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Abstract

Cross-modal retrieval aims to learn discriminative and

modal-invariant features for data from different modalities.

Unlike the existing methods which usually learn from the

features extracted by offline networks, in this paper, we pro-

pose an approach to jointly train the components of cross-

modal retrieval framework with metadata, and enable the

network to find optimal features. The proposed end-to-end

framework is updated with three loss functions: 1) a novel

cross-modal center loss to eliminate cross-modal discrep-

ancy, 2) cross-entropy loss to maximize inter-class varia-

tions, and 3) mean-square-error loss to reduce modality

variations. In particular, our proposed cross-modal cen-

ter loss minimizes the distances of features from objects

belonging to the same class across all modalities. Exten-

sive experiments have been conducted on the retrieval tasks

across multi-modalities including 2D image, 3D point cloud

and mesh data. The proposed framework significantly out-

performs the state-of-the-art methods for both cross-modal

and in-domain retrieval for 3D objects on the ModelNet10

and ModelNet40 datasets.

1. Introduction

With the stream of multimedia data flourishing on the In-

ternet in the format of videos, images, text, etc, cross-modal

retrieval task has attracted more and more attention from the

multimedia communities. Cross-modal retrieval is the task

of retrieving data from one modality given a query from

a different modality. Inspired by the representation power

of deep learning, a series of deep learning-based methods

have been proposed for cross-modal retrieval [27, 52, 51].

These methods operate by learning modal-invariant repre-

sentations in a common space.

The features from different modalities generally have

different distributions. Therefore, a fundamental require-

ment for cross-modal retrieval task is to bridge the gap

among different modalities which is commonly done by

∗ Equal contribution.

Figure 1. Traditional center loss vs. the proposed cross-modal

center loss. Our proposed cross-modal center loss (right) finds a

unique center for each class across all modalities. Traditional cen-

ter loss (left) finds a center for each modality and each class and

ignores the relation among centers of different modalities. Our

proposed cross-modal center loss specifically eliminates the dis-

crepancy across multiple modalities and thus is very effective for

learning modal-invariant features.

representation learning. The existing methods mainly ex-

tract the features of each modality by offline pre-trained

models, and apply a projection function to transfer the fea-

tures into a common representation space. By this transfor-

mation, the similarity of features from different modalities

can be directly measured. Hence, the main challenge during

this process is to learn discriminative and modal-invariant

features.

By learning discriminative features, we ensure that data

from the same class are mapped closely to each other in the

feature space while different classes are separated as far as

possible. In many studies, cross entropy or mean square

error loss in the label space are used to maximize the inter-

class variations. In order to compare the features extracted

from different modalities, the features need to be modal-

invariant. Various methods are proposed to reduce the

cross-domain discrepancy by using adversarial loss, sharing

a projection network, using triplet loss with pairs/triplets of

different modalities, maximizing cross-modal pairwise item

correlation [29, 42, 34, 20, 10].

Even though the existing methods [42, 51] achieved

promising results in the cross-modal retrieval tasks, they
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suffer from the following limitations: 1) Their core idea

is to minimize the cross-modal discrepancy over the fea-

tures from multiple modalities extracted by pre-trained neu-

ral networks. For example, in the task of image-text re-

trieval, image and text features are extracted by pre-trained

models(VGG [37] and SentenceCNN [21]), and then learn-

ing is performed on these extracted features instead of the

metadata. Because these feature extractors (VGG, Sen-

tenceCNN) are not trained or finetuned for cross-modal re-

trieval task, they are not optimally representative. Instead,

the network should be jointly trained with multimodal data

to fully address the retrieval task. 2) The existing loss

functions are mainly designed for two types of modalities,

mainly image and text, and may not generalize well for

cases when more than two modalities are available. It is

essential to develop a simple yet effective loss function that

can be easily extended for multiple modalities.

In this paper, we propose a new loss function, called

Cross-modal Center Loss, specifically designed to mini-

mize the intra-class variation across multiple modalities.

Our loss function is directly inspired by the traditional uni-

modal center loss which learns a center for each class and

minimizes the distance between objects and their corre-

sponding centers in the feature space. Fig. 1 shows the com-

parison between the traditional center loss and the newly

proposed cross-modal center loss. Having multi-modal

data, the traditional center loss minimizes the distance of

objects and their centers in separate features spaces defined

for each modality. Instead, our proposed cross-modal center

loss learns a unique center C for each class in the common

space of all modalities. Specifically, it minimizes the dis-

tance of multi-modal objects and their centers in the same

common feature space for all modalities. When more multi-

modal data is available, the cross-modal center loss will be

able to learn more reliable centers for each class in the com-

mon space.

With the proposed cross-modal center loss, the cross-

modal discrepancy between different modalities of the data

can be eliminated. The proposed cross-modal center loss

can be employed in conjunction with other loss functions to

jointly learn features for cross-modal retrieval task. To ver-

ify the effectiveness of the proposed loss function, we fur-

ther propose an end-to-end framework for cross-modal re-

trieval task to learn discriminative and modal-invariant fea-

tures. The proposed framework is optimized with three loss

functions including the cross-entropy in the label space to

learn discriminative features, the cross-modal center loss to

specifically eliminate the cross-modal discrepancy in a uni-

versal space, and the mean square error loss to minimize

the cross-modal distance per object. Furthermore, a weight

sharing strategy is applied to learn modal invariant features

in the common space.

Different from the previous cross-modal retrieval meth-

ods which extract the features of image or text by offline

networks, we propose to jointly train the entire framework

from the metadata without being limited by pre-trained

models from other datasets. The effectiveness of the pro-

posed framework is evaluated on a novel 3D cross-modal

retrieval task which has not been explored by existing super-

vised methods. Our method significantly outperforms the

recent state-of-the-art methods on 3D cross-modal retrieval

task and in-domain retrieval task. The main contributions

of this paper are summarized as follows:

• We propose a novel cross-modal center loss to map the

representations of different modalities into a common

feature space.

• We propose an end-to-end framework for cross-modal

retrieval task by jointly training multiple modalities us-

ing the proposed cross-modal center loss. The pro-

posed framework can be extended to various cross-

modal retrieval tasks.

• The proposed framework significantly outperforms

the state-of-the-art methods on cross-modal and in-

domain retrieval tasks across images, point cloud, and

mesh for 3D shapes. To the best of our knowledge, this

is the first supervised learning method for object re-

trieval across 2D image and 3D point cloud and mesh

data.

2. Related Work

Feature Learning for 3D Objects: 3D data are inherently

multi-modal and can be represented in various ways such

as point cloud, multi-view images, mesh, volumetric data,

etc. Various deep learning-based methods have been pro-

posed for 3D feature learning including unordered point

cloud-based methods [23, 24, 30, 32, 41, 44, 47], multi-

view images-based methods [38, 39], and volumetric vox-

elized data-based methods [5, 22, 31, 26, 40]. Qi et al. pro-

posed the first deep learning-based model (i.e. PointNet) to

directly learn the features from unordered point cloud data.

To specifically model the local information for each point

[30], Wang et al. proposed a dynamic graph convolution

neural network (DGCNN) with EdgeConv using k nearest

neighbor (KNN) points [44]. Su et al. proposed to learn

the features for 3D objects with multi-view CNN operating

on 2D images that are rendered from different views of 3D

data [38]. MeshNet [8] and MeshCNN [12] were proposed

to learn features directly from the mesh data by modelling

the geometric relations of mesh faces of the object. Re-

cently, few studies attempted to learn modal-invariant fea-

tures with self-supervised learning. Jing et al. proposed

MVI for modal and view-invariant feature learning by con-

trasting where the learned features can be used for cross-

modal retrieval [17].
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Cross-modal retrieval: Several methods have been pro-

posed for cross-modal retrieval task, mainly targeting

image-text retrieval. One straightforward solution for this

task is to formulate the problem as a linear projection

[16, 18, 33, 50]. Most recently, deep learning-based meth-

ods have been proposed for representation learning due to

the powerful feature learning capability. As a deep ver-

sion of CCA, Andrew et al. proposed deep canonical cor-

relation analysis (DCCA) to adapt deep neural network to

model the complex nonlinear transformations by project-

ing two highly linear correlated views into the same com-

mon space [2]. As a further step, Wang et al. proposed

deep canonically correlated autoencoders (DCCAE) which

is a two-autoencoder design and is jointly optimized by

the combination of the canonical correlation between the

learned representations and the reconstruction errors of the

autoencoders [43]. Peng et al. proposed a two-stage frame-

work called Cross-Media Deep Networks (CMDM) which

acquires inter- and intra-modality features and then hierar-

chically combines the representations to further learn the

rich cross-media correlations [28]. However, these deep

learning-based methods did not concentrate on inter- and

intra-modality relations in their designs. The CMDN later is

extended by Peng et al. to cross-modal correlation learning

(CCL) by adding inter-modal interactions in the first stage

while adding intra-modal semantic constraints in the second

stage [29].

To learn modal-invariant features, Wang et al. proposed

adversarial cross-modal retrieval (ACMR) which adapted

adversarial learning to minimize the domain gap by using

a discriminator to predict the corresponding modality of the

representations [42]. With the adversarial loss function, this

method significantly outperformed the previous state-of-

the-art methods on popular benchmarks with a large margin.

Zhen et al. proposed deep supervised cross-modal retrieval

(DSCMR) to learn the representations in the common space

in regard to both inter-class and intra-class relations [51].

The DSCMR increases the inter-class variations via the

discrimination loss in both the label space and the com-

mon representation space. Although the DSCMR achieved

state-of-the-art performance on image-text retrieval task,

our analysis show that this method have poor generalization

ability to settings with diverse data samples.

Most of the existing work use the image and text fea-

tures extracted by offline networks and directly minimize

the cross-modal gap in the common space using these fea-

tures. In this paper, we propose an end-to-end jointly

trained framework and a novel cross-modal center loss to

learn discriminative and modal-invariant features directly

from metadata.

3. Methods

We propose an end-to-end framework with joint training

of multiple modalities for cross-modal retrieval task based

on the proposed cross-modal center loss. The overview of

our proposed framework for 3D cross-modal retrieval task

is shown in 2. As shown in the figure, The features for dif-

ferent modalities including Mesh, point cloud, and image

are extracted by different networks, then these features are

projected to a common space via two shared fully connected

layers. The cross-modal discrepancy is eliminate in the uni-

versal space with our proposed loss functions. The formu-

lation of the proposed cross-modal center loss is introduced

in the following sections.

3.1. Problem Formulation

Dataset S contains N instances where the i-th instance

ti is a set of M modalities with a semantic label yi. The set

of modalities of ti is denoted by si. Formally:

S = {ti}
N
i=1 , ti =

(

si, yi
)

, si = {xm
i }Mm=1

Generally, the modality samples {x1
i , x

2
i , · · · , x

M
i } are

in M different representation spaces and their similarities

cannot be directly measured. The goal of the cross-modal

retrieval task is to learn M projection functions fm for each

modality m ∈ [1,M ], where vmi = fm(xm
i , θm) and θm is

a learnable parameter. As a result, vmi is a projected fea-

ture in the common representation space. Distance between

the projected features is a measure of similarity between the

samples across all modalities. Therefore, samples from the

same class should be mapped closely to each other indepen-

dent of their modalities: d(vmi , vm
∗

i ) ∼ low. On the other

hand, samples from different classes should be projected as

far as possible: d(vmi , vm
∗

j ) ∼ high (where i 6= j)

3.2. Loss Function

The core of the cross-modal retrieval is to obtain discrim-

inative and modal-invariant features for data of different

modalities with heterogeneous networks. To learn discrimi-

native features, we use the cross entropy loss over the shar-

ing head of our network, while our proposed cross-modal

center loss and mean square error help with learning modal-

invariant features.

Cross-modal center Loss: Given the extracted features

{vmi }Ni=1 (m ∈ [1,M ]) for N instances and M modalities,

our proposed cross-modal center loss is formulated in Eq.

1:

Lc =
1

2

N
∑

i=1

M
∑

m=1

‖vmi − Cyi
‖22 , (1)

where Cyi
∈ R

k denotes the center of class yi in the

common space and k is the dimension of features. Com-
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Figure 2. An overview of the proposed framework for 3D cross-modal retrieval task. Mesh, point cloud, and multi-view 2D image features

are extracted by MeshNet, DGCNN, and ResNet, respectively, then projected to a common space via two shared fully connected layers.

With the cross-modal center loss in conjunction with the cross-entropy loss and mean square error loss, the proposed framework can learn

discriminative and modal invariant features.

paring to the original center loss [46], our proposed cross-

modal center loss learns by eliminating the cross-modality

gap and reducing the intra-class variation. To learn modal-

invariant features, the cross-modal center loss optimizes the

network to learn a center Cyi
for class yi and minimize the

distance between the features and their corresponding cen-

ters within each training batch. After each training iteration,

the center of each class, Cj , is updated by △Cj with data

from all modalities belonging to class j:

△ Cj =

∑N
i=1

∑M
m=1 δ(yi = j)(Cj − vmi )

1 +
∑N

i=1 δ(yi = j)
, (2)

where

δ(condition) =

{

1 condition = True

0 otherwise
(3)

Given a large batch size, the model can learn a robust

center for each class, leading to produce features with small

intra-class variation across all modalities. One advantage of

the proposed cross-modal center loss is that it can be easily

extended to more modalities. When data with more modal-

ities are available, it provides more robust centers and may

lead to better optimized features.

Discriminative Loss: To learn discriminative features,

cross entropy loss in the label space is employed to opti-

mize the network. Given N samples from M modalities,

the discriminative loss is calculated by the cross-entropy

loss between the MLP prediction ŷmi from each extracted

feature vmi , and its label yi.

Ld = −
1

N
(

N
∑

i=1

M
∑

m=1

ymi · log(ŷmi )), (4)

where ŷmi is predicted by the two shared layers as:

ŷmi = MLP (vmi ). (5)

Trained with cross-entropy loss, samples from the same

category have higher similarities, while samples from dif-

ferent categories have lower similarities. Jointly trained

with cross-modal center loss and cross-entropy loss, the net-

work is able to learn both modal-invariant and discrimina-

tive features.

To further reduce the cross-modal discrepancy for each

instance, we propose a loss function based on mean square

error to minimize the distances between the features of all

cross-modal sample pairs. The loss function across M

modalities for each instance i is defined as the following

where {v1i , v
2
i , · · · , v

M
i } are the extracted features:

Lm =
∑

α,β∈[1,M ]α 6=β

∥

∥

∥
vαi − v

β
i

∥

∥

∥

2

2
. (6)
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The three proposed loss functions are used to jointly train

the network to learn discriminative and modal-invariant fea-

tures:

Loss = αcLc + αdLd + αmLm, (7)

where αc, αd, and αm are the weights for each loss term.

Our proposed joint loss function in Eq. 7 can be optimised

by stochastic gradient descent. The details of the optimiza-

tion procedure is summarized in Algorithm 1.

Algorithm 1 Optimization procedure of the proposed

framework

Require: The training data set S = {(ti, yi)}
n
i=1, the di-

mensionality of the common representation space k, the

mini-batch size nb, the learning rate τ , the maximal

number of epochs N .

Ensure: The optimized parameters in the M sub-networks

θm,m ∈ [1,M ].
Initialization : Randomly initialize the parameters of

M subnetworks θm,m ∈ [1,M ] and the parameters of

the shared MLP classifier θP .

1: for j = 1 to N do

2: for b = 1 to
⌊

n
nb

⌋

do

3: Construct a training mini-batch by randomly se-

lecting nb samples from S.

4: Extract the representations vmi for each sample xm
i

in the mini-batch by forward propagation, where

m ∈ [1,M ], and i ∈ [1, nb].
5: For each vmi , acquire the class prediction ymi by:

ymi = MLP (vmi )
6: Calculate the mini-batch training loss L by Eq. 7.

7: Update the parameters of the entire network,

where each part is updated by:

a) Parameters of linear classifier P is updated by

minimizing J in Eq. 7 with:

θP = θP − τ ∂J
∂θP

b) Parameters of the sub-networks, θm, by mini-

mizing J with descending their stochastic gradi-

ent:

θm = θm − τ ∂J
∂θm

, m ∈ [1,M ]
c) Center of each class is updated by Eq. 2.

8: end for

9: end for

3.3. Framework Architecture

The proposed loss function can be applied to various

cross-modal retrieval tasks. To verify the effectiveness

of the proposed loss function, we designed an end-to-end

framework for 3D cross-modal retrieval task to jointly train

multiple modalities including image, mesh, and point cloud.

The overview of the proposed framework for 3D cross-

modal retrieval is shown in Fig. 2. As shown in the figure,

there are three networks: F (θ) for image feature extraction,

G(β) for point cloud feature extraction, and H(γ) for mesh

feature extraction. Our framework can be easily extended

to cases with more modalities or to different cross-modal

retrieval tasks.

3D cross-modal retrieval. For 2D image feature ex-

traction, we utilize ResNet18 [13] as the backbone network

with four convolution blocks, all with 3× 3 kernels, where

the number of kernels are 64, 128, 256, and 512, respec-

tively. Unless specifically mentioned, after the global aver-

age pooling, a 512-dimensional final feature vector is ac-

quired in all experiments. Dynamic graph convolutional

neural network (DGCNN)[45] is employed as the backbone

model to capture point cloud features. DGCNN contains

four EdgeConv blocks with the number of kernels set to 64,

64, 64, and 128. After the four EdgeConv block, a fully

connected layer with 512 neurons is used to extract point-

specific features for each point and then a max-pooling

layer is applied to extract global features for each object.

MeshNet [8] consists of 2 mesh convolution blocks, which

achieved the state-of-the-art results for mesh retrieval, and

is selected as the backbone to extract the features from mesh

data. Two fully connected layers with size of 256 and 40
are employed to make classification predictions based on

the 512-dimensional global features for all three modali-

ties. The entire framework is trained from scratch for 3D

cross-modal retrieval task with the proposed loss function.

4. Experiments

Datasets: The ModelNet40 [48] and ModelNet10 [48]

datasets are used for evaluation. The ModelNet40 dataset is

a 3D object benchmark and contains of 12, 311 CAD mod-

els which belong to 40 different categories with 9, 843 used

for training and 2, 468 for testing, while ModelNet10 con-

sists of 3, 991 CAD models for training and 909 models

for testing belonging to 10 categories. Three modalities are

provided in these two datasets including image, point cloud,

and mesh.

4.1. Experimental Setup:

Evaluation Metrics: The evaluation results for all ex-

periments are presented in terms of Mean Average Preci-

sion (mAP) score which is a classical performance evalua-

tion criterion for cross-modal retrieval task [53, 7, 42]. The

mAP for retrieval task is defined to measure whether the re-

trieved data belong to the same class as the query (relevant)

or do not (irrelevant). Given a query and a set of R cor-

responding retrieved data (R top-ranked data), the Average

Precision is defined as:
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Source Target mAP-v1 mAP-v2 mAP-v4

Image Image 82.06 86.00 90.23

Image Mesh 85.58 87.31 89.59

Image Point Cloud 85.23 86.79 89.04

Mesh Image 83.58 85.96 88.11

Point Cloud Image 82.29 85.18 87.11

Mesh Mesh 88.51 — —

Mesh Point Cloud 87.37 — —

Point Cloud Mesh 87.58 — —

Point Cloud Point Cloud 87.04 — —

Table 1. Performance of 3D in-domain and cross-modal retrieval

task on ModelNet40 dataset in terms of mAP. When the target or

source are from image domain, the results are reported for multi-

view images: 1 view, 2 views, and 4 views denoted by v1, v2, and

v4.

AP =
1

N

R
∑

r=1

p(r) · δ(r), (8)

where N is the number of relevant data in the retrieved set,

p(r) is the precision of first r retrieved data, and δ(r) is

the relevance of the r-th retrieved data (1 if relevant and 0

otherwise).

4.2. 3D Cross­modal Retrieval Task

To evaluate the effectiveness of the proposed end-to-

end framework, we conduct experiments on ModelNet40

dataset with three different modalities including multi-view

images, point cloud, and mesh. To thoroughly examine the

quality of learned features, we conduct two types of re-

trieval tasks including in-domain retrieval when the source

and target objects are from the same domain and cross-

domain retrieval when they are from two different domains.

When the target or source is from image domain, we eval-

uate the performance of multi-view images where the num-

ber of views is set to 1, 2 and 4. The performance of our

method for 3D in-domain and cross-modal retrieval tasks is

shown in Table 1.

As shown in Table 1, the proposed framework achieves

more than 85% mAP for both in-domain and cross-domain

retrieval tasks on ModelNet40 dataset. When the query

or target are from the image-domain, the retrieval perfor-

mance are significantly improved if more image views are

used. Even though cross-modal center loss is specifically

designed for learning modal invariant features, it is capa-

ble of discriminating the features of different classes within

the same domain and achieves more than 86% mAP for

Image2Image, Point2Point, and Mesh2Mesh in-domain re-

trieval tasks.

4.3. Impact of Loss Function

The three components of our proposed loss function are

denoted as following: cross-entropy loss for each modal-

ity in the label space as L1, cross-modal center loss in the

universal representation space as L2, and mean-square loss

between features of different modalities as L3. To further

investigate the impact of each component, we evaluate dif-

ferent combinations for the loss functions including: 1) op-

timization with L1, 2) jointly optimization with L1 and L3,

3) jointly optimization with L1 and L2, and 4) jointly op-

timization with L1, L2, and L3. These four models are

trained with the same setting and hyper-parameters, where

the performance is shown in Table 2.

Loss L1 L1 + L3 L1 + L2 L1 + L2 + L3

Image2Image 75.09 74.21 84.87 86.0

Image2Mesh 75.38 75.86 86.7 87.31

Image2Point 69.76 70.52 86.11 86.79

Mesh2Mesh 75.53 76.36 88.83 88.59

Mesh2Image 75.2 74.76 85.66 85.96

Mesh2Point 69.64 70.34 87.58 87.37

Point2Point 66.63 68.18 86.89 87.04

Point2Image 69.54 70.34 84.76 85.18

Point2Mesh 69.23 71.88 87.69 87.58

Table 2. The ablation studies for loss functions. L1 is cross entropy

loss, L2 is cross-modal center loss, and L3 is mean squared error

loss. The number of views for images is fixed to 2.

As illustrated in Table 2, we have the following obser-

vations:

• The combination of L1, L2 and L3 achieves the best

performance for all cross-modal and in-domain re-

trieval tasks.

• As the baseline, cross-entropy loss alone achieves rel-

atively high mAP due to the sharing head of the three

modalities forcing the network to learn similar repre-

sentations in the common space for different modali-

ties of the same class.

• By adding cross-modal center loss to cross entropy

loss, a constant and significantly improvement in mAP,

between 7% to 20%, could be achieved for different

retrieval tasks, proving that the proposed cross-modal

center loss could significantly reduces the cross-modal

discrepancy.

• Particularly, performance of Point2Mesh, Point2Point,

and Mesh2Point retrieval tasks are improved by nearly

20% which further validates the effectiveness of the

proposed cross-modal center loss.

• Adding the MSE loss to cross entropy and cross-modal

center loss also slightly improves the performance.

4.4. Impact of Batch Size

The core idea of the proposed cross-modal center loss is

to learn a unique center for each class and to minimize the
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distance of data from different modalities in that class to

its center. However, calculation based on the whole dataset

in each update is inefficient even practical [46]. As a result,

the center for each class is defined as the average of features

for that class in a mini-batch and updated with optimizer.

Therefore, the reliability of the features for each class is

highly correlated with the batch size. Using a large enough

batch size provides sufficient samples for each class to find

a reliable center, while having a small batch size leads to

unreliable centers. To analyze the impact of batch sizes to

the performance, we conduct experiments on ModelNet40

dataset with different batch sizes (12, 24, 48, 96). The re-

sults are shown in Table 3. All models are trained with the

same number of epochs and same hyper-parameters.

Batch Size 12 24 48 96

Image2Image 45.67 63.56 85.64 90.23

Image2Mesh 13.89 73.22 86.94 89.59

Image2Point 32.32 72.08 85.59 89.04

Mesh2Mesh 25.5 88.44 88.91 88.51

Mesh2Image 6.98 68.81 86.5 88.11

Mesh2Point 8.29 84.6 86.67 87.37

Point2Point 59.5 82.44 85.44 87.04

Point2Image 27.68 67.46 84.67 87.11

Point2Mesh 15.87 83.56 86.62 87.58

Table 3. The ablation studies for the batch size on the ModelNet40

dataset. The number of views for images is fixed to 4. Same num-

ber of epochs are used for all the experiments.

As shown in Table 3, changing the batch size from 12
to 96 significantly improves the performance for all modal-

ities. Due to the limitations of the GPU memory, the largest

batch size that we tested is 96. This results indicate that

a larger batch size should be used for the proposed cross-

modal center loss whenever possible.

4.5. Comparison with Existing Methods on 3D Re­
trieval

In this section, we compare the performance of our

method with the state-of-the-art methods on 3D in-domain

and cross-modal retrieval tasks in both ModelNet10 and

ModelNet40 datasets.

4.5.1 Comparing with the state-of-the-art Cross-

Modal Retrieval Methods

Since there is no method specifically designed for 3D cross-

modal retrieval task yet, we re-produce the current state-

of-the-art method (DSCMR [51]) that designed for image-

text retrieval task. Since DSCMR was originally designed

only for image-text retrieval, we extend it to three types

of modalities (image, point cloud, and mesh) and jointly

Method DSCMR [51] Ours

Image2Image 82.31 90.23

Image2Mesh 77.30 89.59

Image2Point 74.33 89.04

Mesh2Mesh 74.84 88.51

Mesh2Image 76.18 88.11

Mesh2Point 70.21 87.37

Point2Point 70.80 87.04

Point2Image 73.74 87.11

Point2Mesh 71.59 87.58

Table 4. Comparison with the state-of-the art method on Model-

Net40 dataset for 3D cross-modal retrieval task. The number of

views for images is fixed to 4. The DSCMR has poor gener-

alization ability of extending to diverse datasets. The proposed

jointly trained method significantly outperforms the state-of-the-

art method on all retrieval tasks.

trained it on 3D datasets. We conduct experiments for 3D

cross-modal retrieval on both ModelNet10 and ModelNet40

datasets.

As shown in Table 4 and Table 5, our proposed method

significantly outperforms the state-of-the-art methods for

all of the retrieval tasks on the two benchmarks. The

ModelNet10 only consists of 10 categories of data and the

DSCMR performs well on this small dataset. However,

when extending to ModelNet40 which consists of data be-

longing to 40 classes, the performance of DSCMR is sig-

nificantly worse than our proposed method showing that

the DSCMR has poor generalization ability when extend

to more classes and more diverse dataset. Compared to

DSCMR, our method obtained significantly better perfor-

mance on all the retrieval pairs on both datasets showing

our proposed method has very strong generalization ability.

4.5.2 Comparing with the State-of-the-art In-Domain

Retrieval Methods

Although designed for cross-modal retrieval task, our model

and loss function can be easily extended to in-domain re-

trieval task. Following the prior state-of-the-art methods

for 3D in-domain retrieval task [5, 38, 19, 36, 8, 3, 4, 9, 15,

11, 14, 14], We compare the performance of in-domain 3D

object retrieval task on ModelNet40 dataset with different

modalities. As shown in Table 6, our method outperforms

all the state-of-the-art methods on ModelNet40 dataset val-

idating again the strong generalization ability of our pro-

posed method.

4.6. Qualitative Visualization

T-SNE Feature Embedding Visualization: Fig. 3 (a),

(b), and (c) show that the features are distributed as sepa-
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Method DSCMR [51] Ours

Image2Image 84.49 91.75

Image2Mesh 84.09 91.23

Image2Point 81.73 91.37

Mesh2Mesh 83.92 90.41

Mesh2Image 82.52 89.98

Mesh2Point 80.81 90.00

Point2Point 83.08 90.99

Point2Image 84.15 90.73

Point2Mesh 84.37 90.92

Table 5. Comparison with the state-of-the art methods on Model-

Net10 dataset for 3D cross-modal retrieval task. The number of

views for images is fixed to 4. The proposed method significantly

outperforms the state-of-the-art method.

Method Domain MAP

SPH [19] Mesh 33.3

LFD [6] Image 40.9

3DShapeNet [5] Volume 49.2

Deeppano [36] Image 76.8

MVCNN [38] Image 80.2

MeshNet [8] Mesh 81.9

GIFT [3] Image 81.9

SPNet [49] Image 85.2

RED [4] Volume 86.3

Panorama-ENN [35] Image 86.3

DLAN [9] Point 85.0

TCL [15] Image 88.0

SequenceView [11] Image 89.1

VNN [14] Image 89.3

ADCNN [1] Image 91.1

Ours Mesh 90.41

Ours Point 90.99

Ours Image 91.75

Table 6. Comparison with the state-of-the-art in-domain retrieval

methods for 3D objects on ModelNet40 Dataset. The number of

views for images is 4 for our method. Our method outperforms

all the other methods that are specifically designed for in-domain

retrieval for 3D data.

rated clusters, demonstrating that the proposed loss is able

to discriminate the samples from different classes for each

modality. From Fig. 3 (d), the features from three differ-

ent modalities are mixed together showing that the features

learned by the proposed framework in the universal space

are indeed model-invariant.

Cross-Modal Retrieval Visualization: Fig. 4 shows the

cross-modal retrieval samples for six different queries from

ModelNet40 dataset. For each query, the euclidean distance

over the normalized features is used to measure the simi-

larity of data from different modalities. The Top-10 clos-

est samples for each query data are visualized. The fig-

(a) Image Features (b) Point Cloud Features (c) Mesh Features (d) All Modalities

Figure 3. The visualization for the testing data in the ModelNet40

dataset by using t-SNE method [25]. Each point in the figure rep-

resents one object. Objects from the same category are rendered

with the same color.

Figure 4. Top-10 retrieval results for six query samples on Model-

Net40 dataset with our models. The green bounding boxes indicate

that the images belong to the same category as the query, whereas

the red bounding boxes indicate wrong matches.

ure shows the objects with similar appearance are closer

in the features space even though they are from different

modalities, proving that the network indeed learned model-

invariant features.

5. Conclusion

In this paper, we have proposed a cross-modal center

loss to learn discriminative and modal-invariant features for

cross-modal retrieval tasks. The proposed cross-modal cen-

ter loss significantly reduces the cross-modal discrepancy

by minimizing the distances of features belonging to the

same class across all modalities, and can be used in conjunc-

tion with other loss functions. Extensive experiments have

been conducted on retrieval tasks across multi-modalities

including image, 3D point cloud and mesh data. The pro-

posed framework significantly outperforms the state-of-the-

art methods on the ModelNet40 dataset validating the ef-

fectiveness of the proposed cross-modal center loss and the

end-to-end framework.
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