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Abstract

Fairness is becoming an increasingly crucial issue for

computer vision, especially in the human-related decision

systems. However, achieving algorithmic fairness, which

makes a model produce indiscriminative outcomes against

protected groups, is still an unresolved problem. In this

paper, we devise a systematic approach which reduces al-

gorithmic biases via feature distillation for visual recogni-

tion tasks, dubbed as MMD-based Fair Distillation (MFD).

While the distillation technique has been widely used in

general to improve the prediction accuracy, to the best of

our knowledge, there has been no explicit work that also

tries to improve fairness via distillation. Furthermore, We

give a theoretical justification of our MFD on the effect of

knowledge distillation and fairness. Throughout the exten-

sive experiments, we show our MFD significantly mitigates

the bias against specific minorities without any loss of the

accuracy on both synthetic and real-world face datasets.

1. Introduction

Based on the remarkable performance of deep neural net-

works, computer vision has become one of the core tech-

nologies in many applications that affect various aspects of

society; e.g., facial recognition [24], AI-assisted hiring [25],

healthcare diagnostics [13], and law enforcement [11]. Due

to these social applications of computer vision algorithms,

it is becoming increasingly essential for them to be fair;

namely, the outcomes of systems should not be discrimi-

native against any certain groups on the basis of sensitive

attributes. For example, any automated system that incor-

porates photographs into a decision process (e.g., job inter-

view) should not rely on certain sensitive attributes, such as

race or gender [29]. However, recent studies demonstrate

that commercial API systems for facial analysis expose the

gender/race bias in widely used face datasets [6, 34].

In this work, we are interested in the setting in which an
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Figure 1. An illustrative example of motivation to our work. The

“teacher” model may depend heavily on the skin color when de-

ciding whether the face is attractive, while it may also have learned

useful common (unbiased) facial features. To train a fair “student”

model via feature distillation, only the unbiased common features

from the teacher should be transferred to the student so that both

high accuracy and fairness can be achieved.

already deployed model has been identified as unfair. The

usual approach of the so-called in-processing methods to

mitigate the unfair bias is to re-train the model from scratch

with an additional fairness constraint [1, 18, 37]. However,

such approaches typically do not utilize any predictive in-

formation already learned out by the deployed model, and

hence, would lead to sacrificing the accuracy for the im-

proved fairness. To address above limitation, the knowledge

distillation (KD) [16] technique can be considered as a po-

tential tool for leveraging the deployed model’s predictive

power while re-training with fairness constraints. Nonethe-

less, the typical existing KD methods [16, 30, 38, 31, 17]

focused only on improving the accuracy, and considering

both the accuracy and fairness during the process of KD is

not straightforward. We aim to resolve this challenge by

proposing a new fairness-aware feature distillation scheme.

Figure 1 illustrates the key idea of our work. We assume

that even when the original deployed model, the “teacher”

model, may be heavily biased (i.e., heavily use the sensi-
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tive “skin color” attribute), it could also have learned useful

group-indistinguishable common (unbiased) features that

are effective for achieving high prediction accuracy (e.g.,

“face shape”, etc.). Our intuition is that when training a

“student” model, if only those common unbiased features

can be transferred from the teacher, the student should be

able to achieve higher accuracy, compared to the ordinary

in-processing methods that re-train from scratch, as well as

better fairness, compared to the original teacher.

In order to realize above intuition, we propose a fair fea-

ture distillation technique by utilizing the maximum mean

discrepancy (MMD), dubbed as MMD-based Fair Distilla-

tion (MFD); this is, to the best of our knowledge, the first

approach to improve both accuracy and fairness via distil-

lation. More concretely, we devise a regularization term

for training a student that enforces the distribution of the

group-conditioned features of the student to get closer to the

distribution of the group-averaged features of the teacher

in the MMD sense. We further provide a theoretical un-

derstanding that our MFD regularization can indeed lead

to improving both the accuracy and fairness of the student

in a principled way. Namely, we show our regularization

term induces the distributions of the group-conditioned fea-

tures of the student to get close to each other across all the

sensitive groups (i.e., promotes fairness), while making all

those distributions also get close to the distribution of the

group-averaged features of the highly accurate teacher (i.e.,

improves accuracy via the distillation effect).

As a result, we convincingly show through extensive ex-

periments that our MFD can simultaneously improve the ac-

curacy as well as considerably mitigate the unfair bias of a

model. Firstly, we construct a synthetic dataset, CIFAR-

10S [35], and systematically validate our motivation illus-

trated in Figure 1. Then, with additional experiments on

two real-world datasets, UTKFace [42] and CelebA [22],

we identify that our MFD is the only method that can con-

sistently improve both accuracy and fairness of the original

unfair teacher on all three datasets, compared to the three

types of baselines: ordinary KD methods, representative in-

processing methods that re-train from scratch, and methods

that naively combine the in-processing methods with KD

methods. Finally, we demonstrate the validity of our theo-

retical bound via systematic ablation studies.

2. Related Works

Algorithmic fairness Recently, a number of studies have

focused on mitigating unfairness, as exhaustively surveyed

in [4]. Fairness algorithms are mainly divided into three

categories depending on the training pipelines they apply:

pre-processing methods [7, 23, 29, 39] that refine a dataset

to remove the source of unfairness before training a model,

in-processing methods [1, 9, 18, 19, 37, 40] that take the

fairness constraints into account when training a model, and

post-processing methods [3, 14] that modify the predicted

labels after training.

In this paper, we focus on the in-processing methods,

since they can be particularly useful for the circumstances in

which controlling the model itself is possible. Among them,

some researches formulate optimization problems with a

fairness constraint indicating statistical independence be-

tween the model’s outputs and groups [19, 37]. On the

other hand, Zhang et al. [40] adopted a simple adversar-

ial debiasing (AD) technique for a model to give outputs

from which the sensitive attribute is not predictable by an

adversary. Moreover, controlling the contribution of data

points to a loss function during training can also help ob-

tain an unbiased machine. It can be done by strategically

sampling (SS) the data [9], e.g., oversampling, or assigning

unequal weights to the training samples while performing a

sequence of classification [18]. In the computer vision do-

main, the discrimination problem has usually been tackled

in facial analysis, such as face recognition [33, 34]. Wang

et al. [34] mitigated racial bias using the domain adapta-

tion technique. Wang and Deng [33] utilized reinforcement

learning. Their algorithms, however, have been specific

only to the face recognition tasks.

Knowledge distillation For the purpose of knowledge

transfer and model compression, diverse approaches to dis-

till helpful information from a learned model have been pro-

posed for deep neural networks. After the original work by

Hinton et al. [16] (HKD), which matches the softmax out-

put distribution of the teacher to that of the student, various

extensions have focused on how to exploit the learned fea-

tures. The work of Romero et al. [30] (FitNet) made the stu-

dent mimic the features of the teacher through linear regres-

sion. Zagoruyko et al. [38] proposed attention transfer (AT)

which transfers the knowledge using the attention map. Fur-

ther, Yim et al. [36] and Park et al. [26] studied approaches

using gram matrix and relation map respectively. Unlike

the previous methods, several approaches proposed feature

distillation algorithms devised from the statistical point of

views [2, 17, 27, 31]. In particular, Passalis et al. [27] sug-

gested methods to reduce the distance between the teacher

and the student feature distributions measured via Kullback-

Liebler divergence, and Huang et al. [17] invented neuron

selectivity transfer (NST) utilizing MMD. Although numer-

ous distillation methods have been proposed, none of them

explicitly considered the fairness issue during distillation.

3. Fairness Criterion

A lot of fairness criteria have been introduced including

statistical parity [8], equalized odds [14], overall accuracy

equality [5], fairness through awareness [8] and counterfac-

tual fairness [21]. Although each of them tries to tackle the

fairness problem from various aspects, choosing the most

proper one is still an open question since the notion of fair-
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Figure 2. The illustrative concept of MFD. The student treats all groups fairly while learning the teacher’s knowledge by minimizing our

MMD-based loss between p
T
y and p

S
a,y for all a ∈ A. Sample images are drawn from UTKFace dataset [42].

ness can differ according to the social, cultural background

and the application scenario.

In this work, we consider the equalized odds [14],

which can be naturally adapted to M -ary classification and

measure per-class accuracy discrepancies between groups.

Equalized odds was originally defined in the binary case;

given the target variable Y = y ∈ {−1, 1}, the equal-

ized odds requires the predictor Ỹ (e.g., the decision of a

neural network) and the sensitive attribute A ∈ A to be

conditionally independent given y, i.e., Ỹ ⊥ A|Y = y.

For non-binary Y , equalized odds can also be used to mea-

sure the fairness of a model by requiring that ∀a, a′ ∈ A,

y ∈ Y = {1, . . . ,M}, Pr(Ỹ = y|A = a, Y = y) =
Pr(Ỹ = y|A = a′, Y = y). Then, as the equalized odds-

based metrics, two types of difference of equalized odds

(DEO) are defined upon taking the maximum or the aver-

age over y as follows, respectively:

DEOM , max
y

(
max
a,a′

(
|Pr(Ỹ = y|A = a, Y = y)

− Pr(Ỹ = y|A = a′, Y = y)|
))

, (1)

DEOA ,
1

|Y|

∑

y

(
max
a,a′

(
|Pr(Ỹ = y|A = a, Y = y)

− Pr(Ỹ = y|A = a′, Y = y)|
))

. (2)

We note that DEO is equivalent to the class-wise accuracy

difference between groups over all classes. When there is

a considerable discrepancy for a specific class, DEOM is

more useful than simply measuring the group accuracy dif-

ference. On the contrary, since DEOM only focuses on the

worst unfairness, DEOA is also a crucial measure to check

the overall fairness across all classes.

4. Main Method

In this section, we describe our MFD in details. Our aim

is to train a fair student model S, given a teacher model

T , which is trained merely considering the accuracy of the

given task and could be unfairly biased. Moreover, simi-

larly as in [10], we only consider the case that the network

structures of S and T are the same. As mentioned in the In-

troduction, our underlying assumption is that despite being

biased, T could have also learned group-indistinguishable

predictive features, hence, distilling those features to S

could achieve higher accuracy than the model re-trained

from scratch with fairness constraints, while also improv-

ing the fairness over T .

One straightforward method to achieve our goal is to

simply introduce two regularization terms associated with

KD and fairness, respectively. The typical regularization for

KD employs the difference between the softmax outputs or

features of T and S, e.g., Kullback-Leibler divergence [16]

or point-wise L2 distance [30]. The regularization for fair-

ness can be often specified by the correlation [37] or mu-

tual information [19] of a model’s output and the sensitive

attribute, which targets the statistical independence. How-

ever, naively combining these two terms could lead to an

additional trade-off between the knowledge distillation and

fairness, which requires additional hyperparameter tuning

between the terms. In contrast, we devise a novel single

regularizer that can simultaneously implement the knowl-

edge distillation and fairness.

4.1. MMDbased Regularization for MFD

We approach distillation by matching feature distribu-

tions of each model as in [27], rather than minimizing

instance-wise distances, since the distributional perspective

is more proper for considering the group fairness at the

same time. To formulate our regularization, we use the max-
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imum mean discrepancy (MMD) [12], which measures the

largest difference in expectations over functions in the unit

ball F of a reproducing kernel Hilbert space (RKHS) H.

For some distributions p and q, MMD is defined as follows:

D(p,q) ,sup
f∈F

(
Ep[f(x)]− Eq[f(x

′)]
)

(3)

=‖µp − µq‖H, (4)

where µp , Ep[φ(x)], φ : X → R is defined as φ(·) ,

k(·, x) and k(·, ·) is a kernel inducing H. Under univer-

sal RKHS H, MMD is a well-defined metric since it is

proven that MMD value is zero if and only if p = q

[12]. In this work, we use the Gaussian RBF kernel, well-

known as the kernel that induces a universal RKHS, i.e.,

k(x, x′) = exp(− 1
2σ2 ‖x− x′‖

2
).

The key for accomplishing our goal is to exploit and dis-

till the group-indistinguishable features of the teacher T . It,

however, is challenging to explicitly identify them in prac-

tice, and thus, we instead adopt a trick to use the per-class

feature distribution of T as a target to distill while learning

the group-conditioned feature distribution of S. Namely,

we define our regularization term as

LMFD ,
∑

y

∑

a

D2(pT
y ,p

S
a,y), (5)

in which p
T
y = EA[p

T
A,y] is the group-averaged feature dis-

tribution of T for class y, and p
S
a,y is the group-conditioned

feature distribution of S for class y and the sensitive group

(attribute) a. The rationale behind using p
T
y as a target is

that, by taking average across the groups, we expect the

group-specific features would wash out while the common,

group-agnostic predictive features would remain.

In Section 4.3, we give a theoretical analysis that min-

imizing LMFD can simultaneously have the knowledge

distillation effect and promote fairness of the student S.

Namely, we show that it leads to assimilating p
T and p

S

(thus, KD effect) and reduces the distances among p
S
a,y for

all a ∈ A (thus, fairness effect) by having the common dis-

tillation target pT
y . Furthermore, we note that considering

the class-wise MMD in (5) fits well with the equalized odds

metric that we consider.

4.2. Objective Function

Based on the rationale on LMFD described above, we

design the final objective for training S as follows:

min
θ

LCE(θ) +
λ

2
L̂MFD(θ), (6)

where θ is the model parameter for the student S. In Eq.(6),

LCE(θ) denotes the ordinary cross entropy loss, and λ is a

tunable hyperparameter that sets the trade-off between ac-

curacy and fairness. L̂MFD(θ) ,
∑

y

∑
a D̂

2
(pT

y ,p
S(θ)
a,y )

is the empirical estimate of LMFD, in which the summand

is defined as

D̂
2
(pT

y ,p
S(θ)
a,y ) =

1

N2
1

N1∑

i=1

N1∑

j=1

k(xi, xj)

+
1

N2
2

N2∑

i=1

N2∑

j=1

k(x′
i(θ), x

′
j(θ))−

2

N1N2

N1∑

i=1

N2∑

j=1

k(xi, x
′
j(θ)),

where x, x′(θ) are the feature vectors sampled according

to p
T
y and p

S(θ)
a,y , respectively. Here, L̂MFD can be ap-

plied to several layers of deep neural network, but we study

only the case of applying to the penultimate layer through-

out our work. In summary, (6) looks similar to the typical

in-processing methods that employ additional fairness reg-

ularization, but our MFD also utilizes the information from

the teacher T . Finally, we give a pictorial summary of our

method in Figure 2.

Mini-batch optimization For the mini-batch stochastic de-

scent, a standard optimization method for neural networks,

we calculate the (a, y)-pairwise MMD using data points in

a mini-batch. But, for a certain group-label pair (a, y), the

mean of the pair’s conditional distribution in MMD can be

biased if a mini-batch has few points for the pair. Hence,

we strategically sample the data points with replacement to

make a mini-batch in which the data points for each pair are

contained with the same proportion. Furthermore, we set

the kernel parameter σ2 as the mean of squared distance be-

tween all data points for each pair to maintain the stability.

4.3. Analysis

In this section, we give a theoretical justification of our

MFD. We first show that minimizing LMFD leads to distri-

butional matching of T and S.

Lemma 1 (Knowledge Distillation)

∑

y

∑

a

p(a, y)D2(pT
y ,p

S
a,y) ≥ D2(pT ,pS). (7)

Proof : The proof follows from the following chain of in-

equalities

∑

y

∑

a

p(a, y)D2(pT
y ,p

S
a,y)

=
∑

y

∑

a

p(a, y)
(
sup
f∈F

(
EpT

y
[f(x)]− EpS

a,y
[f(x′)]

))2

≥
(∑

y

∑

a

p(a, y)sup
f∈F

(
EpT

y
[f(x)]− EpS

a,y
[f(x′)]

))2

≥
(
sup
f∈F

(∑

y

∑

a

p(a, y)
(
EpT

y
[f(x)]− EpS

a,y
[f(x′)]

)))2

=D2(pT ,pS), (8)
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in which the first inequality follows from x2 being an in-

creasing convex function for x ≥ 0 and using Jensen’s in-

equality, and the second inequality follows from the subad-

ditivity of supremum. �

Note the LHS of Eq.(7) is equivalent to LMFD when

p(a, y) is a uniform distribution. Therefore, the lemma

shows that minimizing LMFD would also lead to the fea-

ture distribution of S get close to that of T , which is the

knowledge distillation process.

Next, we investigate the relation between the LMFD and

the equalized odds by introducing the following lemma.

Lemma 2 (Fairness Constraints) For every y ∈ Y ,

∑

a

D2(pT
y ,p

S
a,y) ≥

1

2|A|

∑

a,a′

D2(pS
a,y,p

S
a′,y). (9)

Proof : Consider the followings:

∑

a

D2(pT
y ,p

S
a,y) =

∑

a

∥∥∥µpT
y
− µpS

a,y

∥∥∥
2

H
(10)

≥
∑

a

∥∥∥µ∗
y − µpS

a,y

∥∥∥
2

H
(11)

=
1

2|A|

∑

a,a′

∥∥∥µpS
a,y

− µ
p

S
a′,y

∥∥∥
2

H
(12)

=
1

2|A|

∑

a,a′

D2(pS
a,y,p

S
a′,y),

in which Eq.(11) follows from the fact that each µ∗
y ,

1
|A|

∑
a

µpS
a,y

is the minimizer of each summand of Eq.(10).

Eq.(12) follows from the equivalence between the sum of

pairwise distance and the sum of distance to their mean. �

From Lemma 2, we have that
∑
y

∑
a,a′

D2(pS
a,y,p

S
a′,y) is

upper bounded by LMFD and equality holds when µpT
y
=

µ∗
y for all y. When the global optimum is achieved, i.e.,

LMFD = 0, we get that pS
a,y is the same as p

S
a′,y for all

a, a′ ∈ A, y ∈ Y , which implies the independence be-

tween feature distribution of groups for given y, leading to

the equalized odds condition, Ỹ ⊥ A|Y = y.

5. Experimental Results

In the following section, we investigate our MFD can

indeed reduce per-class accuracy discrepancy and improve

accuracy in various object classification scenarios. We first

consider a toy dataset, CIFAR-10S [35], and then exper-

iment on two real-world datasets; age classification using

UTKFace [42] and face attribute recognition using CelebA

[22]. We describe the detailed experimental settings in the

corresponding subsections.

Baselines. We compare our MFD with three classes of

baselines. The first class is the ordinary KD methods, HKD

[16], FitNet [30], AT [38], and NST [17], that purely focus

on improving the prediction accuracy via distillation. The

second class is the state-of-the-art in-processing methods,

AD [40] and SS [9], that explicitly take the fairness crite-

rion into account while re-training the model. As described

in Section 4.2, MFD also uses the same sampling strategy

as SS, but we show through our experiments that merely

controlling the ratio of group data points in a mini-batch

can fail to reduce the unwanted discrimination of a model.

The third class of baselines is the simple combination of

the first two classes; namely, we combine the in-processing

methods, AD or SS, with the KD methods, HKD or Fit-

Net, by simply adding the distillation regularization terms

to the objective functions of the in-processing methods. We

show in our experiments that our MFD shows consistent

improvements in both accuracy and fairness across all three

datasets, while all other baselines cannot always improve

both criteria on all datasets.

Implementation details For CIFAR-10S, we employed a

simple convolutional neural network. Details of the network

architecture is described in the Supplementary Material.

For UTKFace [42] and CelebA [22], we adopted ImageNet-

pretrained ResNet18 [15] and ShuffleNet [41], respectively.

All algorithms were reproduced following the original pa-

pers using PyTorch [28]. Feature distillation was applied at

the penultimate layer for all methods except for AT. Since

AT is originally designed to transfer attention maps, we ap-

plied it to the feature after the last convolutional layer of the

networks in each experiment. For AD, we omitted the loss

projection in their original work due to the training instabil-

ity in our experiments. We did the grid search for the hy-

perparameters of all methods sufficiently and chose the best

one in terms of accuracy for the first class of baselines and

DEOM for the second and third classes of baselines. We

excluded the cases for which models achieve severely low

accuracy despite their low DEOM. More details on training

schemes and full hyperparameter settings are given in the

Supplementary Material.

5.1. Synthetic Dataset

Dataset We adopted the CIFAR-10 Skewed (CIFAR-10S)

dataset [35] which is a modified version of CIFAR-10 [20]

in order to study bias mitigation in object classification.

CIFAR-10 is a 10-way image classification dataset com-

posed of 32×32 images. In [35], the images of each class

in the dataset are divided into two new domains (i.e., two

groups) of color and grayscale with a fixed ratio. They

make the images of the first 5 classes be skewed towards

color domain and the others towards grayscale, so that the

total number of images belonging to each domain is bal-

anced. Since each class data is skewed towards a specific

domain, the extent of bias can be easily controlled by the

skew ratio. Based on their protocol, we built CIFAR-10S
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Figure 3. The effect of distillation using different feature infor-

mation. Transferring the mean features of two domains helps the

most in achieving fairness. DEOM (in %) is reported in log scale.

dataset with the skewed ratio of 0.8. More specifically, from

5,000 per-class training images of the standard CIFAR-10,

we set 4,000 images to grayscale and 1,000 to color for the

first five classes and vice versa for the others. For the test

set, we doubled the original CIFAR-10 test set by convert-

ing the images to grayscale and combining with the colored

set, thereby we balanced the test set between two domains

and have the pair of the same images; one in color, one in

grayscale.

Validating our motivation Before testing the performance

of our MFD on CIFAR-10S, we first carry out a toy ex-

periment to validate our motivation described in the Intro-

duction; namely, only distilling the group-indistinguishable

predictive features from the teacher T to the student S

should help improve both the accuracy and fairness of S.

To that end, we implemented an ideal Unskewed teacher

and tested with a different choice of distilling features. For

more details, we first constructed a Composite CIFAR-10

dataset that contains the original CIFAR-10 train set and

the its grayscale version. Then, we trained two models from

scratch with the Composite CIFAR-10 and CIFAR-10S, de-

noted as Unskewed and Skewed, respectively, in Figure 3.

Note that the Unskewed model does not suffer from unfair-

ness since it is trained on the balanced training set, while

the Skewed model suffers from very high DEOM due to

the imbalance in CIFAR-10S described above. Now, setting

the Unskewed model as the teacher T for the knowledge

distillation, we trained four students S by fixing each stu-

dent’s input as CIFAR-10S and changing the teacher’s input

to the following four choices: 1) providing the same images

as the student’s input (FitNet), 2) providing the color and

grayscale image pair that corresponds to the student’s in-

put, then distilling the mean of the two features (Mean), 3)

providing only the grayscale version of the image that corre-

sponds to the student’s input (Gray), and 4) providing only

the original color image that corresponds to the student’s

input (Color). We note that for the knowledge distillation,

all approaches minimize L2 distance between features of

the teacher and the student as in FitNet [30]. Here, Mean

is intended to approximate the distillation with the group-

Table 1. The comparison of algorithms on CIFAR-10S dataset.

The red and green arrows indicate that the performance got worse

and better compared to the teacher, respectively. The numbers in

parentheses represent how much they are changed from the value

of the teacher, i.e., relative change in percentage (%).

Model Accuracy (↑) DEOA (↓) DEOM (↓)

Teacher 79.62 15.63 31.32

HKD [16] 80.34 (0.90 ↑) 15.54 (0.58 ↓) 34.12 (8.94 ↑)

FitNet [30] 81.66 (2.56 ↑) 14.83 (5.12 ↓) 32.28 (3.07 ↑)

AT [38] 79.00 (0.78 ↓) 15.57 (0.38 ↓) 31.25 (0.22 ↓)

NST [17] 79.70 (0.10 ↑) 15.11 (3.33 ↓) 30.87 (1.44 ↓)

SS [9] 82.69 (3.86 ↑) 3.29 (78.95 ↓) 7.13 (77.23 ↓)

AD [40] 62.49 (21.51 ↓) 11.59 (25.85 ↓) 23.07 (26.34 ↓)

SS+HKD 82.27 (3.33 ↑) 10.15 (35.06 ↓) 20.37 (34.96 ↓)

SS+FitNet 81.73 (2.65 ↑) 10.35 (33.78 ↓) 20.92 (33.21 ↓)

AD+HKD 79.27 (0.44 ↓) 16.19 (3.58 ↑) 33.25 (6.16 ↑)

AD+FitNet 79.59 (0.04 ↓) 15.90 (1.73 ↑) 32.47 (3.67 ↑)

MFD 82.77 (3.96 ↑) 2.73 (82.53 ↓) 6.08 (80.59 ↓)

indistinguishable informative features. Gray and Color are

meant to further identify the effects on the student following

the teacher’s features of one specific domain.

In Figure 3, we observe that all four methods utilizing

the teacher’s knowledge succeed in improving the accuracy

compared to the Skewed. Interestingly, Mean, Gray and

Color also make significant improvements in fairness com-

pared to Skewed, which just trains from scratch only using

CIFAR-10S. Note that Mean achieves the lowest DEOM,

and we believe the reason for this improvement is that the

unbiased, group-indistinguishable feature obtained by the

mean feature from the teacher successfully mitigates the

biased information, in line with our motivation given in

the Introduction. In addtition, we also believe the fairness

gains of Gray and Color occur because providing the im-

ages of opposite domain for the half of CIFAR-10S train set

has the effect of bias mitigation through distillation, so that

the group-indistinguishable feature from Unskewed teacher

can be distilled to the student. However, we also note that

the amount of fairness improvement is smaller than Mean.

In contrast, FitNet still suffers from high DEOM despite

the accuracy improvement, which exemplifies that a naive

knowledge distillation may not be effective in mitigating the

unfairness. Encouraged by this result, we now evaluate the

performance of MFD on CIFAR-10S.

Performance comparison Table 1 shows the accuracy,

DEOA, and DEOM (all in %) of the teacher (which is sim-

ply trained on CIFAR-10S), the students trained with the

schemes from the three classes of baselines, and the student

trained with our MFD on CIFAR-10S. We can make the fol-

lowing observations from the table. Firstly, MFD dominates

all baselines, significantly improving both the accuracy and

the fairness over the teacher. Secondly, we find that the

knowledge distillation from the unfair teacher can exacer-

bate the discrimination (e.g.,DEOM) of the student while

the accuracy is improved, e.g., HKD and FitNet. Thirdly,
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Figure 4. The level of student unfairness as the unfairness of

teacher is intensified. Lower DEOM indicates the model is fairer.

Black dotted line indicates accuracy of the model trained from

scratch with the skew rate of 0.8

for in-processing method baselines, we observe both AD

and SS successfully improve the fairness, as expected, but

AD worsens the accuracy. In case of SS, while it also im-

proves the accuracy of the student, we observe our MFD

outperforms it in terms of both accuracy and fairness. This

reveals that our MFD effectively exploits the teacher by em-

ploying our regularizer L̂MFD. Finally, we observe that

a simple combination of in-processing methods with KD

methods may either impair the accuracy or limit the fair-

ness improvements.

Distillation from unfairer teacher As mentioned in above

dataset subsection, the teacher in Table 1 was trained with

the skew rate of 0.8. We now test the effect of the different

level of unfairness of the teacher in the performance of the

student trained with MFD.

Figure 4 shows the accuracy and DEOM of the teachers

that are trained with different skew rates (shown in the hor-

izontal axis) of CIFAR-10S train set as well as those of the

corresponding student that are trained with MFD employ-

ing each teacher. To see only the effect of differently biased

teachers, we always fixed the skew rate of the train set for

the student to 0.8. From the figure, we clearly see that as

the skew rate increases, the teacher becomes increasingly

unfair and inaccurate. In contrast, we observe that the stu-

dent always achieves the higher accuracy than that of the

model trained from scratch (i.e., the teacher at the skew

rate 0.8), even when the teacher MFD employs is heavily

biased. Moreover, we observe the fairness of the student

is significantly improved compared to the model trained

from scratch and stays almost the same regardless of the

unfairness level of the teacher. We believe this result cor-

roborates our intuition that even when the original teacher

is heavily biased, MFD can successfully distill the group-

indistinguishable features from the teacher so that both the

accuracy and fairness can be improved in the student.

Feature visualization To qualitatively investigate how

MFD successfully reduces the discrimination, we visualize

t-SNE embeddings of the teacher and the student trained

(a) (b)

Figure 5. t-SNE [32] plots of features from CIFAR-10S test set.

Table 2. The comparison of algorithms on UTKFace dataset. Other

settings are identical to Table 1.

Model Accuracy (↑) DEOA (↓) DEOM (↓)

Teacher 74.54 21.92 39.25

HKD [16] 76.17 (2.19 ↑) 22.50 (2.65 ↑) 41.25 (5.10 ↑)

FitNet [30] 75.23 (0.93 ↑) 21.50 (1.92 ↓) 40.00 (1.91 ↑)

AT [38] 75.17 (0.85 ↑) 22.67 (3.42 ↑) 40.50 (3.18 ↑)

NST [17] 75.10 (0.75 ↑) 22.75 (3.79 ↑) 42.00 (7.01 ↑)

SS [9] 75.23 (0.93 ↑) 24.33 (10.99 ↑) 38.50 (1.91 ↓)

AD [40] 74.67 (0.17 ↑) 20.42 (6.84 ↓) 36.00 (8.28 ↓)

SS+HKD 76.08 (2.07 ↑) 21.92 (0.00 –) 37.50 (4.46 ↓)

SS+FitNet 75.50 (1.29 ↑) 21.92 (0.00 –) 38.00 (3.18 ↓)

AD+HKD 69.48 (6.79 ↓) 18.75 (14.46 ↓) 32.50 (17.20 ↓)

AD+FitNet 70.23 (5.78 ↓) 21.17 (3.42 ↓) 33.75 (14.01 ↓)

MFD 74.69 (0.20 ↑) 17.75 (19.02 ↓) 28.50 (27.39 ↓)

Table 3. The comparison of algorithms on CelebA dataset. Other

settings are identical to Table 1.

Model Accuracy (↑) DEOA (↓) DEOM (↓)

Teacher 78.33 21.04 21.81

HKD [16] 78.64 (0.40 ↑) 21.56 (2.47 ↑) 22.54 (3.35 ↑)

FitNet [30] 78.62 (0.37 ↑) 20.66 (1.81 ↓) 21.70 (0.50 ↓)

AT [38] 78.63 (0.38 ↑) 21.28 (1.14 ↑) 22.24 (1.97 ↑)

SS [9] 79.67 (1.71 ↑) 4.87 (76.85 ↓) 5.22 (76.07 ↓)

AD [40] 76.10 (2.85 ↓) 2.51 (88.07 ↓) 3.34 (84.69 ↓)

SS+HKD 79.95 (2.07 ↑) 8.41 (60.03 ↓) 8.27 (62.08 ↓)

SS+FitNet 79.77 (1.84 ↑) 9.31 (55.75 ↓) 8.61 (60.52 ↓)

AD+HKD 80.31 (2.53 ↑) 3.40 (83.84 ↓) 4.05 (81.43 ↓)

AD+FitNet 80.60 (2.90 ↑) 5.12 (75.67 ↓) 5.51 (74.74 ↓)

MFD 80.15 (2.32 ↑) 5.46 (74.05 ↓) 5.86 (73.13 ↓)

with MFD in Figure 5 (a) and (b). In the figure, each point

represents the feature vector of an image at the penultimate

layer of the model used in Table 1. The points at the left

and the right of (a) and (b) are colored according to its class

(left) and group (right), respectively. Note MFD signifi-

cantly reduces the distributional bias between the features

for the grayscale (red) and color (blue) groups, while main-

taining separability for the ten target classes. This visual-

ization again shows that MFD can considerably mitigate the

discrepancies between different groups, while maintaining

information related to the classification task. Hyperparam-

eters of t-SNE to reproduce the results in Figure 5 are pro-

vided in the Supplementary Material.

5.2. Realworld Datasets

We now consider two real-world scenarios; age classifi-

cation and attribute recognition. For each scenario, we used

UTKFace [42] and CelebA [22]; the former was used as a

benchmark with multi-classes and multi-groups and the lat-
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Table 4. Ablation study for MFD on all dataset. All tunable hyperparameter search proceeds the same way as Table 1.

We reported MFD-K with the highest accuracy and, MFD-F and MFD with the best DEOM.

CIFAR-10S UTKFace CelebA

Accuracy DEOA DEOM Accuracy DEOA DEOM Accuracy DEOA DEOM

Teacher 79.62 15.63 31.32 74.54 21.92 39.25 78.33 21.04 21.81

MFD-K 80.13 14.70 29.83 75.42 21.67 38.5 78.43 21.19 20.59

MFD-F 82.45 2.98 6.18 72.42 19.50 35.00 79.84 2.58 2.98

MFD 82.77 2.73 6.08 74.69 17.75 28.50 80.15 5.46 5.86

ter was used to test on a larger scale data.

Dataset UTKFace is a face dataset containing more than

20,000 face images of different ethnicity over the age from

0 to 116. The ethnicity is originally composed of 5 different

groups of White, Black, Asian, Indian, and Others includ-

ing Hispanic, Latino, etc. We excluded Others from the

dataset and used the remaining four race groups as sensitive

attributes. We then divided the age range into three classes:

ages between 0 to 19, 20 to 40, and ages more than 40.

CelebA consists of more than 200,000 face images anno-

tated with 40 binary attributes. Since the dataset has severe

attribute imbalance, using multiple attributes would signif-

icantly reduce the test samples, hence, undermine the sta-

tistical significance of the results. Therefore, we only con-

sider the binary group and binary class in our experiment;

namely, we set Gender as the sensitive attribute and Attrac-

tive as the target variable, as in the work of Quadrianto et

al. [29]. For unbiased evaluation of the accuracy and fair-

ness, the test set was balanced by randomly taking the same

number of images for each group and each class on both

UTKFace and CelebA.

Performance comparison Table 2 and 3 evaluate the per-

formance of various baselines as well as our MFD on the

two real-world datasets. We omit the result for NST on

CelebA due to computational limitations. We again confirm

MFD considerably improves the fairness metrics, DEOA

and DEOM, as well as the accuracy. For both datasets, we

again observe the KD baselines improve the accuracy, as

expected, but generally hurt the fairness of the teacher. The

in-processing method baselines, SS and AD, and their KD-

combined versions perform quite well on CelebA for both

accuracy and fairness; however, we observe they show no or

only little improvement in fairness on UTKFace, which is a

multi-class, multi-group dataset. In contrast, we observe

MFD robustly improves both the fairness and accuracy of

the teacher regardless of the datasets.

5.3. Ablation Study

To further study the effectiveness of our regularization

term, L̂MFD, and verify our theoretical analyses, we eval-

uate the performance of the two variants of MFD, MFD-

K and MFD-F, that only consider KD and fairness aspect,

respectively. These variants utilize MMD-based regular-

ization terms derived from our lemmas. Namely, MFD-K

adopts RHS in Lemma 1 as the regularization term to distill

the knowledge from the teacher by minimizing the MMD

loss between the feature distributions of teacher p
T and

student pS with no consideration of fairness. On the other

hand, MFD-F trains a model without the teacher, using RHS

in Lemma 2 as the regularization term, hence, no distilla-

tion. In our implementation of MFD-F, for the stable and ef-

ficient training, we substituted the class-wise, pairwise dis-

tance D2(pS
a,y,p

S
a′,y) with the distance D2(pS

y , pS
a,y), and

only used gradients obtained from pS
a,y .

Table 4 reports the accuracy and DEO metrics evaluated

on all our datasets, for teacher, MFD-K, MFD-F and MFD.

We also used the same mini-batch technique for MFD-F

as MFD. Followings are our observations. Firstly, we ob-

serve MFD-K indeed improves the accuracy of the teacher,

hence, it can be used as a yet another KD scheme. Secondly,

we note that MFD-F creates fairer models than teacher,

but it may lead to a slight loss of accuracy as in UTK-

Face. This implies that utilizing the teacher has a critical

role in maintaining or improving the accuracy while train-

ing a fairer model. Finally, we clearly see that MFD is the

only method that consistently makes fairer models than the

teachers while improving accuracy over all datasets. Thus,

we conclude that L̂MFD is very effective in building a fair

model via knowledge distillation, as verified in our lemmas.

6. Conclusion

We proposed a novel in-processing method, MFD, that

can both improve the accuracy and fairness of an already

deployed, unfair model via feature distillation. Namely,

our novel MMD-based regularizer utilizes the group-

indistinguishable predictive features from the teacher while

promoting the student model to not discriminate against any

protected groups. Throughout the theoretical justification

and extensive experimental analyses, we showed that our

MFD is very effective and robust across diverse datasets.
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