(I0, Ik) = d(I0, Ik + η), (1)

where d is the pixel-wise distance measurement between

two images. Eq. 1 ensures tangential perturbations at the

same noise level. The selected ηj (j ∈ [1, 2, ..., n]) is the

perturbation tangential towards the contour line of noise

level at the point Ik. We generate one Ij (j ∈ [1, 2, ..., n])
according to each ηj and use the tracker to predict a bbx Bj

t

on it. Then, we define the IoU score SIoU as:

SIoU = λ · Sspatial + (1− λ) · Stemporal, (2)

Sspatial =
Borig

t ∩Bj
t

Borig
t ∪Bj

t

, (3)

Stemporal =
Borig

t−1 ∩Bj
t

Borig
t−1 ∪Bj

t

, (4)

where Sspatial denotes the spatial IoU score between the

predicted bbx Bj
t and the original noise-free bbx Borig

t at

the t-th frame, Stemporal denotes the temporal IoU score

with the original noise-free bbxBorig
t−1 at the (t-1)-th original

frame, and λ is the scalar to balance the influence of spatial

and temporal IoU scores. We attack SIoU to perform both

image content attack and temporal motion attack. In total,

we obtain n IoU scores and select Ij whose SIoU is lowest.

An example of ηj is visualized as #1 in Figure 2(b).

After getting the tangential perturbation, we denote ηj

as neighboring hypothesis based on Ik and make Ik + ηj

Algorithm 1: Black-box IoU Attack

Input: Input video V with M frames;

Initialization perturbations P1 = 0;

Target bbx B1 on the first frame;

Output: Adversarial examples of M frames;

1 for t = 2 to M do

2 Get current frame I0 and predict bbx Borig
t ;

3 I0 = I0 + α · Pt−1;

4 for k = 0 to K-1 do

// Tangential direction

5 Generate N random perturbations η;

6 Select n of them according to Eq. 1;

7 for j = 1 to n do

8 Predict the bbx Bj
t on Ik + ηj ;

9 Compute SIoU according to Eq. 2;

10 end

11 Identify j whose SIoU is lowest;

// Normal direction

12 Adjust ǫ to decrease SIoU;

13 Generate Ijk+1 according to Eq. 5;

14 end

15 Obtain learned perturbations Pt = Ijk+1 − I0;

16 return IjK ;

17 end

towards the heavy noise image H as:

Ijk+1 = (Ik + ηj) + ǫ · ψ(H, Ik + ηj), (5)

where ǫ controls the moving step towards H and ǫ ·

ψ(H, Ik + ηj) is the perturbation following the noise in-

crease direction (i.e., normal direction towards the contour

line of noise level). We adjust the parameter ǫ moder-

ately to limit the variation of perturbations. An example

of ǫ · ψ(H, Ik + ηj) is visualized as #2 in Figure 2(b). To

this end, Ijk+1 is the intermediate image on the (k+1)-th it-

eration, consisting of the composed perturbations from both

tangential and normal directions. We continuously perform

the iteration until the IoU score is below the predefined

threshold or the perturbations exceed the maximum. We

transfer the learned perturbations Pt to the next few frames.

The learned perturbations become the initialized perturba-

tions, which are added on I0 of (t+1)-th frame to encode

temporal motion attack from previous frames. The pseudo

code of the black-box IoU attack is shown in Algorithm 1.

3.3. Discussions and Visualizations

In this section, we visualize the variations of adversarial

perturbations during IoU attack in Figure 3. Given an origi-

nal image, we iteratively inject the adversarial perturbation

as shown in the first row of Figure 3. With the increase of

adversarial perturbations, the adversarial example drifts the
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Figure 3. Variations of adversarial perturbations during IoU attack. The 3D response map above the image represents the difference

between the original image and the adversarial example at different IoU scores. The IoU score decreases as the magnitude of perturbations

increases. The variations of perturbations are illustrated in the first row. The orthogonal composition is shown in the second row, including

tangential direction and normal direction. The image framed in green represents the minimal IoU score in the tangential direction and the

image framed in yellow represents the moving step towards the heavy noise image.

Table 1. Comparison of tracking results with original sequences, random noise, and IoU attack of SiamRPN++ [22], DiMP [1] and

LTMU [5] respectively on the VOT2019 [21] dataset.

Trackers
Accuracy ↑ Robustness ↓ Failures ↓ EAO ↑

Orig. Rand. Attack Orig. Rand. Attack Orig. Rand. Attack Orig. Rand. Attack

SiamRPN++ 0.596 0.591 0.575 0.472 0.727 1.575 94 145 314 0.287 0.220 0.124

DiMP 0.568 0.567 0.474 0.277 0.373 0.641 55 74 127 0.332 0.284 0.195

LTMU 0.625 0.623 0.576 0.913 1.073 1.470 182 214 293 0.201 0.175 0.150

target from the original result and leads IoU scores to de-

crease. We compute the cosine distance between the pertur-

bations from two consecutive intermediate images. The co-

sine distance indicates that the generated perturbations fol-

low an increasing trend without fluctuation, decreasing the

query numbers effectively in our black-box attack. During

each iteration, we visualize the concrete orthogonal com-

position between the consecutive intermediate images for

instance, as shown in the second row of Figure 3. We intro-

duce several candidate images according to Eq. 1 and select

the one with the minimal IoU score as the tangential direc-

tion (i.e., #1). Then, we move toward the heavy noise image

in trails to make sure the IoU score decreases. We adjust the

weight ǫ in Eq. 5 to constrain the variation of perturbation

and output the result as the normal direction (i.e., #2). These

two directions compose the orthogonal composition during

each iteration. As a result, we hope the final perturbation

preserves a lighter degree of noise than heavy random noise

does, but the final perturbation can decrease the IoU scores

heavily. In other words, our IoU attack makes larger degra-

dation of IoU scores by injecting fewer perturbations.

4. Experiments

We validate the performance of our IoU attack on

six challenging datasets, VOT2019 [21], VOT2018 [19],

VOT2016 [20], OTB100 [42], NFS [18] and VOT2018-

LT [19]. Detailed results are provided as follows.

4.1. Experiment Setup

Deployment of Trackers. In order to validate the gen-

erality of our black-box adversarial attack, we choose

three representative trackers with different structures,

SiamRPN++ [22], DiMP [1] and LTMU [5], respectively.

SiamRPN++ is a typical detection based tracker with the

siamese network. It compares the similarity between a tar-

get template and a search region with the region proposal

network. The end-to-end learned tracker DiMP exploits

both target and background appearance information to lo-
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Table 2. Comparison of tracking results with original sequences, random noise, and IoU attack of SiamRPN++ [22], DiMP [1] and

LTMU [5] respectively on the VOT2018 [19] dataset.

Trackers
Accuracy ↑ Robustness ↓ Failures ↓ EAO ↑

Orig. Rand. Attack Orig. Rand. Attack Orig. Rand. Attack Orig. Rand. Attack

SiamRPN++ 0.602 0.587 0.568 0.239 0.365 1.171 51 78 250 0.413 0.301 0.129

DiMP 0.574 0.560 0.507 0.145 0.202 0.400 31 43 85 0.427 0.363 0.248

LTMU 0.624 0.622 0.590 0.702 0.805 1.320 150 172 282 0.195 0.178 0.120

Table 3. Comparison of tracking results with original sequences, random noise, and IoU attack of SiamRPN++ [22], DiMP [1] and

LTMU [5] respectively on the VOT2016 [20] dataset.

Trackers
Accuracy ↑ Robustness ↓ Failures ↓ EAO ↑

Orig. Rand. Attack Orig. Rand. Attack Orig. Rand. Attack Orig. Rand. Attack

SiamRPN++ 0.643 0.632 0.605 0.200 0.340 0.802 43 73 172 0.461 0.331 0.183

DiMP 0.599 0.592 0.536 0.140 0.168 0.374 30 36 80 0.449 0.404 0.256

LTMU 0.661 0.646 0.604 0.522 0.592 0.904 112 127 194 0.236 0.233 0.170

Table 4. Comparison of tracking results with original sequences,

random noise, and IoU attack of SiamRPN++ [22], DiMP [1] and

LTMU [5] respectively on the OTB100 [42] dataset.

Trackers
Success ↑ Precision ↑

Orig. Rand. Attack Orig. Rand. Attack

SiamRPN++ 0.695 0.631 0.499 0.905 0.818 0.644

DiMP 0.671 0.659 0.592 0.869 0.860 0.791

LTMU 0.672 0.622 0.517 0.872 0.815 0.712

cate the target precisely. LTMU is a long-term tracker, uti-

lizing the meta-updater to update the tracker online for tar-

get prediction.

Implementation Details. We formulate the heavy noise

image by injecting uniform noise into the clean image as

feedback. The type of initial random noise at the same

noise level is not sensitive to the degradation of tracking.

We discontinue the iterative perturbation update when the

IoU score is below the predefined score or the perturbations

exceed the maximum. To sum up, the average query num-

bers of IoU attack are 21.2, 31.4 and 54.2 per frame for

SiamRPN++, DiMP and LTMU, respectively.

4.2. Overall Attack Results

VOT2019. We implement the three trackers on the

VOT2019 [21] dataset consisting of 60 challenging se-

quences. Different from other datasets, the VOT dataset

has a reinitialization module. When the tracker loses the

target (i.e., the overlap is zero between the predicted result

and the annotation), the tracker will be reinitialized with the

ground truth. Failures show the number of re-initialization.

Accuracy evaluates the average overlap ratios of success-

fully tracking frames. Robustness measures the overall lost

numbers. In addition, Expected Average Overlap (EAO) is

evaluated by a combination of Accuracy and Robustness.

Table 5. Comparison of tracking results with original sequences,

random noise, and IoU attack of SiamRPN++ [22], DiMP [1] and

LTMU [5] respectively on the NFS30 [18] dataset.

Trackers
Success ↑ Precision ↑

Orig. Rand. Attack Orig. Rand. Attack

SiamRPN++ 0.509 0.466 0.394 0.601 0.550 0.446

DiMP 0.614 0.591 0.545 0.729 0.710 0.658

LTMU 0.631 0.579 0.462 0.764 0.699 0.559

Table 1 shows the performance drops after IoU attack.

We first test all trackers on original sequences. Then we im-

plement our IoU attack method to generate the adversarial

examples and evaluate the tracking results. SiamRPN++

leads to more failures than its original results, and the

EAO score drops from 0.287 to 0.124. DiMP obtains a

16.5% drop on its accuracy score, which indicates our at-

tack method leads to an obvious drift. The EAO score also

drops dramatically from 0.332 to 0.195. Similarly, our IoU

attack method reduces the EAO score of LTMU from 0.201

to 0.150. For further comparison, we also conduct exper-

iments that inject the same level of random noise into the

original sequences. Our generated perturbations decrease

the IoU scores more dramatically than random noise.

VOT2018. There are 60 different sequences in the

VOT2018 [19] dataset. All the trackers perform favorably

on the original sequences. LTMU performs worse than

the other two trackers since the re-detection module yields

more reinitializations in VOT-toolkit. Table 2 shows that the

performance of these trackers deteriorates obviously under

IoU attack. Concretely, the accuracies of these three track-

ers get worse after the adversarial attack. These indicate that

the trackers indeed deviate from their original results. The

primary metric EAO scores are reduced by 68.8%, 41.9%,

38.5% for SiamRPN++, DiMP and LTMU, respectively.
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Figure 4. Precision and recall plots of IoU attack for SiamRPN++ [22], DiMP [1] and LTMU [5] respectively on the VOT2018-LT

dataset [19]. We use Attack and Random to denote IoU attack and the same level of random noise. The legend is ranked by F-score.

VOT2016. Similarly, we also conduct the IoU attack

method on the VOT2016 dataset [20], as shown in Ta-

ble 3. These trackers perform much better than the above

two datasets on the original sequences. However, IoU at-

tack also reduces the EAO by 60.3%, 43.0%, 28.0% for

SiamRPN++, DiMP and LTMU, respectively. Our IoU at-

tack is more effective than the same level of random noise.

OTB100. The OTB100 [42] dataset includes 100 fully an-

notated video sequences. The evaluation has two main met-

rics, success and precision, by using the one-pass evaluation

(OPE). We compare the results before and after IoU attack

in Table 4. With IoU attack, the AUC scores of success sig-

nificantly decline, accounting for 71.8%, 88.2% and 76.9%

of original results for SiamRPN++, DiMP and LTMU, re-

spectively. However, the AUC scores with random noise

account for 90.8%, 98.2% and 92.6%, respectively.

NFS30. We also conduct IoU attack on the NFS30 [18]

dataset consisting of 100 videos at 30 FPS with an average

length of 479 frames. All sequences are manually labeled

with nine attributes, like occlusion, fast motion, etc. And

we adopt the same metrics used in the OTB100 dataset, as

shown in Table 5. According to the AUC metric of suc-

cess, SiamRPN++ obtains a 22.6% decrease after IoU at-

tack while injecting the same level of random noise causes

an 8.4% decrease. DiMP achieves an 11.2% decrease com-

pared to a 3.7% decrease with random noise. LTMU gets a

26.8% decrease after IoU attack and an 8.2% decrease with

random noise. IoU attack makes approximately triple drops

compared to the same level of random noise.

VOT2018-LT. In order to further verify the effectiveness of

our IoU attack, we conduct three trackers on a more chal-

lenging dataset VOT2018-LT [19]. It has 35 sequences with

an average length of 4200 frames, which is much longer

than other datasets and closer to practical applications. Each

tracker needs to output a confidence score for the target be-

ing present and a predicted bounding box in each frame.

Precision (P ) and recall (R) are evaluated for a series of

Table 6. Ablation studies on IoU attack for SiamRPN++ [22],

DiMP [1] and LTMU [5] on the VOT2018 [19] and VOT2016 [20]

datasets. Stemporal represents the temporal IoU score and Pt−1

represents the learned perturbation from historical frames.

Tracker Stemporal Pt−1
EAO ↑

VOT2018 VOT2016

SiamRPN++

No Yes 0.149 0.189

Yes No 0.134 0.190

Yes Yes 0.129 0.183

DiMP

No Yes 0.257 0.275

Yes No 0.261 0.295

Yes Yes 0.248 0.256

LTMU

No Yes 0.147 0.184

Yes No 0.150 0.189

Yes Yes 0.120 0.170

confidence thresholds, and the F-score is calculated as F
= 2P · R/(P + R). The primary long-term tracking met-

ric is the highest F-score among all thresholds. Figure 4

shows the results of precision and recall at different confi-

dence thresholds before and after IoU attack. The results in

the legend are ranked by F-score. The precision and recall

both drop significantly after our IoU attack on three track-

ers. Our IoU attack method reduces the F-Score by 27.5%,

27.3% and 14.8% for SiamRPN++, DiMP and LTMU, re-

spectively. All trackers after IoU attack perform poorly

compared with injecting the same level of random noise.

Our black-box attack method is proven to be also effective

for long-term tracking.

4.3. Ablation Studies

To explore the temporal motion of visual object tracking

in black-box attack, we separately compare the IoU attack

method with or without involving temporal IoU scores in

Eq. 2, as reported in Table 6. With the help of temporal IoU

scores, the deep trackers get worse tracking accuracies than

only using the spatial IoU scores on multiple datasets. In

addition, we transfer the learned perturbation Pt−1 into the
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Table 7. Comparison with existing white-box and black-

box attack methods for SiamRPN++ [22] with ResNet on the

OTB100 [42] dataset.

Method Succ. Drop Prec. Drop Type

CSA [44] 37.2 44.3 White-box

SPARK [14] 6.6 2.7 Black-box

UAP [26] 2.7 4.0 Black-box

Ours 19.6 26.1 Black-box
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Figure 5. Comparison on EAO scores and failure rates of different

perturbations for SiamRPN++ [22] on the VOT2018 [19] dataset.

next few frames and use its weight to initialize the input for

temporally consistent motion attack. We compare the IoU

attack method with or without the transfer of historical per-

turbation Pt−1 in Table 6. The overall performance metric

EAO indicates that the transfer and initialization of previous

perturbation indeed improve the attack effects and decrease

the tracking accuracies. In addition, we also illustrate the

attack performance with the variation of perturbations on

the VOT2018 [19] dataset, as shown in Figure 5. The per-

turbations are measured by ℓ2 norm. Failure rate represents

the average rate of failure frames in the whole video. We

observe that the attack performance gets worse with the in-

crease of perturbations accordingly.

4.4. Comparison with Other Methods

Table 7 reports the comparison with existing white-

box and black-box attack methods. Our black-box at-

tack method without access to the network architecture of

trackers performs slightly worse than the white-box attack

method CSA [44] for tracking. SPARK [14] performs the

transfer-based black-box attack and obtains a 6.6% suc-

cess drop and a 2.7% precision drop. Our decision-based

black-box attack significantly outperforms SPARK. In ad-

dition, we apply the perturbation from UAP [26] frame by

frame, which is designed for attacking the classification in

static images. Our method considering the temporal motion

changes of the target objects achieves much greater success.

4.5. Qualitative Results

Figure 6 qualitatively shows the tracking results of our

IoU attack for SiamRPN++ [22], DiMP [1] and LTMU [5]

on three challenging sequences. We visualize the original

SiamRPN++ DiMP LTMU

(a) Original results (b) Random results (c) Attack results

Figure 6. Qualitative results of IoU attack on three challenging

sequences from the OTB100 [42] dataset.

tracking results in (a), the results with the same level of ran-

dom noise in (b) and the results of our IoU attack in (c). In

the original images, all these trackers locate the target ob-

jects and estimate the scale changes accurately. After gen-

erating the adversarial examples, these trackers estimate the

target location inaccurately. However, the same level of ran-

dom noise cannot drift the trackers, as shown in the second

column. This indicates that the proposed IoU attack gen-

erates the optimized perturbations and maintains the same

level of random noise.

5. Concluding Remarks

In this paper, we propose an IoU attack method in the

black-box setting to generate adversarial examples for

visual object tracking. Without access to the network

architecture of deep trackers, we iteratively adjust the

direction of light-weight noise according to the predicted

IoU scores of bounding boxes, which involve temporal

motion in historical frames. Furthermore, we transfer

the perturbations into the next frames to improve the

effectiveness of attack. We apply the proposed method to

three state-of-the-art representative trackers to illustrate the

generality of our black-box adversarial attack for visual

object tracking. The extensive experiments on standard

benchmarks demonstrate the effectiveness of the proposed

black-box IoU attack. We believe this work helps to

evaluate the robustness of visual object tracking.
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