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Abstract

Segmenting highly-overlapping objects is challenging,

because typically no distinction is made between real object

contours and occlusion boundaries. Unlike previous two-

stage instance segmentation methods, we model image for-

mation as composition of two overlapping layers, and pro-

pose Bilayer Convolutional Network (BCNet), where the

top GCN layer detects the occluding objects (occluder) and

the bottom GCN layer infers partially occluded instance

(occludee). The explicit modeling of occlusion relationship

with bilayer structure naturally decouples the boundaries

of both the occluding and occluded instances, and consid-

ers the interaction between them during mask regression.

We validate the efficacy of bilayer decoupling on both one-

stage and two-stage object detectors with different back-

bones and network layer choices. Despite its simplicity,

extensive experiments on COCO and KINS show that our

occlusion-aware BCNet achieves large and consistent per-

formance gain especially for heavy occlusion cases. Code is

available at https://github.com/lkeab/BCNet.

1. Introduction

State-of-the-art approaches in instance segmentation of-

ten follow the Mask R-CNN [21] paradigm with the first

stage detecting bounding boxes, followed by the second

stage to segment instance masks. Mask R-CNN and its

variants [42, 5, 8, 25, 7] have demonstrated notable perfor-

mance, and most of the leading approaches in the COCO

instance segmentation challenge [40] have adopted this

pipeline. However, we note that most incremental improve-

ment comes from better backbone architecture designs, with

little attention paid in the instance mask regression after

obtaining the ROI (Region-of-Interest) features from ob-

ject detection. We observe that a lot of segmentation errors

are caused by overlapping objects, especially for object in-

stances belonging to the same class. This is because each

instance mask is individually regressed, and the regression

process implicitly assumes the object in an ROI has almost

complete contour, since most objects in the training data in
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Figure 1. Simplified illustration. Unlike previous segmentation

approaches operating on a single image layer (i.e., directly on

the input image), we decouple overlapping objects into two im-

age layers, where the top layer deals with the occluding objects

(occluder) and the bottom layer for occludee (which is also re-

ferred to as target object in other methods as they do not explicitly

consider the occluder). The overlapping parts of the two image

layers indicate the invisible region of the occludee, which is ex-

plicitly modeled by our occlusion-aware BCNet framework.

COCO do not exhibit significant occlusions.

We propose the Bilayer Convolutional Network (BC-

Net). As illustrated in Figure 1, BCNet simultaneously re-

gresses both occluding region (occluder) and partially oc-

cluded object (occludee) after ROI extraction, which groups

the pixels belonging to the occluding region and treat them

equally as the pixels of the occluded object but in two sepa-

rate image layers, and thus naturally decouples the bound-

aries for both objects and considers the interaction between

them during the mask regression stage.

Previous approaches resolve the mask conflict between

neighboring objects through non-maximum suppression or

additional post-processing [43, 14, 34, 30, 20]. Conse-

quently, their results are over-smooth along boundaries or

exhibit small gaps between neighboring objects. Further-

more, since the receptive field in the ROI observes mul-

tiple objects that belong to the same class, when the oc-

cluding regions were included as part of the occluded ob-

ject, traditional mask head design falls short of resolving

such conflict, leaving a large portion of error as shown in

Figure 2. We compare BCNet with recent amodal seg-

mentation methods [46, 16], which predict complete ob-
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(a) Mask R-CNN               (b) PANet (c) MS R-CNN                (d) ASN              (e) Occlusion R-CNN

(f) Cascade MR-CNN       (g) TensorMask (h) CenterMask (i) HTC                 (j) Ours: BCNet

Figure 2. Instance Segmentation on COCO [40] validation set by a) Mask R-CNN [21], b) PANet [42], c) Mask Scoring R-CNN [25], d)

ASN [46], e) Occlusion R-CNN (ORCNN) [16], f) Cascade Mask R-CNN [5], g) TensorMask [9], h) CenterMask [33], i) HTC [7] and j)

Our BCNet. Note that d) and e) are specially designed for amodal/occlusion mask prediction. In this example, the bounding box is given

to compare the quality of different regressed instance masks.

ject masks, including the occluded region. However, these

amodal methods only regress single occluded target in

the ROI, thus lacking occluder-occludee interaction rea-

soning, making their specially designed decoupling struc-

ture suffer when handling mask conflict between highly-

overlapping objects. Correspondingly, Figure 3 compares

the architecture of our BCNet with previous mask head de-

signs [21, 42, 25, 7, 33, 5, 46, 16].

Our BCNet consists of two GCN layers with a cas-

caded structure, each respectively regresses the mask and

boundaries of the occluding and partially occluded ob-

jects. We utilize GCN in our implementation because GCN

can consider the non-local relationship between pixels, al-

lowing for propagating information across pixels despite

the presence of occluding regions. The explicit bilayer

occluder-occludee relational modeling within the same ROI

also makes our final segmentation results more explainable

than previous methods. For object detector, we use the

FCOS [51] owing to its efficient memory and running time,

while noting that other state-of-the-art object detectors can

also be used as demonstrated in our experiments.

Since our paper focuses on occlusion handling in in-

stance segmentation, in addition to the original COCO eval-

uation, we extract a subset of COCO dataset containing both

occluding objects and partially occluded objects to eval-

uate the robustness of our approach in comparison with

other instance segmentation methods in occlusion handling.

In this paper we also contribute the first large-scale oc-

clusion aware instance segmentation datasets with ground-

truth, complete object contours for both occluding and par-

tially occluded objects. Extensive experiments show that

our approach outperforms state-of-the-art methods in both

the modal and amodal instance segmentation tasks.

2. Related Work

Instance Segmentation Two stage instance segmentation

methods [37, 21, 42, 8, 5, 7, 9] achieve state-of-the-art per-

formance by first detecting bounding boxes and then per-

forming segmentation in each ROI region. FCIS [37] in-

troduces the position-sensitive score maps within instance

proposals for mask segmentation. Mask R-CNN [21] ex-

tends Faster R-CNN [48] with a FCN branch to segment

objects in the detected box. PANet [42] further integrates

multi-level feature of FPN to enhance feature representa-

tion. MS R-CNN [25] mitigates the misalignment between

mask quality and score. CenterMask [33] is built upon the

anchor free detector FCOS [51] with a SAG-Mask branch.

In contrast, our BCNet is a bilayer mask prediction network

for addressing the issues of heavy occlusion and overlap-

ping objects in two-stage instance segmentation. Experi-

ments validate that our approach leads to significant perfor-

mance gain on overall instance segmentation performance

not limited to heavily occluded cases.
One-stage instance segmentation methods remove the

bounding box detection and feature re-pooling steps. Adap-

tIS [49] produces masks for objects located on point pro-

posals. PolarMask [58] models instance masks in po-

lar coordinates by instance center classification and dense

distance regression. YOLOACT [4] introduces prototype

masks with per-instance coefficients. SOLO [55] applies

the “instance categories” concept to directly output instance

masks based on the location and size. Grouping-based ap-
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Figure 3. A brief comparison of mask head architectures: a) Mask R-CNN [21], b) CenterMask [33], c) Cascade Mask R-CNN [5], d)

HTC [7], e) Mask Scoring R-CNN [25], f) Iterative Amodal Segmentation [35], g) ASN [46], h) ORCNN [16], where f), g) and h) are

specially designed for amodal/occlusion mask prediction, i) Ours: BCNet. The input x denotes CNN feature after ROI extraction. Conv

is convolution layer with 3× 3 kernel, FC is the fully connected layer, SAM is the spatial attention module. Bt and Mt respectively denote

box and mask head at t-th stage. Unlike previous occlusion-aware mask heads, which only regress both modal and amodal masks from the

occludee, our BCNet has a bilayer GCN structure and considers the interactions between the top “occluder” and bottom “occludee” in

the same ROI. The occlusion perception branch explicitly models the occluding object by performing joint mask and contour predictions,

and distills essential occlusion information for the second graph layer to segment target object (“occludee”).

proaches [28, 1, 41, 44, 3, 29] regard segmentation as a

bottom-up grouping task by first producing pixel-wise pre-

dictions followed by grouping object instances in the post-

processing stage. These one-stage methods, with simpler

procedures than their two-stage counterparts, are more effi-

cient but tend to be less accurate.

Occlusion Handling Methods for occlusion handling

have been proposed [50, 57, 17, 10, 60, 23, 17, 65, 59].

A layout consistent random field is used in [57] to seg-

ment images of cars and faces by imposing asymmetric

local spatial constraints. Ghiasi et al. [19] model occlu-

sion by learning deformable models with local templates

for human pose estimation while [26] reconstructs dense 3D

shape for vehicle pose. Tighe et al. [52] build a histogram

to predict occlusion overlap scores between two classes for

inferring occlusion order in the scene parsing task. Chen

et al. [12] handle occlusion by incorporating category spe-

cific reasoning and exemplar-based shape prediction for in-

stance segmentation. For pedestrian detection with occlu-

sion, bi-box regression is proposed in [64] for both full

body and visible part estimation while repulsion loss [56]

and aggregation loss [63] are designed to improve the de-

tection accuracy. SeGAN [15] learns occlusion patterns

by segmenting and generating the invisible part of an ob-

ject. Recently, OCFusion [32] uses an additional branch to

model instances fusion process for replacing detection con-

fidence in panoptic segmentation. A self-supervised scene

de-occlusion method is proposed in [61] by recovering the

occlusion ordering and completing the mask and content for

the invisible object parts.

Compared to these methods, our BCNet tackles occlu-

sion by explicitly modeling occlusion patterns in shape

and appearance. This equips the segmentation model with

strong occlusion perception and reasoning capability. Our

bi-layer approach can be smoothly integrated into state-of-

the-art segmentation framework for end-to-end training.

Amodal Instance Segmentation Different from tradi-

tional segmentation which only focuses on visible regions,

amodal instance segmentation can predict the occluded

parts of object instances. Li and Malik [35] first pro-

pose a method by extending [34], which iteratively enlarges

the modal bounding box following the direction of high

heatmap values and synthetically adds occlusion. Zhu et

al. [65] propose a COCO amodal dataset with 5000 images

from the original COCO and use AmodalMask as a base-

line, which is SharpMask [45] trained on amodal ground

truth. COCOA cls [16] augments this dataset by assigning

class-labels to the objects while SAIL-VOS dataset in [24]

is targeted for video object segmentation. In autonomous

driving, Qi et al. [46] establish the large-scale KITTI [18]

InStance segmentation dataset (KINS) and present ASN to

improve amodal segmentation performance.

Comparing to most of the amodal and occlusion reason-

ing methods which regress single occluded object boundary

directly on the input (single-layered) image, our BCNet de-

couples overlapping objects in the same ROI into two dis-

joint graph layers by predicting the complete object seg-

ments (Figure 1), where the occludee is segmented under

the guidance from the shape and location of the occluder.

3. Occlusion-Aware Instance Segmentation

We first give an overview to the overall instance seg-

mentation framework, and then describe the proposed Bi-

layer Graph Convolutional Network (BCNet) with explicit

occluder-occludee modeling. Finally, we specify the ob-

jective functions for the whole network optimization, and

provide details of training and inference process.
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Figure 4. Architecture of our BCNet with bilayer occluder-occludee relational modeling, which consists of three modules; (1) Back-

bone [22] with FPN for feature extraction from input image; (2) Detection branch [51] for predicting instance proposals; (3) BCNet

with bilayer GCN structure for mask prediction. For cropped ROI feature, the first GCN explicitly models occluding regions (occluder)

by simultaneously detecting occlusion contours and masks, which distills essential shape and position information to guide the second

GCN in mask prediction for the occludee. We utilize the non-local operator [53, 54] detailed in section 3.2 to implement the GCN layer.

Visualization results are resized to square size.

3.1. Overview

Motivation For images with heavy occlusion, multiple

overlapping objects in the same bounding box may result in

confusing instance contours from both real objects and oc-

clusion boundaries. The mask head design of Mask R-CNN

and its variants [25, 7, 5, 46, 16] in Figure 3 directly regress

the occludee with a fully convolutional network, which ne-

glects both the occluding instances and the overlapping re-

lations between objects. To mitigate this limitation, BCNet

extends existing two stage instance segmentation methods,

by adding an occlusion perception branch parallel to the tra-

ditional target prediction pipeline. Thus, the interactions be-

tween objects within the ROI region can be well considered

during the mask regression stage.

Figure 4 gives the overall architecture of BCNet for

addressing occlusion in instance segmentation. Follow-

ing typical models [21, 33] for instance segmentation, our

model has three parts: (1) Backbone [22] with FPN [38]

for ROI feature extraction; (2) Object detection head in

charge of predicting bounding boxes as instance propos-

als. We employ FCOS [51] as the object detector owing

to its anchor-free efficiency though our method is flexible

and can deploy any existing fully supervised object detec-

tors [48, 47, 39]; (3) The occlusion-aware mask head, BC-

Net, uses bilayer GCN structure for decoupling overlapping

relations and segments the instance proposals obtained from

the object detection branch. BCNet reformulates the tradi-

tional class-agnostic segmentation as two complementary

tasks: occluder modeling using the first GCN and occludee

prediction with the second GCN, where the auxiliary pre-

dictions from the first GCN provide rich occlusion cues,

such as shape and positions of occluding regions, to guide

target (occludee) object segmentation.

Work Flow Given an input image, the backbone network

equipped with FPN first extracts intermediate convolutional

features for downstream processing. Then, the object detec-

tion head predicts bounding boxes with positions as well as

categories for potential instances, and prepares the cropped

ROI feature for BCNet to produce segmentation masks. The

occlusion perception branch consists of the first GCN layer

followed by FCN (two convolution layers), which is tar-

geted for modeling occluding regions by jointly detecting

contours and masks. Forming a residual connection, the dis-

tilled occlusion feature is element-wise added to the original

input ROI feature and passed to second GCN. Finally, the

second GCN, which has a similar structure to the first GCN,

segments the occludee guided by this occlusion-aware fea-

ture and outputs contours and masks for the partially oc-

cluded instance.

3.2. Bilayer OccluderOccludee Modeling

Bilayer GCN Structure for Instance Segmentation Re-

cently, Graph Convolutional Network (GCN) [27] has been

adopted to model long-range relationships in images [11,

62, 36] and videos [54]. Given highly-overlapping objects,

pixels belonging to the same partially occluded object may

be separated into disjoint subregions by the occluder. Thus,

we adopt GCN as our basic block due to its non-local prop-

erty [53], where each graph node represents a single pixel

on the feature map. To explicitly model the occluding re-
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gion, we further extend the single GCN block to the bilayer

GCN structure as shown in Figure 4, which constructs two

orthogonal graphs in a single general framework.

Following [54], given an adjacency graph G = 〈V, E〉
with edges E among nodes V , we represent the graph con-

volution operation as,

Z = σ(AXWg) +X, (1)

where X ∈ R
N×K is the input feature, N = H × W

is the number of pixel grids within the ROI region and K

is the feature dimension for each node, A ∈ R
N×N is

the adjacency matrix for defining neighboring relations of

graph nodes by feature similarities, and Wg ∈ R
K×K′

is the learnable weight matrix for the output transform,

where K ′ = K in our case. The output feature Z ∈ R
N×K′

consists of the updated node feature by global information

propagation within the whole graph layer, which is obtained

after non-linear functions σ(·) including layer normaliza-

tion [2] and ReLU functions. We add a residual connection

after the GCN layer.

To construct the adjacency matrix A, we define the pair-

wise similarity between every two graph nodes xi,xj by

dot product similarity as,

Aij = softmax (F (xi,xj)), (2)

F (xi,xj) = θ(xi)
Tφ(xj), (3)

where θ and φ are two trainable transformation function im-

plemented by 1 × 1 convolution as shown in the non-local

operator part of Figure 4, so that high confidence edge be-

tween two nodes corresponds to larger feature similarity.

In our bilayer GCN structure, we further define Gi to in-

dicate the ith graph, Xroi for the input ROI feature and Wf

for weights in FCN layers, then the complete formulae are:

Z
1 = σ(A1

XfW
1

g) +Xf , (4)

Xf = Z
0
W

0

f +Xroi, (5)

Z
0 = σ(A0

XroiW
0

g) +Xroi. (6)

For connecting the two GCN blocks, the output feature Z
0

of the occluder from the first GCN is directly added to Xroi

to obtain the fused occlusion-aware feature Xf , which is

the input for the second GCN layer to output Z1 for oc-

cludee mask prediction.

Compared to previous class-agnostic mask head with

single layer structure, where there is only binary label (fore-

ground/background) per pixel, the bilayer GCN addition-

ally constructs a new semantic graph space for occluding

region. Thus a pixel node in overlapping areas in ROI can

concurrently correspond to two different states in bilayer

graph. While other choices may exist, we believe modeling

GCN as a dual-layered structure as shown in Figure 4 is a

natural choice for handling occlusion.

Occluder-occludee Modeling We explicitly model oc-

clusion patterns by detecting both contours and masks for

the occluders using the first GCN layer. Since the second

GCN layer jointly predicts contours for the occludee, the

overlap between the two layers can be directly identified as

occlusion boundary which can thus be distinguished from

real object contour (e.g., the occluder and occludee predic-

tion on the rightmost of Figure 4). The rationale behind this

design is that such irregular occlusion boundary unrelated to

the occludee is confusing, which in turn provides essential

cues for decoupling occlusion relations. Besides, accurate

boundary localization explicitly contributes to segmentation

mask prediction.

The module for occluder modeling is designed in a sim-

ple yet effective way: one 3×3 convolutional layer followed

by one GCN layer and one FCN layer. Then we feed the

output to the up-sampling layer and one 1×1 convolutional

layer to obtain one channel feature map for joint boundary

and mask predictions. The boundary detection for occluder

is trained with loss L′

Occ-B:

L′

Occ-B = LBCE(WBFocc(Xroi),GT B), (7)

where LBCE denotes the binary cross-entropy loss, Focc de-

notes the nonlinear transformation function of the occlusion

modeling module, WB is the boundary predictor weight,

Xroi is the cropped FPN feature map given by RoIAlign

operation for the target region, and GT B is the off-the-shelf

occluder boundary that can be readily computed from mask

annotations.

For occluder mask prediction, it utilizes the shared fea-

ture Focc(Xroi), which is jointly optimized by boundary

prediction. The segmentation loss L′

Occ-S for occluder mod-

eling is designed as

L′

Occ-S = LBCE(WSFocc(Xroi),GT S), (8)

where WS denotes the trainable weight of segmentation

mask predictor by 1 × 1 convolutional layer, and GT S is

the mask annotations for the occluder.

3.3. Endtoend Parameter Learning

The whole instance segmentation framework can be

trained in an end-to-end manner defined by a multi-task loss

function L as,

L = λ1LDetect + LOccluder + LOccludee, (9)

LOccluder = λ2L
′

Occ-B + λ3L
′

Occ-S (10)

LOccludee = λ4LOcc-B + λ5LOcc-S, (11)

where LOcc-B and LOcc-S denote respectively the bound-

ary detection and mask segmentation losses in the second

GCN layer for the occludee, which are similar to Eq. 7 and

Eq. 8. LDetect supervises both the position prediction and the

category classification borrowed from the FCOS [51] detec-

tor,

LDetect = LRegression + LCenterness + LClass, (12)
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and λ1, λ2, λ3, λ4 and λ5 are hyper-parameter weights

to balance the loss functions, which are tuned to be

{1, 0.5, 0.25, 0.5, 1.0} respectively on the validation set.

Training: For training the first GCN layer of BCNet,

since partial occlusion cases only occupy a small fraction

compared to the complete objects in COCO, we filter out

part of the non-occluded ROI proposals to keep occlusion

cases taking up 50% for balance sampling. SGD with mo-

mentum is employed for training 90K iterations which starts

with 1K constant warm-up iterations. The batch size is set

to 16 and initial learning rate is 0.01. In ablation study,

ResNet-50-FPN [22] is used as backbone and the input im-

ages are resized without changing the aspect ratio by keep-

ing the shorter side and longer side of no more than 600 and

900 pixels respectively. For leaderboard comparison, we

adopt the scale-jitter where the shorter image side is ran-

domly sampled from [640, 800] following [33, 9, 4].

Inference: During inference, the mask head predicts

masks for the occluded target object in the high-score box

proposals (no more than 50) generated by the FCOS de-

tector, where the first GCN layer only produces occlusion-

aware feature as input for the second GCN.

4. Experiments

4.1. Experimental Setup

COCO and COCO-OCC We conduct experiments on

COCO dataset [40], where we train on 2017train (115k im-

ages) and evaluate results on both 2017val and 2017test-dev

using the standard metrics. For further investigating seg-

mentation performance with occlusion handling, we pro-

pose a subset split, called COCO-OCC, which contains

1,005 images extracted from the validation set (5k images)

where the overlapping ratio between the bounding boxes of

objects is at least 0.2. Segmenting COCO-OCC with highly

overlapping objects is much more difficult than 2017val,

where we observe a performance gap around 3.0AP for the

same model in the experiment section.

KINS and COCOA We also evaluate BCNet on two

amodal instance segmentation benchmarks: (1) KINS [46],

built on the original KITTI [18], is the largest amodal seg-

mentation benchmark for traffic scenes with both annotated

amodal and modal masks for instances. BCNet is trained

on the training split (7,474 images and 95,311 instances)

and tested on the testing split (7,517 images and 92,492 in-

stances) following the setting in [46]. (2) COCOA [65] is

a subpart of COCO [40], where we train BCNet on the offi-

cial training split (2,500 images) and test on the validation

split (1,323 images). Note that each instance has no class

label and we only use the modal and amodal mask labels

for the COCOA dataset.

Synthetic Occlusion Dataset Since most objects in

COCO do not exhibit significant occlusions, we synthesize

a large-scale instance segmentation dataset which contains

100k images following uniform class distribution for in-

stances among the 80 categories in COCO. Each synthetic

image has true and complete object contours for both oc-

cluding and partially occluded objects, thus allowing the ex-

plicit modeling of occlusion relationship between the occlu-

sion regions and occluded objects. On the other hand, CO-

COA [65], which has only 5,000 images, relies on user an-

notation on a given training image for “guessing” occluded

object boundaries. More details on our occlusion dataset

synthesis process are provided in the supplementary file.

4.2. Ablation Study

Effect of Explicit Occlusion Modeling We validate the

efficacy of different components proposed for explicit oc-

clusion modeling on the first GCN layer. Table 1 tabulates

the quantitative comparison: 1) Baseline: BCNet with no

explicit occlusion modeling targets; 2) modeling segmen-

tation masks for occluding regions (occluder); 3) model-

ing contours of the occluding regions; 4) joint occlusion

modeling on both masks and contours. Compared to the

baseline, joint occlusion modeling produces the most obvi-

ous improvement especially for the heavy occlusion cases,

which promotes mask AP on the standard validation set

from 32.65 to 33.43, and the AP on the proposed COCO-

OCC split is increased from 29.04 to 30.37.

Table 1. Effect of the first GCN for occlusion modeling by predict-

ing contours and masks on COCO with ResNet-50-FPN model.

Occlusion (Occluder) Modeling COCO-OCC COCO

Contour Mask AP AP50 AP AP50

29.04 49.22 32.65 52.39

X 29.65 49.42 33.25 52.82

X 30.18 49.94 33.41 53.02

X X 30.37 50.40 33.43 53.12

Effect of Bilayer Occluder-occludee Modeling Built on

the first GCN layer with explicit occlusion modeling, we

further validate the second GCN layer in Table 2, which

demonstrates the importance of occlusion-aware feature

guidance for the second GCN layer to segment target ob-

ject (occludee) by boosting 1.23 AP on COCO-OCC, and

1.06 AP on COCO respectively. Table 3 shows the results

comparison on adopting the proposed bilayer structure and

existing direct regression model with single layer. On the

COCO-OCC split, bilayer GCN improves AP from 29.63

to 30.68 compared to single GCN, and bilayer FCN boosts

the performance of single FCN from 28.43 to 30.12.

Table 2. Effect of the second GCN for detecting occludee contours

for final mask prediction guided by the output of first GCN.

Target (Occludee) Modeling COCO-OCC COCO

Guidance Contour Mask AP AP50 AP AP50

X 29.45 49.73 32.56 52.21

X X 30.37 50.40 33.43 53.12

X X X 30.68 50.62 33.62 53.26
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Using FCN or GCN? Table 3 also reveals the advantage

of GCN over FCN, where GCN achieves consistent supe-

rior performance both in the singe layer and bilayer struc-

ture. We also compute the number of parameters of each

model and find that although GCN has more trainable pa-

rameters, the increased model size is acceptable compared

to performance gain, because the feature size of input ROI

has been down-sampled to only 14×14 (spatial size) with

256 channels.

Table 3. Effect of bilayer structure using GCN vs. FCN imple-

mentation.

Structure FCN GCN
COCO-OCC COCO

Params
AP AP50 AP AP50

Single Layer
X 28.43 48.24 33.01 52.62 51.0M

X 29.63 49.59 33.14 52.81 51.4M

Bilayer
X 30.12 49.04 33.16 52.80 53.4M

X 30.68 50.62 33.62 53.26 54.0M

Influence of Object Detector To investigate the influence

of object detectors to BCNet, besides using one-stage detec-

tor FCOS [51], we also use representative two-stage detec-

tor Faster R-CNN [48] to perform experiments. As shown

in Table 4, the performance gain brought by BCNet is con-

sistent, with an improvement of 2.23 (for FCOS) and 2.04

(for Faster R-CNN) mask AP on COCO-OCC respectively.

Here, baseline denotes mask head design in Mask R-CNN.

Table 4. Influence of the object detector (FCOS vs. Faster R-CNN)

on BCNet.

Model
COCO-OCC COCO

Params
AP AP50 AP AP50

FCOS [51] + Baseline 28.43 48.24 33.01 52.62 51.0M

FCOS [51] + Ours 30.68 50.62 33.62 53.26 54.0M

Faster R-CNN [48] + Baseline 29.67 49.95 33.45 53.70 60.0M

Faster R-CNN [48] + Ours 31.71 51.15 34.61 54.41 63.2M

4.3. Performance Comparison and Analysis

Comparison with SOTA Methods Table 8 compares

BCNet with state-of-the-art instance segmentation methods

on COCO dataset. BCGN achieves consistent improvement

on different backbones and object detectors, demonstrat-

ing its effectiveness by outperforming both PANet [42] and

Mask Scoring R-CNN [25] by 1.5 AP using Faster R-CNN,

and exceeding CenterMask [33] by 1.3 AP using FCOS.

Our single model achieves comparable result with HTC [7],

which uses a 3-stage cascade refinement with multiple ob-

ject detectors and mask heads, and far more parameters.

Comparison with Amodal Segmentation Methods Ta-

ble 5 and Table 6 compare BCNet with other SOTA

amodal segmentation methods on both the COCOA [65]

and KINS [46] datasets, where: 1) AmodalMask [65] di-

rectly predicts amodal masks from image patches; 2) Occlu-

sion RCNN (ORCNN) [16] is an extension of Mask R-CNN

with both amodal and modal mask heads; 3) ASN mod-

ule [46] contains additional occlusion classification branch

and multi-level coding. Compared to these occlusion han-

dling approaches, our bilayer GCN with cascaded structure

(d) Ours: BCNet(b) AmodalMRCNN (c) Occlusion R-CNN (a) Input image

Figure 5. Qualitative results comparison of the amodal mask pre-

dictions on COCOA [65] by AmodalMRCNN [16], ORCNN [16]

and our method using ResNet-50, where BCNet hallucinates a

more reasonable shape for the baby carriage without producing a

large portion of segmentation error. We remove the “stuff” back-

ground for more clarity.

(a) Mask R-CNN + ASN (b) Ours: BCNet

Figure 6. Qualitative results comparison of the amodal mask pre-

dictions on KINS [46] by Mask R-CNN + ASN [46] and ours, both

using ResNet-101-FPN, where the boundaries of the two neigh-

boring cars parked beside green-masked car are more reasonably

estimated by BCNet.

still performs favorably against the state-of-the-art methods,

which shows the effectiveness of BCNet in decoupling over-

lapping objects and mask completion under the amodal seg-

mentation setting. Figure 5 and Figure 6 show the qualita-

tive comparison on COCOA and KINS respectively.

Evaluation on Occluded Images We adopt COCO-OCC

split to compare the occlusion handling ability of BCNet

with other methods on images with highly overlapping ob-

jects. As shown in Table 7, our BCNet with Faster R-CNN

detector has 31.71 AP vs. 30.32 for the Mask Scoring R-

CNN [25]. By further training BCNet on the synthetic oc-

clusion dataset, the performance of AP and AP50 is sig-

nificantly promoted to 32.89 and 53.25 respectively, which

shows the advantage brought by this new dataset.

Qualitative Evaluation. Figure 7 shows qualitative com-

parison of CenterMask [33] and BCNet on images with

overlapping objects. In each ROI region, GCN-1 detects oc-

cluding regions while GCN-2 models the partially occluded

instance by directly regressing the contours and masks.

For example, BCNet decouples the occluding and occluded

baseball players in similar clothes into GCN-1 and GCN-2

respectively, and detects the left leg missed by CenterMask.

See supplementary file for more visual comparisons.
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Table 5. Results on the COCOA dataset.

Model APall APt APs

AmodalMask [65] 5.7 5.9 0.8

AmodalMRCNN [16] 21.51 21.09 9.0

ORCNN [16] 20.32 20.63 7.8

BCNet 23.09 22.72 9.53

Table 6. Results on the KINS dataset.
Model APDet APSeg

Mask R-CNN [16] 26.97 24.93

Mask R-CNN + ASN [46] 27.86 25.62

PANet [42] 27.39 25.99

PANet + ASN [46] 28.41 26.81

BCNet 28.87 27.30

Table 7. Results on COCO-OCC split.

Model AP AP50

Mask R-CNN [22] 29.67 49.95

CenterMask [33] 29.05 49.07

MS R-CNN [25] 30.32 50.01

Ours 31.71 51.15

Ours + Synthetic 32.89 53.25

Table 8. Comparison with SOTA methods on COCO test-dev set. The mask AP is reported and all entries are single-model results. Note that

HTC [7] adopts 3-stage cascade refinement with multiple object detectors and mask heads. All methods are trained on COCO train2017.

Method Backbone AP AP50 AP75 APS APM APL

Mask R-CNN [21] ResNet-50 35.6 57.6 38.1 18.7 38.3 46.6

PANet [42] ResNet-50 36.6 58.0 39.3 16.3 38.1 52.4

BCNet + Faster R-CNN [48] ResNet-50 38.4 59.6 41.5 21.9 40.9 49.3

Mask R-CNN [21] ResNet-101 37.0 59.2 39.5 17.1 39.3 52.9

MaskLab [8] ResNet-101 37.3 59.8 39.6 19.1 40.5 50.6

Mask Scoring R-CNN [25] ResNet-101 38.3 58.8 41.5 17.8 40.4 54.4

BMask R-CNN [13] ResNet-101 37.7 59.3 40.6 16.8 39.9 54.6

HTC [7] ResNet-101 39.7 61.8 43.1 21.0 42.2 53.5

BCNet + Faster R-CNN [48] ResNet-101 39.8 61.5 43.1 22.7 42.4 51.1

YOLACT [4] ResNet-101 31.2 50.6 32.8 12.1 33.3 47.1

TensorMask [9] ResNet-101 37.1 59.3 39.4 17.4 39.1 51.6

ShapeMask [31] ResNet-101 37.4 58.1 40.0 16.1 40.1 53.8

CenterMask [33] ResNet-101 38.3 - - 17.7 40.8 54.5

BlendMask [6] ResNet-101 38.4 60.7 41.3 18.2 41.5 53.3

BCNet + FCOS [51] ResNet-101 39.6 61.2 42.7 22.3 42.3 51.0

GCN-1

GCN-2

Figure 7. Qualitative instance segmentation results of CenterMask [33] (top row) and our BCNet (middle row) on COCO [40], both using

ResNet-101-FPN and FCOS detector [51]. The bottom row visualizes squared heatmap of contour and mask predictions by the two GCN

layers for the occluder and occludee in the same ROI region specified by the red bounding box, which also makes the final segmentation

result of BCNet more explainable than previous methods. More qualitative results are available in the supplementary file.

5. Conclusion

We propose BCNet, an effective mask prediction net-

work for addressing instance segmentation in the presence

of highly-overlapping objects in two-stage instance seg-

mentation. BCNet achieves consistent gains on overall

segmentation performance using different backbones and

object detectors in both the modal and amodal settings.

With explicit occluder-occludee modeling, occluding and

occluded instances are decoupled into two disjoint graph

spaces, where the interaction between objects within each

ROI region are explicitly considered. This effective ap-

proach will benefit future research in both occlusion han-

dling and instance segmentation.
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