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Abstract

Referring image segmentation aims to segment the ob-

jects referred by a natural language expression. Previ-

ous methods usually focus on designing an implicit and re-

current feature interaction mechanism to fuse the visual-

linguistic features to directly generate the final segmenta-

tion mask without explicitly modeling the localization infor-

mation of the referent instances. To tackle these problems,

we view this task from another perspective by decoupling it

into a “Locate-Then-Segment” (LTS) scheme. Given a lan-

guage expression, people generally first perform attention

to the corresponding target image regions, then generate a

fine segmentation mask about the object based on its con-

text. The LTS first extracts and fuses both visual and textual

features to get a cross-modal representation, then applies a

cross-model interaction on the visual-textual features to lo-

cate the referred object with position prior, and finally gen-

erates the segmentation result with a light-weight segmen-

tation network. Our LTS is simple but surprisingly effective.

On three popular benchmark datasets, the LTS outperforms

all the previous state-of-the-arts methods by a large margin

(e.g., +3.2% on RefCOCO+ and +3.4% on RefCOCOg).

In addition, our model is more interpretable with explicitly

locating the object, which is also proved by visualization ex-

periments. We believe this framework is promising to serve

as a strong baseline for referring image segmentation.

1. Introduction

Jointly learning vision and language is a significant task

in machine learning and pattern recognition community,

which has drawn great attention in recent years. In this pa-

per, we study the challenging task of language-instructed

object segmentation [11, 38, 37] which aims to generate

a segmentation mask of the object in image referred by

*This work was done when Ya Jing was an intern at ByteDance AI Lab.
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Figure 1. The illustration of referring image segmentation. Given

a referring expression and an image, the model aims to generate a

segmentation mask of the corresponding object in image referred

by the language expression. Best viewed in color.

a natural language expression. It has wide applications,

e.g., interactive image editing and language-guided human-

robot interaction. Beyond traditional semantic segmenta-

tion, language-referring image segmentation is more chal-

lenging due to the semantic gap between image and lan-

guage. In addition, the textual expression is not just limited

to entities (e.g., “person”, “horse”). It may contain descrip-

tive words, such as object properties (e.g., “red”, “young”),

actions (e.g., “standing”, “hold”), and positional relation-

ships (e.g., “right”, “above”).

Given the image and referring sentence, there are two

essential issues affecting the overall performance of a re-

ferring image segmentation model. First, the model must

highlight the most discriminative candidate area in image

corresponding to the given language. Second, the model

must generate a fine segmentation result. The existing refer-

ring image segmentation methods could be generally sum-

9858



marized as follows: (1) Utilizing a Convolutional Neural

Network (CNN) and a Recurrent Neural Network (RNN)

to represent the image feature fv(I) and language feature

ftext(X), respectively. (2) Cross-modal attention and re-

current ConvLSTM are used to fuse fv(I) and ftext(X) to

get a coarse mask. (3) Dense CRF (DCRF) is further used

as post-processing to get the final fine segmentation M(I).

Previous works mainly focus on how to fuse the image

feature and language feature. A straightforward solution

[11] is to utilize a concatenation-and-convolution method

to fuse visual and linguistic representations to produce the

final segmentation result. However, this method cannot

model the alignment between image and language effec-

tively due to the fact that the visual and textual information

is modeled individually. To further model the context be-

tween multi-modal features, some prior methods [32, 4, 37]

propose cross-modal attention by adaptively focusing on

important regions in the image and informative keywords

in the language expression. Recently, to exploit different

types of informative keywords in the language and learn the

aligned multi-modal representations, some works [13, 14]

either perceive all the entities that are referred by the ex-

pression or utilize the linguistic structure as guidance to

segment the referent. Although great progress has been

made, the network architecture and experimental practice

have steadily become more and more complex. This makes

the algorithm analysis and comparison more and more dif-

ficult. In addition, they do not explicitly locate the referred

object guided by language expression and only utilize time-

consuming post-processing DCRF to generate the final re-

fined segmentation.

In this paper, we consider solving this problem from an-

other perspective. We decouple the referring image segmen-

tation task into two sub-sequential tasks: (a) referring object

position prediction, and (b) object segmentation mask gen-

eration. In our model, we first fuse the visual and linguis-

tic features to get a cross-modal feature. Then for (a), we

propose a localization module to directly obtain the visual

contents prior corresponding to the expression. Such object

prior will be used as a visual positional guidance for the

subsequent segmentation module. For (b), we concatenate

the object prior with the cross-modal features and utilize a

light-weight ConvNets to get the final segmentation mask

(Fig. 2).

Our solution is very simple but surprisingly effective. On

three challenging benchmarks, i.e., RefCOCO [15], Ref-

COCO+ [15] and RefCOCOg [27], our model outperforms

the state-of-the-arts methods by a large margin (e.g., +3.2%

on RefCOCO+ and +3.4% on RefCOCOg). Extensive abla-

tion studies also verify the effectiveness of each component

of our method.

2. Related Work

In this section, we briefly review the related work about

prior studies on object segmentation, referring image local-

ization and segmentation, and cross-model interaction.

2.1. Object Segmentation

Object segmentation has achieved great advances in re-

cent years based on Fully Convolutional Network (FCN)

[24]. FCN-based models transform fully connected layers

in CNN into convolutional layers to train a segmentation

model in an end-to-end way. DeepLab [5] replaces regu-

lar convolution with atrous (dilated) convolution to enlarge

the receptive field of filters, leading to larger feature maps

with richer semantic information. PSPNet [39] proposes a

pyramid pooling module to capture multi-scale information.

Some other works [1, 20] exploit low level features contain-

ing detailed information to generate more accurate results.

The instance segmentation area also achieved great progress

based on Mask R-CNN [8] and FCNs [24, 35]. In this pa-

per, we study the more challenging segmentation problem

whose semantic categories are referred by language expres-

sion.

2.2. Referring Localization and Segmentation

Referring image localization aims to localize specific ob-

jects in an image referred by a language expression with a

bounding box. Some works [36, 10] model the relation-

ships between image and language to obtain the most re-

lated objects. MAttNet [38] decomposes the referring ex-

pression into subject, location and relationship to compute

a more accurate matching score. The aim of referring im-

age segmentation[11] is to localize the referred object with

a segmentation mask rather than a bounding box. Hu et

al. [11] utilize the concatenation of visual and linguistic

features from CNN and Long Short-Term Memory network

(LSTM) [9] to generate the segmentation mask. To obtain

more accurate result, [19] fuses multi-level visual features

to refine the local details of segmentation mask. Multi-

modal LSTM [22] is employed to sequentially fuse visual

and linguistic features in multiple time steps. Dynamic fil-

ters [28] for each word further enhance multi-modal fea-

tures. Shi et al. [32] utilize word attention to model key-

word-aware context. Recently, some works [13, 14] either

perceive all the entities that are referred by the expression

or utilize the linguistic structure as guidance to segment the

referent. Multi-task collaborative network [26] achieves a

joint learning of referring expression comprehension and

segmentation. In this paper, we propose a localization mod-

ule to locate the referred object with position prior and a

segmentation module to obtain the final segmentation re-

sult.
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Figure 2. The architecture of our proposed method. The visual feature and linguistic feature are extracted by a deep convolutional network

(ConvNet) and a bi-GRU network respectively, and then fused to generate the cross-modal features. Next a cross-modal interaction module

(e.g., filtering and transformer [33]) is proposed to generate the object position prior. Finally, we concatenate the position prior and the

cross-modal features to generate final segmentation mask by further convolutional refinement.

2.3. Cross-model Interaction

In cross-modal tasks, a main challenge is to model the

relationship between image and text. Recently, attention

mechanism has been shown to be a powerful technique to

extract the visual contents corresponding to the language

expression in referring image segmentation.

The relevance filtering can be seen as a simple way of

attention mechanism, which is widely used in different ar-

eas of computer vision. Object tracking [3] aims to local-

ize an object in a video given the object region in the first

frame, where relevance filtering is used to compare the first

frame with the rest ones. Object classification [34] can be

seen as a relevance filtering produce between output image

feature and weight matrix of the last layer. Previously, rel-

evance filtering has been considered in referring image seg-

mentation [28], but they use it implicitly to generate the fi-

nal segmentation mask. In this paper, we utilize the direct

language-conditional relevance filtering to obtain the rele-

vance heatmap where higher response value is directly con-

sidered as the referred object prior.

In addition to filtering, many cross-modal attention mod-

els [32, 4, 37] are proposed to adaptively focus on important

regions in the image and informative keywords in the lan-

guage expression. Different from them, we propose to uti-

lize the unified attention-based building block transformer

[33] to get the cross-modal relevance, which eliminates the

need to design complex attention models.

3. Proposed Approach

In this section, we explain the proposed LTS in detail.

First, we introduce the procedure of visual and textual rep-

resentations extraction. Then we describe the two mod-

ules including filtering (or transformer) based localization

and light-weight ConvNets based segmentation. Finally, we

give the details of model learning process.

3.1. Visual and Linguistic Feature Extraction

As shown in Fig. 2, the input of our model consists of

an image I and a referring expression X . For similicity, we

utilize ConvNets and GRUs to extract features of I and X

respectively.

Visual Feature For the input image I ∈ R
H×W×3, we

utilize the visual backbone to extract the multi-level visual

features, which are denoted as Fv1
∈ R

H

32
×

W

32
×d1 , Fv2

∈

R
H

16
×

W

16
×d2 , and Fv3 ∈ R

H

8
×

W

8
×d3 , respectively. Note that

d is the dimension of feature channel, H and W are the

height and width of the original image, respectively.

Linguistic Feature Given a referring sentence X =
[x1, x2, ..., xm], where xi is the i-th token. We first apply

table lookup to obtain the word embeddings. The embed-

dings are initialized as a 300-dimensional embedding vector

by GLOVE embeddings [30]. To model the dependencies

between adjacent words, we use the standard bi-directional

Gated Recurrent Unit (GRU) [7] to handle the initial em-

bedding textual vectors:

−→
ht =

−−−→
GRU(xt,

−−→
ht−1), h0 = 0, (1)

←−
ht =

←−−−
GRU(xt,

←−−
ht+1), hm+1 = 0, (2)

where
−−−→
GRU and

←−−−
GRU represent the forward and backward

GRUs, respectively. The global textual representation is ob-

tained by average pooling between all word representations,

which is donated as:

ftext = avg(h1, h2, ..., hm), (3)

ht = concat(
−→
ht ,
←−
ht), t ∈ [1, 2, ...,m], (4)
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Fusion We obtain the multi-modal tensor by fusing Fv1

with ftext, which is formulated as:

f l
m1

= g(f l
v1
Wv1

) · g(ftextWt), (5)

where g denotes Leaky ReLU, f l
m1

and f l
v1

are the feature

vectors of Fm1
and Fv1

, respectively, Wv1
and Wt are two

transformation matrices to transform the visual and textual

representations into the same feature dimension. Then, the

multimodal tensors, Fm2
and Fm3

are obtained by:

F
′

mi−1
= UpSample(Fmi−1

) (6)

Fmi
= concat(g(F

′

mi−1
Wmi−1

), g(FviWvi
)), (7)

where i ∈ [2, 3] and UpSampling has a stride of 2 × 2. In

the following process, we utilize Fm3
as the input to gen-

erate the segmentation mask. Previous works usually adopt

recurrent attention mechanism to get the segmentation re-

sults. In this paper, we show that locate-then-segment could

get surprisingly superior performance, which will be intro-

duces as follows.

3.2. Localization

To locate the object referred by language expression, we

propose two ways to capture the context between multi-

modal features including simple relevance filtering and uni-

fied attention-based block transformer, which eliminates the

need to design complex attention model.

Relevance Filtering The feature Fm3
contains rich

cross-modal information, which must be further modeled

to get the relevant area in the image. The aim of our cross-

modality relevance filtering is to find the visual regions re-

ferred by the language expression, whose response scores

are higher than the unrelated regions. We first generate the

language-guided kernel K = ftextWk, where K ∈ R
dk .

Then it is reshaped into R
dk×1×1 to perform filtering in fu-

sion feature Fm3
:

Hmask = conv(K,Fm3
), (8)

where Hmask ∈ R
H

8
×

W

8 and conv means convolution op-

eration. The heatmap Hmask is a coarse segmentation mask

where regions with higher response score means the more

likely corresponding to the language expression (see Fig. 2

position prior).

Transformer To maintain consistency with the rele-

vance filtering, here we do not utilize the transformer en-

coder to extract the textual representations but regard the

global textual representation ftext as the encoder output.

The decoder follows the standard architecture of the

transformer, transforming the multimodal feature Fm3
to

response map Hmask using multi-headed attention mech-

anisms:

Hmask = decoder(Fm3
, ftext). (9)

1x1

Conv

3x3

Conv, stride 6

3x3

Conv, stride 12

3x3

Conv, stride 18

Global

pooling

concat

1x1

Conv

Upsample

(Deonv)

Figure 3. The segmentation module. We first concatenate the fea-

ture Fm3
and position prior map, and feed them into a single ASPP

module, finally we upsample (deconvolution) the final generated

mask.

The decoder expects a sequence as input, hence we col-

lapse the spatial dimensions of Fm3
into one dimension, re-

sulting in a d × HW
64

feature map. Since the transformer

architecture is permutation-invariant, we supplement it with

fixed positional encodings [2] that are added to the input of

each attention layer.

3.3. Segmentation

Given the visual object prior generated by Eq. (8) or

Eq. (9), the aim of the segmentation module is to generate

the final fine segmentation mask.

We first concatenate the original cross-modal feature

Fm3
and visual object prior Hmask, and utilize a segmenta-

tion module to refine the coarse segmentation result:

Pmask = Seg(concat(Fm3
, Hmask)), (10)

where the main structure of Seg is ASPP [5]. The ASPP

probes an incoming convolutional feature layer with fil-

ters at multiple sampling rates and effective fields-of-views,

thus capturing objects as well as image context at multiple

scales. Note that to obtain more precise segmentation re-

sults, we adopt the deconvolution method to upsample the

feature map by a factor 2. Therefore, the predicted mask

Pmask ∈ R
H

4
×

W

4 . Fig. 3 shows the segmentation process.

3.4. Training and Inference

During training, the Sigmoid Binary Cross Entropy

(BCE) loss function is defined as follows:

Lseg =

H

4
×

W

4∑

l=1

[yl log(pl) + (1− yl) log(1− pl)], (11)

where yl and pl are the elements of the down-sampled

ground-truth mask and predicted mask Pmask, respectively.

In addition, to make sure that the model can focus on the

corresponding image regions, we add a locating loss to su-
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pervise the position prediction, which is defined as follows:

Lloc =

H

8
×

W

8∑

l=1

[yl log(hl) + (1− yl) log(1− hl)], (12)

where hl is the element of the down-sampled response map

Hmask.

Finally, the total loss is defined as:

L = Lseg + λLloc, (13)

where λ is empirically set to 0.1 in our experiments.

During inference, we upsample the predicted segmenta-

tion mask Pmask to the original image size H × W and

binarized at a threshold of 0.25 as the final result. No other

post processing operations are needed.

4. Experiments

In this section, we first introduce the experimental setup

including dataset, evaluation metrics, and implementation

details. Then, we analyze the quantitative results of our

method and a set of baseline variants. Finally, we visual-

ize several segmentation masks.

4.1. Experimental Setup

Datasets and Metrics We evaluate the proposed method

on three benchmark datasets, i.e., RefCOCO [15], Ref-

COCO+ [15] and RefCOCOg [27]. We adopt intersection-

over-union (IoU) and prec@X as the evaluation metrics

[26, 37]. The IoU calculates intersection regions over union

regions of the predicted segmentation mask and the ground

truth. The prec@X measures the percentage of test im-

ages with an IoU score higher than the threshold γ , where

γ ∈ {0.5, 0.6, 0.7, 0.8, 0.9}.
The RefCOCO dataset contains 19,994 images with

142,210 referring expressions for 50,000 objects. The im-

ages and expressions are collected from the MSCOCO [21]

with a two-player game [15]. It is split into train, valida-

tion, test A and test B with a number of 120,624, 10,834,

5,657 and 5,095 samples, respectively. In general, each im-

age contains two or more objects with the same object class

and each expression has an average length of 3.5 words.

The RefCOCO+ dataset contains 19,992 images with

141,564 referring expressions for 49,856 objects. The im-

ages and expressions are also collected from the MSCOCO.

It is also split into train, validation, test A and test B with a

number of 120,191, 10,758, 5,726 and 4,889 samples, re-

spectively. Different from RefCOCO, the expressions in

RefCOCO+ include more appearances than absolute loca-

tions.

The RefCOCOg dataset is also collected from MSCOCO

and contains 26,711 images with 104,560 referring expres-

sions for 54,822 objects. Different from RefCOCO and

RefCOCO+, expressions in RefCOCOg are collected from

Amazon Mechanical Turk instead of a two-player game and

have a longer length of 8.4 words includes both appearances

and locations of the referent. RefCOCOg [27, 29] have two

types of data partitions, i.e., google partition [27] and UNC

partition [29]. We adopt UNC partition in this paper.

Implementation Details Following previous work [26],

we adopt the Darknet53 [31] as the visual backbone, which

is pre-trained on MSCOCO while removing the images ap-

peared in the validation and test sets of three datasets. The

input images are resized to 416×416 and the input sen-

tences are set with a maximum sentence length of 15 for Re-

fCOCO and RefCOCO+, and 20 for RefCOCOg. A 1024

dimensional bi-GRU is used to extract the textual feature.

The filtering dimension dk is set to 1024. The decoder has 1

layer network, 4 heads and 1024 hidden units. Adam [16] is

used as the optimizer to train our model. The initial learning

rate is 0.001, which is decreased by a factor of 0.1 at 30-th

epoch. The batch size and training epochs are set to 18 and

45, respectively.

4.2. Main Results

To demonstrate the effectiveness of our model, we com-

pare our segmentation results with the state-of-the-arts (SO-

TAs) methods on three referring segmentation benchmarks

utilizing relevance filtering as the localization module, as

shown in Tab. 1. It can be seen that our model achieves

the best performances under IoU metric across different

datasets even though we do not utilize the time-consuming

post-processing, e.g., DenseCRF [18] and ASNLS [26].

Note that our model can further improve the performance

when adopting relevance filtering for two times as shown

in Tab. 5. Specifically, compared with the best competi-

tor CGAN [25] which proposes a cascade grouped attention

network to perform step-wise reasoning, our model signif-

icantly outperforms it by about 3% absolute IoU point on

two challenging datasets (RefCOCO+ and RefCOCOg) per-

forming only the simple relevance filtering once. The im-

proved performances over the best competitor indicate that

our model is very effective for this task.

Compared with the methods CMPC [13] and LSCM [14]

which either perceive all the entities that are referred by

the expression or utilize the linguistic structure as guidance

to segment the referred object, our model achieves much

better performances by explicitly modeling the object po-

sition prior followed with a segmentation module, demon-

strating the effectiveness of our pipeline. Here DMN [28]

and Lang2seg [6] also model the multi-modal context by

filtering. But DMN utilizes every word to generate the ker-

nel and performs convolution. Therefore, it needs to regress

all the generated maps. Lang2seg utilizes the spatial-aware

dynamic filters and needs to perform filtering in 7 times for

different local regions. Different from them, our LTS uti-
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Table 1. Comparison with the state-of-the-art methods on three benchmarks datasets using IoU as metric. “-” represents that the result is

not provided. DCRF and ASNLS means DenseCRF [18] and ASNLS [26] post-processings, respectively.

Methods Backbone DCRF
RefCOCO RefCOCO+ RefCOCOg

val testA testB val testA testB val test

RMI [22] ResNet101 ✓ 45.18 45.69 45.57 29.86 30.48 29.50 - -

DMN [28] ResNet101 ✗ 49.78 54.83 45.13 38.88 44.22 32.29 - -

RRN [19] ResNet101 ✓ 55.33 57.26 53.95 39.75 42.15 36.11 - -

MAttNet [38] MRCN-ResNet101 ✗ 56.51 62.37 51.70 46.67 52.39 40.08 47.64 48.61

NMTree [23] MRCN-ResNet101 ✗ 56.59 63.02 52.06 47.40 53.01 41.56 46.59 47.88

CMSA [37] ResNet101 ✓ 58.32 60.61 55.09 43.76 47.60 37.89 - -

Lang2seg [6] ResNet101 ✗ 58.90 61.77 53.81 - - - 46.37 46.95

BCAM [12] ResNet101 ✓ 61.35 63.37 59.57 48.57 52.87 42.13 - -

CMPC [13] ResNet101 ✓ 61.36 64.53 59.64 49.56 53.44 43.23 - -

MCN+ASNLS [26] DarkNet53 ✗ 62.44 64.20 59.71 50.62 54.99 44.69 49.22 49.40

LSCM [14] ResNet101 ✓ 61.47 64.99 59.55 49.34 53.12 43.50 - -

CGAN [25] DarkNet53 ✗ 64.86 68.04 62.07 51.03 55.51 44.06 51.01 51.69

LTS (Ours) DarkNet53 ✗ 65.43 67.76 63.08 54.21 58.32 48.02 54.40 54.25

Language: “dude with black shirt says circa” Language: “black coat holding umbrella”

Language: “person in white shirt” Language: “blackest horse”

Language: “pizza farthest away”

(b) heatmap

Language: “right swan”

(c) pred_mask(a) image (c) gt (b) heatmap (c) pred_mask(a) image (c) gt

Figure 4. Visualization of correlation heatmaps Hmask (generated by relevance filtering) and final results Pmask (pred mask) predicted by

our model. gt means the ground truth segmentation mask of input image. Best viewed in color.

lizes the sentence feature to generate one kernel and only

needs filtering once. And the heatmap is utilized as the lo-

cation to guide the generation of segmentation mask. The

improved performance (16% and 6% IoU point) over them

suggests that our segmentation module can learn a more ac-

curate segmentation mask after obtaining the object location

by language expression.

4.3. Qualitative Results

To verify whether the proposed localization module can

obtain the correct location of the referent and how the

segmentation module works, we visualize the response

heatmap Hmask (generated by relevance filtering) and seg-

mentation results of several samples shown in Fig. 4. We

can see that our model is able to localize the referent by

the language-dependent filtering. We also evaluate the lo-

calization quality (the probability that the maximum value

of heatmap lies in the ground truth mask). The result is

81.74%, which further demonstrates our localization ca-

pacity of the relevance filtering. However, this heatmap is

far from an accurate segmentation mask. After refined by

the segmentation module which captures objects and image

context at multiple scales, we can obtain the final precise

prediction mask.

Fig. 5 shows the segmentation masks obtained by differ-

ent models, which demonstrates the benefits of each module

in our proposed method.

• The predicted mask from model w/o segmentation can

only obtain the location of the referent but not the fine

mask of object, as shown in column (b);

• The model w/o fusion or filter also generates lower
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Language: “bowl of carrots”

Language: “chair in front right being sat in by bald guy looking away”

Language: “child sitting on woman’s lap”

(a) image (g) gt(b) w/o segmentation(c) w/o fusion (d) w/o filter (e) ours (f) MCN

Figure 5. Qualitative examples of referring image segmentation by different models. (b) (c) (d) show the proposed model w/o segmentation,

fusion, and filter, respectively. MCN is the method proposed in [26]. Best viewed in color.

Table 2. Ablation studies on RefCOCO dataset. Seg means the segmentation module.
Fusion Filter Seg Lloc IoU prec@0.5 prec@0.6 prec@0.7 prec@0.8 prec@0.9

✓ 55.08 60.58 51.26 41.55 27.15 6.76

✓ 54.53 60.43 50.00 39.03 24.95 5.85

✓ ✓ 56.94 63.49 54.20 44.13 29.43 8.36

val ✓ ✓ 63.50 72.84 65.85 57.61 42.33 13.41

✓ ✓ 63.64 72.94 66.52 58.01 42.84 13.20

✓ ✓ ✓ 65.05 75.01 68.48 60.69 44.93 14.03

✓ ✓ ✓ ✓ 65.43 75.16 69.51 60.74 45.17 14.41

✓ 56.82 62.49 53.60 42.87 28.27 6.65

✓ 56.05 61.66 51.76 40.32 25.61 5.67

✓ ✓ 58.53 64.52 55.65 45.59 30.51 7.94

testA ✓ ✓ 65.31 75.32 69.45 60.46 44.76 11.38

✓ ✓ 66.41 77.00 71.27 62.63 46.65 12.82

✓ ✓ ✓ 67.49 78.10 72.87 64.47 48.31 13.24

✓ ✓ ✓ ✓ 67.76 78.47 73.13 64.56 47.98 12.92

✓ 53.52 59.20 49.64 39.20 26.22 8.58

✓ 52.55 56.45 46.91 37.45 24.10 8.03

✓ ✓ 55.12 60.61 51.21 41.32 29.07 10.64

testB ✓ ✓ 60.97 69.13 62.24 53.39 39.65 15.68

✓ ✓ 60.72 68.03 61.14 52.60 39.59 16.68

✓ ✓ ✓ 62.43 70.99 64.65 55.27 42.41 17.48

✓ ✓ ✓ ✓ 63.08 71.82 64.59 55.74 42.79 17.35

quality masks compared with our proposed full model

as they fail to make clear judgement of the referred ob-

ject, as shown in column (c) and (d).

Here we also compare our results with MCN [26] in col-

umn (e) and (f). Our generated segmentation masks have

more obvious object shapes and finer outlines.

4.4. Ablation Experiments

Our proposed model is mainly composed of three mod-

ules, cross-modal fusion, localization (relevance filtering or

transformer) and segmentation. To investigate these three

components and the proposed locating loss in our model,

we perform a set of ablation studies on the Refcoco dataset.

Tab. 2 shows the result.

Table 3. Results of utilizing segmentation module on CMPC [13]

on the RefCOCO dataset using IoU as metric.

Model val testA testB

CMPC 61.36 64.53 59.64

CMPC+Seg 62.75 65.34 61.08

We first investigate the importance of fusing textual
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Table 4. Results of utilizing transformer instead of filtering on the

val sets of three datasets using IoU as metric.

Model RefCOCO RefCOCO+ RefCOCOg

LTS 65.43 54.21 54.40

LTS-Trans 66.15 54.52 54.51

Table 5. Effects of filtering on RefCOCO dataset using IoU as met-

ric. n denotes number of filtering times. WordFilter means utiliz-

ing every word feature to generate kernel as DMN [28].

Model n val testA testB

1 65.43 67.76 63.08

LTS 2 66.04 68.68 63.27

3 65.54 67.82 62.97

LTS-WordFilter 1 64.92 67.31 62.50

feature with visual feature to build multi-modal represen-

tations. It can be seen that the IoU accuracy on val

dataset drops 2.4% (Fusion+Filter vs Filter) and 1.4% (Fu-

sion+Filter+Seg vs Filter+Seg). The fusion module proves

the effectiveness of multi-modal representation in learn-

ing the semantic alignment between visual and linguistic

modalities. Then we investigate the importance of rele-

vance filtering by removing it from Fusion+Filter and Fu-

sion+Filter+Seg. The IoU accuracy on val dataset drops

1.9% and 1.5%, respectively, which demonstrates that ob-

taining the location of the referent by the language descrip-

tion is beneficial to enhance the segmentation results. Com-

paring the result between Fusion (Filter / Fusion+Filter) and

Fusion+Seg (Filter+Seg / Fusion+Filter+Seg), we can find

that segmentation module can effectively improve the per-

formances by obtaining a refined segmentation mask. In

addition, we add this proposed segmentation module on

CMPC [13] as shown in Tab. 3. The improved performances

demonstrate that our module can generate more precise pre-

diction mask. Finally, we can see that adding the locat-

ing loss also obtains better performance by supervising the

alignments between image and text.

Tab. 4 shows the results when utilizing transformer in-

stead of filtering as the localization module. Using more

complex attention model can further improve the perfor-

mance by locating the referent better.

Tab. 5 shows the experimental results when adopting

multiple relevance filters, where n = 2 means we utilize

relevance filtering twice in our model. When n = 2, our

method gets better performance (+0.61 IoU). Such score is

much better than previous published best result. For sim-

plicity, all other experiments are performed with n = 1.

Besides, we conduct an experiment by utilizing every word

to generate kernel as DMN [28]. The results are shown in

Tab. 5, where they obtain comparative performances. Con-

sidering the simplicity, we adopt sentence-based filtering in

Table 6. Results of LTS with different input resolutions on the Re-

fCOCO dataset using IoU as metric.

Model resolution val testA testB

320×320 63.01 65.40 60.78

352×352 64.04 66.24 61.76

LTS 384×384 64.45 67.02 62.47

(n=1) 416×416 65.43 67.76 63.08

448×448 65.71 67.90 63.23

480×480 65.90 68.16 63.45

Table 7. Results of utilizing transformer, more filters and larger

input resolution on the val sets of three datasets.

Model RecCOCO RecCOCO+ RecCOCOg

LTS 65.43 54.21 54.40

LTS* 66.75 54.94 54.51

this paper.

In addition, we find that larger input resolution will im-

prove the performance by providing richer information as

shown in Tab. 6. In this paper, we set the image to 416×416
for fair comparison with previous methods.

Furthermore, we perform the experiments with the set-

ting of using transformer, more filtering times, and larger in-

put resolution on RefCOCO, RefCOCO+, and RefCOCOg

datasets. The results are shown in Tab. 7. We can see that

our model obtains better performances with this setting.

5. Conclusion

Referring image segmentation is a challenging task since

it not only needs to discover the most relevant area given a

language query, but also generate accurate object segmen-

tation masks. In this work, we have developed a simple

yet effective method for this task. Our approach decou-

ples this task into two sub-sequential tasks: referring object

prior prediction and fine object segmentation mask gener-

ation. Through explicitly modeling the position prior, we

get much higher segmentation performance compared with

previous best results. Extensive ablation studies verify the

effectiveness of each component of our method.

Although the IoUs of our method are much higher than

previous works, the mask quality is far from ground-truth

(Fig. 5). We believe recent progress on image segmenta-

tion such as rendering [17] could give better mask quality.

Besides, we only utilized simple visual and linguistic fea-

ture extraction backbones. More complex network struc-

tures have the potential to further improve the performance.
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Pablo Arbeláez. Dynamic multimodal instance segmentation

guided by natural language queries. In Eur. Conf. Comput.

Vis., 2018. 2, 3, 5, 6, 8

[29] Varun K Nagaraja, Vlad I Morariu, and Larry S Davis. Mod-

eling context between objects for referring expression under-

standing. In Eur. Conf. Comput. Vis., 2016. 5

[30] Jeffrey Pennington, Richard Socher, and Christopher D Man-

ning. GloVe: Global vectors for word representation. In

Conference on Empirical Methods in Natural Language Pro-

cessing, 2014. 3

[31] Joseph Redmon and Ali Farhadi. YOLOv3: An incremental

improvement. arXiv preprint arXiv:1804.02767, 2018. 5

[32] Hengcan Shi, Hongliang Li, Fanman Meng, and Qingbo Wu.

Key-word-aware network for referring expression image seg-

mentation. In Eur. Conf. Comput. Vis., 2018. 2, 3

9866



[33] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-

reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia

Polosukhin. Attention is all you need. In Adv. Neural Inform.

Process. Syst., 2017. 3

[34] Fei Wang, Mengqing Jiang, Chen Qian, Shuo Yang, Cheng

Li, Honggang Zhang, Xiaogang Wang, and Xiaoou Tang.

Residual attention network for image classification. In IEEE

Conf. Comput. Vis. Pattern Recog., 2017. 3

[35] Xinlong Wang, Tao Kong, Chunhua Shen, Yuning Jiang, and

Lei Li. SOLO: Segmenting objects by locations. In Eur.

Conf. Comput. Vis., 2020. 2

[36] Sibei Yang, Guanbin Li, and Yizhou Yu. Cross-modal re-

lationship inference for grounding referring expressions. In

IEEE Conf. Comput. Vis. Pattern Recog., 2019. 2

[37] Linwei Ye, Mrigank Rochan, Zhi Liu, and Yang Wang.

Cross-modal self-attention network for referring image seg-

mentation. In IEEE Conf. Comput. Vis. Pattern Recog., 2019.

1, 2, 3, 5, 6

[38] Licheng Yu, Zhe Lin, Xiaohui Shen, Jimei Yang, Xin Lu,

Mohit Bansal, and Tamara L Berg. MAttNet: Modular at-

tention network for referring expression comprehension. In

IEEE Conf. Comput. Vis. Pattern Recog., 2018. 1, 2, 6

[39] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang

Wang, and Jiaya Jia. Pyramid scene parsing network. In

IEEE Conf. Comput. Vis. Pattern Recog., 2017. 2

9867


