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Abstract

In this paper, we introduce Coarse-Fine Networks, a two-

stream architecture which benefits from different abstractions

of temporal resolution to learn better video representations

for long-term motion. Traditional Video models process in-

puts at one (or few) fixed temporal resolution without any

dynamic frame selection. However, we argue that, process-

ing multiple temporal resolutions of the input and doing so

dynamically by learning to estimate the importance of each

frame can largely improve video representations, specially in

the domain of temporal activity localization. To this end, we

propose (1) ‘Grid Pool’, a learned temporal downsampling

layer to extract coarse features, and, (2) ‘Multi-stage Fu-

sion’, a spatio-temporal attention mechanism to fuse a fine-

grained context with the coarse features. We show that our

method outperforms the state-of-the-arts for action detection

in public datasets including Charades with a significantly re-

duced compute and memory footprint. The code is available

at https://github.com/kkahatapitiya/Coarse-Fine-Networks.

1. Introduction

Learning to represent videos is important. It requires em-

bedding both spatial and temporal information in a sequence

of frames, often implemented with 3D convolutions. Lean-

ing to build good video representations is crucial for various

vision tasks including action classification, video object seg-

mentation, and complex human activity recognition as well

as temporal localization of such activities.

One of the main challenges in video representation learn-

ing is in capturing long-term motion from a continuous video.

In order for a convolutional neural network to abstract long-

term motion information across many frames, a large number

of (spatio-)temporal conv. layers (or such layers with large

kernels) are necessary, requiring many parameters. This,

combined with the difficulty in obtaining large-scale anno-

tated videos and increased computation time, makes the

learning of the video representation very challenging for

non-atomic activities. This is even more challenging for tem-

poral activity detection (i.e., localization), as the activities

may very often temporally overlap. A mechanism to reliably

and efficiently capture various motion in videos is necessary.

Use of frame striding or temporal pooling (i.e., lowering

the frame rate) has been a successful strategy to cover a
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Figure 1. Coarse-Fine Networks process information at two dif-

ferent temporal resolutions. The Coarse stream learns to sample

the most informative frame locations through a learnable down-

sampling operation: Grid Pool, whereas the Fine stream process

the entire temporal duration of the input to extract a fine-grained

context. The connections in-between the two streams: Multi-stage

Fusion, provide multiple abstraction-levels of the fine-grained con-

text, calibrated to the temporal locations of the coarse frames. For

Charades dataset [29], we configure our network to use T = 64,

T
′

= 128 and α = 1/4.

larger time interval without increasing the number of model

parameters. Since such striding loses fine details of frame

changes, it was often paired with another CNN tower taking

an input with a higher frame rate, forming a two-stream (or

multi-stream) CNN architecture as was done in SlowFast [6]

and AssembleNet [25]. These models confirmed the benefits

of frame striding as well as multi-stream architectures to

combine representations with multiple temporal resolutions.

However, although using temporal striding (with a multi-

stream multi-resolution architecture) allows the model to

more easily process long-term motion, they are limited as it

ignores ‘importance’ of each frame. Informativeness of each

frame is different. It is often unnecessary and redundant

to feed almost identical frames as an input to the model

when there is no/little motion in video frames. On the other

hand, if a human in the video is displaying a rapid motion,

taking all such frames into consideration is desired. Uniform

temporal striding or pooling is incapable of such dynamic

frame selection.

In this paper, we propose (1) a new approach that allows

a learnable dynamic selection of temporal frames within

the model, as well as (2) a method to fuse such sampled

(i.e., temporally ‘coarse’) representations with conventional,
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Figure 2. Performance/complexity trade-off of state-of-the-art

methods for activity ‘localization’ in Charades [29]. Our Coarse-

Fine Networks achieve superior performance than the previous

best-performing method in literature, with more than one order of

magnitude reduction in compute. Moreover, we do not use any

additional modalities such as optical flow or object detections.

more temporally ‘fine’ representations. We introduce the

Coarse-Fine Networks. A new component named temporal

Grid Pooling is presented to obtain better Coarse represen-

tations, and the Multi-stage Fusion is introduced to best

combine such Coarse representations with the conventional

Fine representations. Unlike [6, 25], our Grid Pooling learns

to dynamically select informative frames. Fig. 1 illustrates

the overview of the model, and Fig. 2 shows the benefits of

the model, which we discuss more in the paper.

2. Related Work

CNNs learning 3D spatio-temporal representations for

human activity recognition have been very successful [2, 10,

15, 31, 32]. Two-stream approaches were often designed to

combine RGB and optical flow [7, 30], particularly focusing

on video classification. SlowFast network [6] showed the

potential that combining representations of different tempo-

ral resolutions (i.e., frame rates) could also benefit action

recognition. More recently, AssembleNet [25] showed the ef-

fectiveness of multi-stream models with neural architecture

search, and X3D [5] studied computationally more efficient

3D conv. modules. There also are approaches focusing on

the modeling of temporal structure in videos, often particu-

larly designed to handle longer videos (with long-term mo-

tion) [18, 22, 23, 34, 41]. Another group of approaches took

advantage of graph representations to model human/object

dynamics in the videos, often paired with sequential mod-

els [9, 13, 20]. Approaches to explicitly take advantage of

objects in videos have been studied as well [1, 19, 43].

Action localization: There are also a line of work focusing

on the temporal action localization task. In the localization

task (e.g., Charades localization [29]), the objective is not

about making a classification decision per segmented video

but about annotating every frame with multiple ongoing

activities. Use of sequential models such as LSTMs have

been popular [4, 39, 40], and fully convolutional approaches

also showed promising results [27, 28, 38, 42].

Dynamic sampling: Selective processing of information

has been of interest to the computer vision community.

From Deformable convolutions [3] to Graphical networks

[?, 26, 37], various core components of neural networks are

based on this idea. Multiple recent works also try to ad-

dress dynamic sampling of inputs, either spatially [8, 12, 24],

temporally [17, 35, 36, 44] or spatio-temporally [21].

3. Coarse-Fine Networks

Coarse-Fine Networks explore how video architectures

can benefit from different abstractions of temporal resolution

and long-term temporal information. As shown in Fig. 1,

we do this by processing the information at two different

temporal resolutions: coarse and fine, in a two-stream archi-

tecture. The Coarse stream learns to (differentiably) select

the most informative frame locations, essentially perform-

ing a learned temporal downsampling to abstract a lower

temporal resolution. In contrast, the Fine stream processes

the input at the original temporal resolution and provide a

fine-grained context to the Coarse stream through a fusion

mechanism. To abstract this context information, the Fine

stream always looks at the full temporal duration of the input

clip (which later gets pooled with Gaussians), whereas the

Coarse stream can either look at a shorter clip or the entire

clip depending on the inference interval.

In Coarse-Fine Networks, we address two key challenges:

(i) how to abstract the information at a lower temporal reso-

lution meaningfully, and, (ii) how to utilize the fine-grained

context information effectively. First, to abstract coarse in-

formation, we propose Grid Pool (Sec. 3.1), a learnable

temporal downsampling operation which adaptively samples

the most informative frame locations with a differentiable

process. Secondly, to effectively use the fine-grained con-

text provided by the Fine stream, we introduce Multi-stage

Fusion (Sec. 3.2), a set of lateral connections between the

Coarse and Fine streams, which looks at multiple abstraction

levels of fine-grained information.

3.1. Grid Pool

Our temporal Grid Pool operation learns the most infor-

mative frame locations from a given input clip, and samples

the representations corresponding to the locations based on

interpolation. In fact, it can be viewed as a learnable tem-

poral downsampling layer with a small compute overhead,

which can replace the conventional temporal pooling oper-

ations. However, in contrast to these pooling operations,

our Grid Pool samples by interpolating on a non-uniform

grid with learnable (and adaptive) grid locations as shown

in Fig. 3. First, a lightweight head (h) projects the input

feature (XC ) of temporal length T to a set of confidence val-

ues {pi}i=1,··· ,αT , where α < 1 and αT is an integer (e.g.,

α = 1/4 and T = 128). These confidence values represent

how informative each temporal interval with a size of 1/α
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Figure 3. Grid Pool layer learns a temporal downsampling oper-

ation based on non-uniform grid locations. αT number of points

are differentiablly sampled from an input feature of length T by

learning their importance. We interpret pi as the importance of

each frame location. Since we want to sample with a lower sam-

pling duration (i.e., a higher frame rate) where we have a higher

importance, we construct cdf(1− pi) for sampling.

(e.g., 4 frames if α = 1/4) is, and is modeled as a function

of the input representation X
C :

{pi}i=1,··· ,αT = h(XC) . (1)

The intuition here is to sample frames at a higher frame

rate where the confidence (i.e., informativeness) is high and

at a lower frame rate where it is low. In other words, the

stride between the interpolated frame locations should be

small where the confidence is high, and vice-versa. We nor-

malize these confidence values pi since we need the relative

(not absolute) confidence to capture the relative importance

of frames. To get a set of αT grid locations based on con-

fidence values, we consider the Cumulative Distribution

Function {cdf(1− pi)}i=1,··· ,αT , which is a non-uniform

and monotonically-increasing function. The input of the

Grid Pool layer XC is sampled/interpolated based on these

grid locations to get the output X̃C , while making it fully

differentiable for backpropagation. This process can be rep-

resented as,

qt = T · cdf(1− pt) = T ·
∑t

i=1
(1− pi)

∑αT

i=1
(1− pi)

,

X̃
C = I

(

X
C , {qt}t=1,··· ,αT

)

, (2)

where qt represents the grid location t, and I(·) represent

the temporal sampling function. Here, when a grid location

is non-integer, the corresponding sampled frame is a tem-

poral interpolation between the adjacent frames. We do not

perform any spatial sampling in the Grid Pool layer.

Grid Unpooling: A temporal interpolation based on a non-

uniform grid as such can affect the temporal structure of the

propagated features. Before feberating the final output, the

frame-wise predictions of the network should be re-aligned

properly for activity detection tasks. To do this, we introduce

a Grid Unpool operation, which is coupled with the grid

locations learned by the Grid Pool layer. This does not have

any learnable parameters and simply performs the inverse

operation of the former. First, αT re-sample grid locations

are calculated based on the inverse mapping of the cdf,

based on which, the logits are re-sampled to acquire the

original temporal structure. The idea is to re-sample with a

low frame-rate in the regions where we used a high frame-

rate in Grid Pool, and vice-versa. Any non-integer frame

location is temporally interpolated similar to Eq. 2. Finally,

these logits are uniformly upsampled through interpolation

to fit the input temporal resolution. For classification tasks,

the Grid Unpool operation may not be necessary as a global

pooling of the logits is considered as the prediction.

3.2. Multi­stage Fusion

We introduce Multi-stage Fusion, a set of lateral connec-

tions between the two streams as shown in Fig. 4, to fuse

the context from the Fine stream with the Coarse stream.

We consider three main design choices here: (i) it should

be capable of filtering out which fine-grained information

should be passed down to the Coarse stream, (ii) it should

have a calibration step to properly align the fine features

with the coarse features based on their relative temporal

locations, and (iii) it should be able to learn and benefit

from multiple abstraction-levels of fine-grained context at

each fuse-location in the Coarse stream. Our design tries to

address these aspects.

Filtering fine-grained information: First, to decide which

fine-grained context should be passed through to the fusion

process, the fine feature X
F
li

at abstraction-level li is mul-

tiplied with a self-attention mask. This mask is calculated

by processing the fine feature through a lightweight head (g)

consisting of point-wise convolutional layers followed by a

sigmoid non-linearity.

X̄
F
li
= X

F
li
g(XF

li
)

Fine-to-Coarse correspondence: The attention-weighted

fine feature X̄
F
li

still needs to be calibrated for the tempo-

ral location of each coarse feature. Since the Coarse and

Fine streams does not necessarily process the same, prop-

erly aligned temporal length because of our non-uniform

Grid Pooling, we need to explicitly compute the frame

correspondence. To make this calibration, we use a set

of temporal Gaussian distributions centered at each coarse

frame location {µC
j }j=1,··· ,αT which abstract a location-

dependent weighted average of the fine feature. We use

αT such Coarse-centric Gaussians, each having a temporal

length of T
′

and a standard deviation σ which is a fraction

of this length. We found that considering the center and

scale of these Gaussians to be hyperparameters rather than

making them learnable, gives a better performance, possibly
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Figure 4. Multi-stage Fusion feeds multiple abstraction-levels of

fine-grained context to the Coarse stream. First, Fine stream fea-

tures get filtered through a self-attention mask. Then, these features

get calibrated for each coarse frame, based on Gaussian weights

centered at the corresponding coarse frame location. Finally, such

calibrated features from multiple abstraction-levels get point-wise

convolved to calculate the scale and shift features which provide

an affine transformation to the coarse features.

due to relatively simpler training. This calibration step can

be viewed as,

GC
j =

1√
2πσ2

exp
(t− µj)

2

2σ2

∣

∣

∣

∣

j=1,··· ,αT

,

X̂
F
li
= X̄

F
li
·GC ,

where GC is the stacked Coarse-centric Gaussians and t ∈
[0, T

′ − 1].

Multiple abstraction-levels: The feature X̂
F
li

still corre-

sponds to a single abstraction-level li of fine features,

where we have Multi-stage Fusion connections in multiple

abstraction-levels, i.e., depths of the network. Therefore, we

allow each fusion connection to look at the features from all

abstraction levels by concatenating them channel-wise (after

adjusting the spatial resolution through max pooling), and

performing point-wise (i.e. 1× 1× 1) convolutions to get

the final scale (Ali) and shift (Bli) features at each fusion

location. This can be represented as,

X̂
F = ⊕n

i=1
X̂

F
li
,

Ali = fA

li
(X̂F ) ,Bli = fB

li
(X̂F ) ,

X̂
C
li
= AliX̃

C
li
+Bli .

where ⊕ is the channel-wise concatenation of features from

n abstraction-levels and, fA

li
and fB

li
represent projection

heads to calculate the scale and shift features at each fusion

location li, respectively. This design enables Multi-stage

Fusion to process multiple abstraction-levels of fine-grained

context through filtering and temporal calibration.

3.3. Model Details

The network architecture used as the backbone in Coarse-

Fine Networks is adopted from X3D [5], which follow a

Stage
Filters Output size T×S2

Coarse Fine Coarse Fine

input stride 10, 12 T×2242 T
′

×2242

conv1 1×32, 3×1, 24 T×1122 T
′

×1122

res2





1×12, 54

3×32, 54

1×12, 24



×3 T×562 T
′

×562

grid pool stride 1/α, 12 - αT×562 T
′

×562

res3





1×12, 108

3×32, 108

1×12, 48



×5 αT×282 T
′

×282

res4





1×12, 216

3×32, 216

1×12, 96



×11 αT×142 T
′

×142

res5





1×12, 432

3×32, 432

1×12, 192



×7 αT×72 T
′

×72

conv5 1×12, 432 αT×72 T
′

×72

pool5 None×72

αT×12 T
′

×12fc1 1×12, 2048

fc2 1×12, #classes

grid unpool stride α, 12 - T×12 T
′

×12

Table 1. Coarse-Fine Network Architecture is adopted from X3D

[5], more specifically from the version X3D-M. Both streams have

the same design and parameters, except for the addition of Grid

Pool layer and Grid Unpool operation in the Coarse stream. The

Fine stream process the entire temporal length of the input T
′

to provide a fine-grained context, whereas the Coarse stream can

look at a segmented clip of length T , for which the frame-wise

predictions are required. Here, α < 1 and αT is an integer. The

kernel shapes follow the standard notation {T × S2, C}.

ResNet [11] structure, but designed for efficiency in video

models. Both Coarse and Fine streams are initialized with

separate sets of parameters, but have the same number of

layers and filters as shown in Table 1, except for the ad-

dition of Grid Pool in the Coarse stream. Since the X3D

architecture perform no temporal downsampling or pool-

ing, it follows aggressive striding at the input level to be

computationally efficient, which is set be a stride of 10 in

our case. This allows the input of the Coarse stream to

cover a large temporal region, compared to what common

backbones such as I3D [2] cover during training. This is

beneficial, particularly in datasets with longer temporal dura-

tion. The Coarse stream takes in segmented clips of T = 64
frames to follow the standard X3D architecture after the Grid

Pool layer (with α = 1/4) during training, while processing

the input fully convolutionally at inference (i.e., T = 128
frames during testing). In contrast, the Fine stream always

process the entire input clip, which is capped at a maximum

of T
′

= 128 frames. This limit should be adjusted based

on the dataset to include the entire duration of input clips.

We found T
′

= 128 frames with a stride of 10 is adequate

to cover the entire temporal length of more than 90% of the

Charades [29] videos.

The main difference between the Coarse stream and the

Fine stream is the Grid Pool layer and the corresponding Grid

Unpool operation. We want to perform this learned temporal
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downsampling as early as possibly in the network to reduce

the compute, but at the same time, having good enough fea-

tures to learn the grid locations. Thus, we place the Grid

Pool layer after the first residual block res2. We find that

downsampling by a factor of 4 works well in practice, to

have a good compute/performance trade-off (Table 3e). To

calculate the confidence values (p) in the Grid Pool layer, we

use a lightweight head (h) of 3 strided convolutions with a

total temporal stride of 4 and a spatial stride of 8, followed

by spatial average pooling and a sigmoid non-linearity. The

Grid Unpool operation has no learnable parameters. It is cou-

pled with the grid locations predicted by the Grid Pool layer

to perform the inverse operation of the former to recover the

original temporal structure at the logits level.

We try to follow a lightweight design in Multi-stage Fu-

sion as well. The self-attention mask X̂
F
li

is calculated

through a head (g) of 2 point-wise (i.e. 1 × 1 × 1) con-

volutions followed by a sigmoid non-linearity. The Coarse-

centric Gaussians (GC) have no learnable parameters, and

the peak magnitude of each mask is normalized to 1. The

standard deviation σ is set to be T
′

/8, empirically. The two

heads fAli and fAli at each fusion location which project

the concatenated multi-stage features (X̂F ) to scale (Ali)

and shift (Bli) features contain a single point-wise convo-

lution each. The scale features go through an additional

sigmoid non-linearity. We further discuss the complexity

(compute and parameters) of these operations in our abla-

tions (subsection 4.2).

4. Experiments

We evaluate Coarse-Fine Networks on two large-scale

benchmarks for activity detection: Charades [29] and Multi-

THUMOS [39]. Note that we focus on the temporal detection

(i.e., localization) task of generating multi-label activity an-

notations at every time step, which is more challenging than

video classification. Activities may temporally overlap (e.g.,

sitting and eating), and the model must be trained to annotate

all of them at each time step.

4.1. Charades

Dataset: Charades [29] is a large scale dataset consisting of
∼9.8k continuous videos with frame-wise annotations of 157

common household activities. The dataset is split as ∼7.9k

training and ∼1.8k validation videos. Each video contains an

average of 6.8 activity instances, often with multiple activity

classes per frame, and has longer clips averaging a duration

of ∼30 seconds. Such a long duration makes it a suitable

dataset to test Coarse-Fine Networks.

Training: We initialize both Coarse and Fine streams of

our network with the X3D backbone pretrained on Kinetics-

400 [16]. For the actual training of the Coarse-Fine network

as well as baselines, we follow a two-stage training pro-

cess: first, training the two streams separately, followed by

finetuning the combined streams.

In the first stage, the Coarse stream considers an input of

64 frames sampled at a stride of 10, whereas the Fine stream

considers 16 frames sampled at the same stride. This allows

both streams to process same-sized features after Grid Pool

layer. We use α = 1/4 in our experiments. Each stream is

trained for 100 epochs with a batch size of 16 at a learning

rate of 0.02 at the start, which is decreased by a factor of 10

at 60 and 80 epochs.

In the second stage, the two streams are trained together

as Coarse-Fine Networks, with Multi-stage Fusion parame-

ters initialized from scratch. We train this for another 100

epochs with the same schedule and batch size, but use 10×
increased learning rate for the newly-initialized parameters

of the fusion layers. Here, the Fine stream process the en-

tire duration of the input, which is capped at 128 frames

(sampled at a stride of 10) for Charades [29]. During both

stages, each input is randomly sampled in [256,320] pixels,

spatially cropped to 224×224 and applied a random hori-

zontal flip. We use a dropout rate of 0.5 before the logits

layer. The logits go through a sigmoid to make multi-label

predictions for each frame. We use an average of classifi-

cation and localization loss for training, similar to previous

methods [22, 23].

Inference: At inference, we make predictions for every

frame. Even though our input is sampled at a stride of

10, we consider the labels for all frames (at a stride of 1)

and interpolate the logits to fit the original temporal length.

In other words, we evaluate our models so that the predic-

tions are more fine-grained at original temporal resolution.

However, all state-of-the-art methods in Table 2 report the

performance for 25 equally-sampled frames per each input,

which is the original Charades localization evaluation [29]

setting. Therefore, to make a fair comparison, we evaluate

our models in the same setting, only making predictions for

25 equally-sampled frames per input. The evaluation script

from the Charades challenge scales the Average Precision for

each class with a corresponding class weights. At inference,

the inputs are center-cropped to 224×224. We report the

performance as mean Average Precision (mAP) and measure

the compute requirement to process an input clip of 128×10

frames, for which our network processes only 128 frames

due to input striding. The compute is reported as GFLOPs

(floating-point operations ×109) and the number of learn-

able parameters in millions (M), i.e., ×106. We do not take

advantage of any multi-crop inference.

Results: We compare the performance of the Coarse-Fine

Networks with the state-of-the-art methods on Charades [29]

localization task (i.e., temporal activity detection) in Table 2.

For this evaluation, we use the standard test setting (i.e., the

official ‘Charades_v1_localize’ evaluation) where we make

predictions for equally-sampled 25 frames in the validation

set. This is the same procedure followed in previous work

[20, 22, 23]. We report the performance (mAP), compute
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model flow obj. mAP (%) GFLOPs Param (M)

I3D (Inception) [2] 15.63 2223.03 12.45

Two-stream I3D [2] X 17.22 4446.10 24.90

3D ResNet-50 [11, 33] 18.60 3187.63 46.52

X3D [5] 18.87 37.96 3.29

X3D-L [5] 20.03 147.04 5.78

I3D + super-events [22] X 19.41 4446.15 26.18

I3D + TGM [23] X 21.50 4446.66 27.00

I3D + super-events + TGM [23] X 22.30 4446.75 28.28

I3D + STGCN [9] X X 19.09 4450.94 29.18

I3D + biGRU + VS-ST-MPNN [20] X 23.70 2223.03+ 12.45+

X3D [5] + TGM [23] 20.01 38.26 4.35

SlowFastdet (with X3D) 22.31 54.31 7.41

Fine-Fine (ours) 24.43 94.80 7.80

Coarse-Fine (ours) 25.10 73.37 7.82

Table 2. Comparison with the state-of-the-art methods for ac-

tivity detection on Charades [29]. We report the performance

(mAP), compute requirement to process a clip of 128× 10 frames

(GFLOPs), and the number of parameters (M). These results cor-

respond to the original Charades localization evaluation settings.

Coarse-Fine Networks significantly outperform the previous state-

of-the-art with +1.4%mAP relative improvement, while reducing

the compute requirement by more than one order of magnitude.

It is worth noting that we do not use additional input modalities,

i.e., optical-flow or object detections as any of the previous meth-

ods. The source of [20] is not available to us to calculate its exact

complexity values.

requirement to process a clip of 128× 10 frames (GFLOPs)

and the number of parameters (M).

We are able to confirm that our Coarse-Fine Network per-

forms better than all previous methods, establishing the new

state-of-the-art number of 25.10 on Charades localization.

The Coarse-Fine Network, which only uses RGB, is not only

superior to the previous RGB models but also is better than

the methods using additional inputs modalities (i.e. optical-

flow and object detection). It shows a relative improvement

of +1.4%mAP compared to the previous best performing

method [20], which benefits from additional training data

(for its object detector training) and additional input modality

(objects).

We also note that the Coarse-Fine Network is extremely

computationally efficient. Compare to the previous mod-

els, it often requires only ∼1/75 of computations (e.g., 73

vs. 4446 GFLOPS). Further, this computation is without

considering the overhead for optical flow computation or

object detection in prior works. The significant computa-

tion efficiency of the Coarse-Fine Networks is due to the

better utilization of the RGB features, which discards the

need for processing additional modalities, as well as an effi-

cient usage of X3D modules with our temporal Grid Pooling

and Multi-stage Fusion, which we confirm further with our

ablations in the next section.

We further report a version of our method: Fine-Fine

Networks, in which the Grid Pool layer is removed from the

Coarse stream, to highlight the importance of the Coarse fea-

tures. Fine-Fine Networks still benefit from our Multi-stage

Fusion. The Grid Pool operation dynamically sample impor-

tant frames to generating a coarse temporal resolution, which

gives the Coarse-Fine Networks an relative performance gain

of +0.67% mAP and 23% computation reduction. We also

evaluated the baseline extension of X3D as a two-stream net-

work (with different temporal resolutions) in a form similar

to [6], which we name SlowFastdet. This does not have our

Grid Pool layer or the Multi-stage Fusion mechanism. The

result shows the benefits of the component, giving a relative

improvement of 2.79%mAP. A larger version of X3D (i.e.,

X3D-L) shows that the performance improvement of Coarse-

Fine compared to X3D is not merely due to the increased

compute.

It is important to also note that all previous methods work

on pre-extracted features from a frozen backbone, essentially

making them late-modeling techniques, either using graph-

based methods [9, 20] or abstracting long-term temporal

information [22, 23]. In contrast, our method allows end-to-

end training of feature fusions at intermediate locations of

the network, enabling it to learn better representations using

only RGB information.

Fig. 2 further highlights the benefit of Coarse-Fine Net-

works compared to previous state-of-the-arts. We show the

performance/complexity trade here, with the x-axis (com-

plexity in GFLOPs) in log-scale. Our method shows compa-

rable performance with the previous best performing method

which outperforms all previous state-of-the art methods,

while being extremely efficient in design.

4.2. Ablations

Here, we discuss multiple ablation experiments validating

our design decisions, specifically on our Grid Pool layer and

Multi-stage Fusion. We use the Charades dataset (with the

localization setting as above).

In our ablation experiments, we take advantage of more

robust evaluation metric to compare our approach and the

baselines. We make the model to generate a multi-class

activity annotation at every time step, and compare it with

the ground truth to measure the mAP. This is very similar

to the official ‘Charades_v1_localize setting’ used above,

except that (i) it is evaluated for ×25 more frames for the

completeness and that (ii) we measure mAP per activity class

and average them.

Fusion location: First, we explore which locations in our

two stream architecture would be ideal to implement the

fusion connections. We consider the late fusion as a baseline,

in which, the only fusion happens just before the logits

layer. This is similar to the previous methods in [22, 23].

Next, We extend this fusion to multiple intermediate levels,

specifically, after each res block, in which we fuse the two

streams at only equivalent abstraction levels, i.e., at the same

depth. This is similar to the fusion in SlowFast [6]. Finally,

we consider multiple abstraction-levels of Fine features for

the fusion, which gives our Multi-stage Fusion. The results

of this ablation is given in Table 3a. Note that here we

evaluate our fusion in a Fine-Fine Network to decouple the
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Fusion location mAP (%) GFLOPs

late only 21.84 77.15

late+intermid one-to-one 22.50 81.80

late+intermid multi-stage 22.65 94.80

(a) Fusion location: Using the fusion connec-

tions only before the logits, in-between each res

block w/ or w/o considering multiple abstraction-

levels at each fusion location. (Fine-Fine)

Fusion dimensions mAP (%) GFLOPs

C 18.11 76.45

CHW 19.86 93.12

CTHW 22.65 94.80

(b) Fusion dimensions: The Dimensions

of Multi-stage Fusion features. When tem-

poral dimension (T) is available, we use

Coarse-centric Gaussians for location cali-

bration. (Fine-Fine)

Fusion loc. Fusion mask mAP (%) GFLOPs

late
none 20.59 75.98

self-attention 21.84 77.15

multi-stage
none 21.42 92.69

self-attention 22.65 94.80

(c) Fusion mask: The effect of using a self-

attention mask to filter the fine-grained context

(refer Fig. 4), with different fusion connections.

(Fine-Fine)

Pooling type mAP (%) GFLOPs

Max 16.21 15.42

Average 16.64 15.42

Striding 17.49 15.42

Grid Pool 18.12 16.53

(d) Pooling type: Different types of

temporal pooling operations used af-

ter res2 block. A temporal stride

of 4 (equivalent to α = 1/4) used

here. (Coarse-only)

Grid Pool input α mAP (%) GFLOPs

T=128, stride=10
1/4 18.12 16.53

1/8 11.88 10.43

T=256, stride=5
1/4 18.16 32.82

1/8 15.56 20.63

(e) Grid Pool configuration: Variations of the

sampling rate α with different temporal sizes of

the input at the Grid Pool layer. (Coarse-only)

Two-stream Network mAP (%) GFLOPs

SlowFastdet 20.61 54.31

SlowFastdet (w/ Grid Pool) 20.82 55.42

SlowFastdet (w/ Fusion) 22.79 72.16

Coarse-Fine (w/ Grid Pool w/ Fusion) 23.24 73.37

(f) Importance of Grid Pool and Multi-stage Fusion com-

bined: SlowFastdet is a baseline w/o Grid Pool and Multi-stage

Fusion. It samples input at different frame-rates (Fast is ×4

faster) and uses fusion connections similar to that of Slow-

Fast [6]. (Coarse-Fine)

Table 3. Ablations on Charades [29] localization comparing the design choices of Grid Pool and Multi-stage Fusion. We show the

performance in mean Average Precision (mAP), and measure the compute requirement for a temporal clip of T= 128 at inference in

GFLOPs (floating-point operations ×109). In these tables, we report the performance for fine-grained predictions, making decisions for

every frame. The network configuration used in each experiment is shown within the braces of each caption (Fine-Fine, Coarse only or

Coarse-Fine). Fine-Fine Networks are used in Fusion experiments to decouple the effect of Grid Pool, and similarly, Coarse only Networks

are used in Grid Pool experiments decouple the effect of Multi-stage Fusion.

effect of Grid Pool from our fusion. Multi-stage Fusion

shows a +0.81% mAP improvement compared to only using

a late fusion. The improvement of considering multiple

abstraction-levels is marginal, at +0.15% mAP, suggesting

that features at the same abstraction level can provide the

most complementary information.

Fusion dimensions: We experiment on the significance of

different dimensions in the fusion features. Either having

only channel dimension (C) similar to [22], channel-spatial

(CHW) dimensions or all channel-temporal-spatial (CHWT)

similar to [6] is considered here. The results of this exper-

iment is reported in Table 3b. Note that the dimensions

which are not available in any of the above scenarios are

average pooled before the fusion. We see that having all

CHWT dimensions in the fusion feature has a large improve-

ment compared to the baseline, specifically +4.54% mAP.

Introduction of the temporal dimension (T) shows the most

improvement, which is +2.79% mAP. This is in fact mainly

due to the temporal Gaussians in our Fusion that calibrate the

features based on the location, without which, we can not see

such improvement (i.e., +0.61% mAP over a single stream,

when naively selecting corresponding temporal locations in

the two streams for fusion w/o Gaussians).

Fusion mask: Here, we evaluate how important it is to filter

the Fine features at the input of fusion, results of which, is

shown in Table 3c. In the Multi-stage Fusion setting, having

a self-attention mask to adaptively weight each Feature point

gives an improvement of +1.23% mAP compared to feeding

the Fine feature directly.

Pooling type: Next, we explore the performance gain

caused by the proposed (temporal) Grid Pool layer. We com-

pare against conventional temporal pooling operations such

as max pooling, average pooling and even simple temporal

striding. Here, we report the numbers for a Coarse-only

network to decouple the effect of Grid Pool from that of

Multi-stage Fusion. In these experiments, we set α = 1/4,

which essentially means a ×4 temporal downsampling, and

perform the downsampling after the res2 block. Max pool-

ing, average pooling use a similar setting of kernel size of

4 and a stride of 4. Grid pooling gives a consistent im-

provement over other methods, specifically +1.91% mAP

and +1.48% mAP over commonly used max pooling and

average pooling, respectively. We also note that a simple

temporal striding can outperform max pooling and average

pooling by +1.28% mAP and +0.85% mAP, respectively.

We suspect that the inferior performance of max/average

pooling is due to the aggressive temporal striding at the in-

put of X3D, which is a stride of 10 by default (i.e., after the

pooling, the stride is 40). In such a large window, pooling

tends to blur most of the temporal information.

Grid Pool configuration: We try different configurations

of Grid Pooling to evaluate its performance and compute

requirement. Similar to above, we use the Coarse-only net-

work. We consider an input of temporal length T = 128
at a stride of 10 or T = 256 at a stride of 5, to cover en-

tire duration of Charades videos [29]. We try temporally

downsampling each of these with α = 1/4 (×4 downsam-

pling) or α = 1/8 (×8 downsampling). The performance

of these configurations is given in Table 3e. ×8 downsam-

pling shows a significantly lower performance indicating

that it looses too much information with such an aggres-

sive stride, i.e., more frames are important and need to be

sampled by the Grid Pool layer. Moreover, increasing the

number of input frames does not necessarily improve the
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performance (only +0.02% mAP) with α = 1/4. Among

these configurations, T = 128 with α = 1/4 shows the best

performance/compute trade-off.

Grid Pool and Multi-stage Fusion combined: Finally, we

evaluate the combined performance of Grid Pool and Multi-

Stage Fusion. To do this, we consider a two-stream baseline

without these components, which we call SlowFastdet. This

performs ×4 temporal downsampling in the Coarse stream

based on striding, and use direct frame correspondences

between Fine and Coarse streams for fusion, similar to Slow-

Fast [6] while still using X3D modules like ours. The results

of this study is given in Table 3f. When compared with

this baseline, introduction of either Grid Pool or Multi-stage

Fusion provides consistent improvements of +0.21% mAP

and +2.18% mAP respectively. Our Coarse-Fine Networks

outperform this baseline by a margin of +2.63% mAP.

Trade-off with X3D: Coarse-Fine network is designed to

use a similar amount of computation as a two-stream ver-

sion of X3D-M. Another way to use the extra compute is

by increasing the number of layers. To understand if the

increased compute is meaningful, we test X3D-L, a larger

version of X3D (Table 2). X3D-L shows of 20.03% mAP

with a compute of 147.04 GFLOPS. Coarse-Fine Networks

outperform this in both accuracy and speed with 25.10%
mAP at 73.37 GFLOPS.

4.3. MultiTHUMOS

Dataset: MultiTHUMOS [39] is an extension of the THU-

MOS [14] dataset with the untrimmed videos densely anno-

tated for 65 different action classes. It provides frame-level

action annotations for 30 hours of video across 413 videos,

split as 200 for training and 213 for validation. On average,

it contains 1.5 labels per frame and 10.5 action classes per

video. It contains significantly smaller number of videos

compared to Charades [29] and each video has a larger tem-

poral length, which make the training difficult. We created a

segmented version of this data, where each clip is limited to

a maximum of 1280 frames, which gives a similar evaluation

setting to Charades. For the computational efficiency, we

use the temporal striding of 10.

Training: We follow a training process similar to what we

did for Charades. We follow two stages of training with our

Coarse and Fine streams pretrained on Kinetics-400 [16], i.e.,

separately and combined. We use the same hyperparameter

settings and training schedules as in Charades (refer subsec-

tion 4.1). We use a dropout rate of 0.5 before the logits layer.

The logits go through a sigmoid to make multi-label predic-

tions for each frame. We use an average of classification and

localization loss for training.

Inference: At inference, we make predictions for every

frame. Even though our input is sampled at a stride of 10,

we consider the labels for all frames (at a stride of 1) and

interpolate the logits to fit the original temporal length. Each
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Figure 5. Performance/complexity trade-off of state-of-the-art

methods for activity detection on MultiTHUMOS [39]. Our Coarse-

Fine Networks /w TGM show a comparable performance with the

state-of-the-arts with ∼75x speed, without using additional input

modalities.

input is center-cropped to 224×224. We report the perfor-

mance (mAP), compute requirement to process an input clip

of 1024×10 frames as TFLOPs (×109) and the number of

learnable parameters(M). The length of 1024×10 frames is

only considered as a reference for reporting the complexity

values, and there are longer clips in the dataset with up to

×5 frames. We process these frames fully convolutionally.

Results: We show the performance (mAP) of Coarse-Fine

Networks on MultiTHUMOS [39] activity detection with the

corresponding compute requirement (TFLOPs, i.e., ×1012)

in Fig. 5. We observe an improvement of +4.63% from

X3D [5] to Coarse-Fine. While our Coarse-Fine network

is almost 75 times faster than the previous model (0.49

TFLOPS (Coarse-Fine) vs. 35.57 TFLOPS (I3D + TGM)),

it still achieves comparable performance to the previous

state-of-the-art. Models using the X3D backbone including

ours lose motion details due to the aggressive 1/10 striding

compared to I3D [2] that doesn’t do striding, making them

less effective when combined with other temporal modeling

methods (e.g., TGM [23]). Still, our Corase-Fine Networks

were able to overcome such limitation and perform compa-

rably. Coarse-Fine /w TGM shows a further improvement of

+2.21%mAP.

5. Conclusion

We presented Coarse-Fine Networks, which is a two-

stream architecture to combine temporally Coarse representa-

tions with Fine representations. We introduced the approach

of temporal Grid Pooling that learns to differentiably se-

lect informative frames while discarding the other, to obtain

Coarse representations. We also introduced the Multi-stage

Fusion to best combine the Coarse stream with the Fine

stream. We confirmed that the Coarse-Fine networks obtain

the best known performance on Charades localization, while

spending much less computation time.
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