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Abstract

Super-resolution based on deep convolutional net-
works is currently gaining much attention from both
academia and industry. However, lack of proper eval-
uation measures makes it difficult to compare ap-
proaches, hampering progress in the field. Traditional
measures, such as PSNR or SSIM, are known to poorly
correlate with the human perception of image qual-
ity. Therefore, in existing works common practice is
also to report Mean-Opinion-Score (MOS) — the re-
sults of human evaluation of super-resolved images.
Unfortunately, the MOS values from different papers
are not directly comparable, due to the varying num-
ber of raters, their subjectivity, etc. By this paper,
we introduce Neural Side-By-Side — a new measure
that allows super-resolution models to be compared au-
tomatically, effectively approximating human prefer-
ences. Namely, we collect a large dataset of aligned
image pairs, which were produced by different super-
resolution models. Then each pair is annotated by sev-
eral raters, who were instructed to choose a more visu-
ally appealing image. Given the dataset and the labels,
we trained a CNN model that obtains a pair of images
and for each image predicts a probability of being more
preferable than its counterpart. In this work, we show
that Neural Side-By-Side generalizes across both new
models and new data. Hence, it can serve as a natu-
ral approximation of human preferences, which can be
used to compare models or tune hyperparameters with-
out raters’ assistance. We open-source the dataset and
the pretrained model1 and expect that it will become a
handy tool for researchers and practitioners.

1. Introduction

Image super-resolution (SR) is a long-standing task
in image processing, which aims to recover high-

1https://github.com/KhrulkovV/NeuralSBS

resolution images from low-resolution ones. During
the last decades, this task has attracted ever-growing
research attention, since super-resolution is a critical
component of many computer vision pipelines, includ-
ing surveillance[15, 31], video enhancement[1], medi-
cal imaging[4] and others. Over the years, a plethora
of super-resolution methods has been developed, from
simple interpolation techniques to more powerful mod-
els, employing deep architectures, which currently
dominate the super-resolution landscape. Overall,
these days SR is an active research direction, and the
community constantly develops new model architec-
tures, optimization objectives, regularization, and nor-
malization techniques.

Given a large number of different SR models ap-
pearing in the literature, practitioners need an instru-
ment to select the model that is the most effective
on the particular data. Furthermore, in many pa-
pers model hyperparameters are chosen based on the
performance on the academical benchmarks and can
be suboptimal for the real task in hand. In practice,
model selection and hyperparameter tuning are even
more challenging, since “ground truth” high-resolution
images can be absent for real data. This implies that
the established full-reference measures (such as PSNR,
SSIM[29], LPIPS[32]) cannot be used, and human eval-
uation is often the only option to choose the model.
The human evaluation is typically referred to as Mean-
Opinion-Score (MOS) and denotes the average rating
that human raters assigned to images produced by
the particular SR model. Being an adequate evalu-
ation measure for SR, MOS, however, is both time-
consuming and expensive, which prevents its usage, e.g.
to tune hyperparameters.

In this paper, we introduce Neural Side-By-Side — a
new instrument for no-reference super-resolution eval-
uation that can be used for model comparison or hy-
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perparameter tuning. In a nutshell, we collect a large
number of aligned image pairs, where each image is pro-
duced by some super-resolution model. Then each pair
is labeled by humans, who are instructed to select a
more visually appealing image from each pair. Impor-
tantly, the pairs consist of aligned images, i.e. they cor-
respond to the same low-resolution image. Hence, the
rater labels reflect only image quality and do not relate
to their content. We refer to this dataset as SBS180K
and release both images and labels for further research.
Given the SBS180K dataset, we train a CNN model
that obtains an image pair and predicts probabilities
of each image being more attractive compared to its
counterpart. These probabilities, averaged over a large
number of pairs, can then be used as a quantitative
measure to compare two super-resolution models. In
the experimental section, we demonstrate that Neural
Side-By-Side generalizes to both new models and new
image sets, hence it can be used as an effective ”ap-
proximation” of human evaluation. Indeed, there were
several attempts to learn no-reference measures of gen-
eral image quality[16, 8, 17, 11, 7, 23, 10, 13, 27, 5].
However, these measures are not tailored specifically
for image super-resolution and we demonstrate their
inferiority to Neural Side-By-Side in the experimental
section.

We summarize the contributions of our paper as fol-
lows:

1. We introduce Neural Side-By-Side — a new no-
reference technique to compare super-resolution
models. The Neural Side-By-Side outperforms the
existing no-reference measures in terms of approxi-
mating human evaluation and can serve as a handy
tool for both academicians and practitioners.

2. We release SBS180K — a dataset of aligned im-
age pairs, produced by different super-resolution
models. The dataset is needed to reproduce the
results from our paper and can be used to train
and evaluate new models.

3. We evaluate several established models with Neu-
ral Side-By-Side on common benchmarks. We
expect that the obtained numbers can be useful
for further development of more advanced super-
resolution models.

2. Related work

In this section, we aim to put our work in context
with existing literature.

Super-resolution evaluation. The two most
common measures for image super-resolution are cur-
rently peak signal-to-noise ratio (PSNR) and the struc-

tural similarity index (SSIM)[29]. Since both PSNR
and SSIM are known to only loosely correlate with
visual perception[12], DNN-based metrics, such as
LPIPS[32], are currently gaining popularity. In many
practical scenarios, PSNR/SSIM/LPIPS cannot be
used, since they are full-reference, i.e., require ground
truth high-resolution images, which can be absent for
real data. Therefore, a reliable no-reference measure is
needed for super-resolution practitioners.

No-reference image quality evaluation. No-
Reference Image Quality Assessment (NR-IQA) is a
well-known problem of predicting the “quality” of in-
dividual images by themselves, without a reference im-
age. The state-of-the-art NR-IQA models are usually
trained on large datasets of images with assigned labels
of visual quality, produced by human raters. The first
methods of this family were based on hand-engineered
image descriptors[20, 19], while more recent methods
use deep neural networks[16, 8, 17, 11, 7, 23, 10, 13,
27, 5]. These methods typically differ in architecture
details and optimization objectives. In the context
of super-resolution the common weakness of NR-IQA
measures, however, is that all of them are trained on
datasets of natural images, which do include images
produced by different super-resolution methods. It is
this weakness of the existing measures we address by
our paper.

NR-IQA for image super-resolution. Probably,
the closest work to ours is [18], which also aims to learn
NR-IQA measure for super-resolution. [18] introduces
a dataset of 1620 super-resolved color images from 30
source images. Specifically, each source image is first
processed by six different combinations of downsam-
pling and blurring to generate six low-resolution im-
ages. Then nine super-resolution image reconstruction
algorithms are adopted to generate the super-resolved
images. All 1620 images are rated by humans and a
simple model based on handcrafted visual features is
trained to approximate the rates. While the measure
from [18] has received certain interest from the com-
munity (e.g. it is used in the PIRM challenge[2]), this
measure has three important drawbacks:

• It is based only on 30 source images, which can be
insufficient to generalize to unseen data.

• It is based on human rates that were obtained only
for early super-resolution models (up to 2014),
hence it can perform inadequately on the results
of more advanced models.

• It is based on handcrafted image features, which
can be suboptimal in terms of capturing the signal
needed for NR-IQA.
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In contrast, the proposed SBS180K dataset is much
larger, contains the human rates for the recent SR
models, and uses learnable deep features for the cor-
responding NR-IQA model.

Prior datasets for learnable NR-IQA. We sum-
marize the main existing datasets that can be po-
tentially used to learn NR-IQA measures for super-
resolution in Table 1. Compared to existing alterna-
tives, our SBS180K dataset is both large-scale and is
tailored to the super-resolution task.

Dataset Size SR specific Comment

Ma[18] 1680 ✓ SR before 2014

AVA[24] 255K ✗ Natural images

SBS180K 180K ✓ SR models before 2020

Table 1: Comparison of the existing datasets that can
potentially be used to train NR-IQA measure for super-
resolution.

3. The SBS180K dataset

Our dataset consists of 176440 aligned image pairs
(split into 167019 train pairs and 9421 test pairs), la-
beled according to human aesthetic preferences. The
labeling is provided with a single number — score in
the range [0, 1], reflecting the aesthetic appeal of the
second image in the pair with respect to the first one.
Formally, this score equals the percentage of raters that
prefer the second image to the first image. Each pair
of images corresponds to two variants of the same low-
resolution image, upsampled via two different super-
resolution algorithms (including SRGANs, MSE up-
sampling networks, bicubic interpolation, etc.). As a
source of images, we used random frames from a diverse
set of video fragments, described below. To avoid very
similar images, we sampled only one frame from each
chunk of 200 consecutive frames. An average length of
fragments was about 30 seconds, and 3–5 frames were
sampled from each video.

Now we describe the specifics of video collection and
the annotation protocol.

3.1. Video selection

The video fragments were gathered to cover a variety
of possible practical super-resolution scenarios, such as
old classic movies, cartoons, TV shows and sporting
events. In total there were 2071 unique video fragments
of 30-second length gathered from various sources: an
old B&W movie, three colored movies from before
1970, three colored movies from 1970–2000s and three

from 2000–2010s, one old animated cartoon, one mod-
ern animated cartoon, and one anime series, HD TV
shows from the following categories each: crime, adven-
tures, news, musical clips and concerts, one soccer and
one hockey sporting events from 1981 and 1986, broad-
casted TV channels, auxilliary videos including Vimeo
clips, UltraHD concert clips, HDR youtube videos.

3.2. Model selection

Our dataset was collected during a continuing ef-
fort to find the best possible super-resolution model.
We have experimented with roughly 170 unique mod-
els based on various tweaks and adjustments of popu-
lar super-resolution models, including models based on
Generative Adversarial Networks (GANs) and super-
resolution convolutional networks trained with MSE
loss. More concretely, most of our models were based
on the following SR algorithms: SRGAN [12], DR-
CAN [9], SRResNet [12], ESRGAN [28]. These algo-
rithms usually include a large number of hyperparam-
eters, e.g., weight coefficients of various loss compo-
nents, with no obvious and straightforward effect on
the performance. To measure these effects with hu-
man evaluation, we have extensively experimented with
many possible tweaks and architecture designs, pro-
posed in the literature on generative models and super-
resolution models. These tricks include various data
preparation aspects (e.g., adjusting noise/constrast),
architecture specifics, auxuliary losses, and various loss
weighting. Our models were trained on a specifically
constructed dataset consisting of 75 proprietary Ultra
HD movie trailers.

Image resolution. Most of the images from our
dataset have resolution 1280× 720, with a small num-
ber of 1920 × 1080 images. Most of SR models were
trained to perform x2 upscaling with an exception of
several models performing x1.25, x1.5 or x3 upscaling.

3.3. Annotation

A comparison of different SR models was performed
using a human evaluation protocol, described below.
For each evaluation session, termed experiment, we
prepared a batch of roughly 100–200 video fragments
and selected several (3–6) SR models from our pool.
Each video fragment was upscaled (frame-wise) by each
model. Additionally, we have always included the bicu-
bic upscaling as the baseline model in the experiment.
Human annotators were presented with a pair of video
fragments, and were asked a question: “which one do
you like more?”. The total score of the pair (i, j) is
then defined as the ratio of clicks on the image j and
the total number of annotators of this pair. On av-
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Figure 1: An example of pairs from our dataset. According to human evaluators, images from the bottom row are
significantly (score 0.9 or more) better than their counterparts from the top row.

Figure 2: [left] Distribution of human evaluation scores
in the collected dataset. [right] Distribution of the
number of evaluations of each video pair.

erage, there were about 20 annotators for each pair
(see Figure 2 for the exact distribution). During this
process, each pair was randomly shuffled to determine
which video to show on the left, and which one on the
right. The annotators, participating in all experiments,
do not have a computer vision background and repre-
sent typical users in the Web.
Postprocessing In order to collect a more tractable
dataset for side-by-side evaluation, we have assumed
that human preferences on videos are sufficiently well
approximated on the frame level. I.e, if for two videos
(i, j) we have obtained a score s, then for any aligned
frames extracted from these videos the resulting score
would also be s. We hypothesize that this is a reason-
able assumption since our models operated frame-wise.
Based on this observation, we simply extracted every
200th frame from each video from a pair and assigned
the same score for each resulting image pair. A small
sample of frames from our dataset are presented on
Figure 1.

3.4. Statistics

In this subsection, we provide some key statistical
information about our dataset.

Score distribution Figure 2 demonstrates the ob-
tained distribution of scores in our dataset. We ob-
serve that the resulting distribution is quite close to
uniform (even though it has a peak at roughly 0.5),
which suggests that our dataset is quite diverse and
contains useful information about human perceptual
quality evaluation. In particular, there is a large num-
ber of “difficult” pairs, where both images are prefer-
able for a large number of annotators.

Number of annotations Figure 2 also summarizes
the number of annotators for each video pair. Note
that 98% of the pairs were evaluated by at least 10
people and 76% had at least 16 votes.

3.5. Train and test sets

In order to verify the generalization of super-
resolution evaluation models, we have constructed a
split based both on separating models and videos with
a goal to prevent overfitting of NeuralSBS models to
particular SR algorithms or image types. To achieve
this, we constructed a matrix M of size N ×M , with
N=2071 being the number of unique original video
fragments and M=169 being the total number of mod-
els. We then set Mij = 1 if video i was processed
by the model j. Based on M we partitioned all the
labeled pairs into two non-overlapping subsets (so no
model/video from the test subset appeared in the train-
ing subset).

3.6. Neural SBS model

In this section, we describe our approach to train a
CNN based model to predict outcomes of side-by-side
image comparisons. For a given pair of images, such a
model should output a single number — expected re-
sult of side-by-side comparisons by human annotators.
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Formally, given a dataset of aligned pairs of im-
ages and assigned score labels X = {(xi

1
, xi

2
), si}

N
i=1

,
we model si as a parameter of the Bernoulli distribu-
tion conditioned on the input (xi

1
, xi

2
). Thus, our goal

is to train a neural network F ((x1, x2); θ) such that

F ((xi
1
, xi

2
); θ) ∼ Bernoulli(si). (1)

Additionally, by construction we have the following
constraint on the network F :

F ((xi
1
, xi

2
); θ) = 1− F ((xi

2
, xi

1
); θ) (2)

In order to build a neural network for the task at hand
we have used a Siamese network [3] (as commonly done
in the cases of tasks with dual input) and as the back-
bone we chose Inception v3 [26], with the last fully con-
nected layer of size 2048×1000 replaced by a fully con-
nected layer of size 2048× 2048. Each image from the
pair is passed through the Inception network, resulting
in two feature vectors, which in turn are normalized to
be of length 1. In order to produce the output score
satisfying Equation (2) we have applied the antisym-
metric bilinear pooling. Namely, for two vectors f1 and
f2 of size N this operation is defined as:

s(f1, f2) = σ(〈f1,
1

2
(Ω− Ω⊤)f2〉), (3)

where Ω is a trainable matrix of size N × N and σ(·)
is the sigmoidal activation function. Note that due to
antisymmetricity of the matrix 1

2
(Ω−Ω⊤) and property

σ(−x) = 1− σ(x) we obtain that

s(f2, f1) = 1− s(f1, f2),

as desired. Our model is illustrated on Figure 3. We
use the standard cross entropy loss for training.

Figure 3: Our NeuralSBS model. Two images are
passed through the InceptionV3 network, normalized
and fed into the antisymmetric bilinear unit.

The constructed network is then trained in an end-
to-end manner via backpropagation. The Inception V3
network was initialized with the network pretrained on
the ImageNet. For training and testing, we rescale both
input images to 299×299 (similarly with [27, 11]). We
have also tried training on random aligned crops, how-
ever, the obtained results were not compelling, proba-
bly due to significant changes in scene composition.

4. Experiments

The goal of this section is to confirm that the Neu-
ralSBS model outperforms the existing NR-IQA base-
lines in terms of approximating human evaluation of
super-resolved images. First, we analyze the perfor-
mance of our model on the SBS180K test set, which
was discussed in Section 3. This experiment aims to
demonstrate that NeuralSBS successfully generalizes
to unseen images and super-resolution models. Sec-
ond, we prove that NeuralSBS can be used as a no-
reference evaluation measure on the established bench-
mark datasets for super-resolution. We start with the
Ma[18] dataset containing human evaluations of 9 dif-
ferent SR models applied to 180 natural images. Com-
pared to existing baselines, we demonstrate that the
NeuralSBS model most accurately predicts outcomes
of comparisons of various models compared with the
ranking given by human rates. Finally, we test the
baselines and the NeuralSBS model on several popular
SR benchmarks.

4.1. Baselines

In order to verify the benefits of the model trained
to evaluate the relative visual quality of image pairs, we
compare NeuralSBS with other approaches for estimat-
ing the no–reference perceptual image quality. Below
we list the baselines, which source-code and pretrained
models are available online.

Neural Image Assessment: The first approach
proposed in [27] evaluates the perceptual quality of an
image by predicting a distribution of human opinion
scores using a convolutional neural network trained on
the AVA dataset. More concretely, for each possible
opinion score (represented by an integer in [1, 10]) the
model predicts a probability of this score to be assigned
to an image by a human evaluator. For assigning a
score to a single image, we simply computed the ex-
pected value of scores: NIMA(x) =

∑
10

i=1
is(x)i.

Photo Aesthetics Ranking Network with At-
tributes and Content Adaptation: The second
approach [11] (termed PARNAC later in the text) sim-
ilarly uses a CNN to predict the aesthetic score of a
single image (as a number in the interval [0, 1]).

Naturalness Image Quality Evaluator (NIQE):
NIQE [22] estimates the naturalness of an image using
the Natural Scene Statistics(NSS)-based features. By
construction, lower values of NIQE correspond to more
‘natural’ images. Using this score we can also directly
compare two images.
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NeuralSBS trained on AVA: To highlight the im-
portance of training side-by-side models on datasets
of aligned image pairs, we train a model (termed
NeuralSBS− later in the text) to predict the relative
image quality of pairs containing images of different
visual content. We employ the Aesthetic Visual Anal-
ysis (AVA) dataset containing 255K images. For each
image, a number of opinion scores (on a range from
1 to 10) given by human evaluators are provided. For
training, we randomly sample a pair of images from the
dataset and convert the vectors of these opinion scores
to a single relative score using 4. In other words, we
simply find the probability of a human evaluator as-
signing a higher label to the second image. The model
and training settings are identical to those of the stan-
dard NeuralSBS model.

NeuralSBS−(x1, x2) =
∑

j>i

s(x2)js(x1)i+
1

2

∑

j=i

s(x2)js(x1)i.

(4)

For NIMA we have used the open-source implemen-
tation2 in PyTorch, and for PARNAC we took the orig-
inal implementation3 in Caffe. For NIQE we used the
open-source implementation found in scikit-video

4.

4.2. SBS180K results prediction

The design of our model and our dataset is mo-
tivated by the side-by-side human evaluation, used
to evaluate the relative performance of two super-
resolution approaches in typical development pipelines.
Hence, in the first experiment we verify that the Neu-
ralSBS model is an effective “approximator” of human
evaluation scores on the test subset of SBS180K.

4.2.1 Results

Our results are summarized in Table 2 and Figure 4.
First, both NeuralSBS and the baselines are able to
identify the better model, as demonstrated in Table 2.
However, the baselines do not predict that certain im-
ages are drastically better to a human eye than their
counterparts. This observation is quite intuitive since
both baseline models were trained to estimate the qual-
ity of a single image, and while two images may look
quite good to a person, during the task of paired com-
parison it may be obvious that one is clearly more ap-
pealing. In contrast, our NeuralSBS model decently
predicts the shape of the distribution as shown on Fig-
ure 4.

2https://github.com/kentsyx/Neural-IMage-Assessment
3https://github.com/aimerykong/deepImageAestheticsAnalysis
4http://www.scikit-video.org

Figure 4: Distribution of the ground truth score
and scores produced by various algorithms on the
SBS180K test set. We observe that NeuralSBS most
closely follows the scores distribution, while the base-
lines do not capture significant relative perceptual dif-
ferences.

4.3. Scoring of SR models

In this subsection, we argue that NeuralSBS can
serve as a research tool for adequate no-reference eval-
uation of SR models on the common benchmarks. Ma
dataset. This experiment is organized as follows. For
each image in the dataset, we select all the possible
pairs from 9 available SR methods (resulting in 36 com-
parisons) and rank them with NeuralSBS and each of
the baselines. We report the accuracy of the obtained
predictions compared to the ground truth human rank-
ings present in the dataset. Results are summarized in
Table 3. We observe that the NeuralSBS model signifi-
cantly outperforms its competitors on this task. We
hypothesize that one possible reason for this is the
presence of a large number of blurry/low-quality im-
ages present in SBS180K, which were not available
for other methods.

SR benchmarking. The final experiment is orga-
nized as follows. We select four popular SR models —
MSRResNet[12] and MSRGAN[12] using the modified
ResNet architecture from [28] as the backbone, ESR-
GAN [28] in two versions: ESRGAN(PSNR) optimized
to achieve the highest PSNR and ESRGAN(GAN) fine-
tuned in the GAN regime, and one of the recently pro-
posed models SRFBN [14]. We used the pretrained
models and code from the authors of [28] available at
github5. For SRFBN we used the code and weights
available at github6.

Additionally, we also use two standard upscaling

5https://github.com/xinntao/BasicSR
6https://github.com/Paper99/SRFBN CVPR19
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NeuralSBS NeuralSBS− NIMA PARNAC NIQE

Accuracy, % 81.2 74.1 80.3 76.1 42.1

Table 2: The accuracy of no-reference evaluation methods described in Section 4.1 on the SBS180K test set.

NeuralSBS NeuralSBS− NIMA PARNAC NIQE

Accuracy, % 62.4 47.0 48.4 49.0 57.4

Table 3: The accuracy of no-reference evaluation methods described in Section 4.1 on the Ma [18] dataset.

approaches — nearest neighbor and bicubic interpola-
tion. For three standard SR datasets — Urban100[6],
Set14 [30], BSD100[21] we apply previously described
SR algorithms, and evaluate the obtained samples us-
ing NeuralSBS and other baselines. For Set14 and
BSD100 we have also included Mean Opinion Scores
(MOS) available from [12]. To evaluate the accuracy
of the obtained predictions, for each model and dataset
we also compute the average LPIPS[32] scores utilizing
the ground truth images, and compare the no–reference
predictions against these values.

As the proposed NeuralSBS (and NeuralSBS−)
model is trained to perform the pairwise comparison,
we choose MSRResNet to be a “reference” model for
both NeuralSBS and the NeuralSBS− baselines. Our
choice of the reference model is the following — tra-
ditional methods like nearest neighbor interpolation
might be too weak and too easy to beat by other mod-
els, so we might not get enough signal on the power
of the models. On the other hand, MSSResNet op-
timized for the pixelwise MSE loss serves as a good
starting point for many SR models, which typically in-
volve an MSE pretraining stage. With MSRResNet as
a reference model, we expect elementary interpolation
techniques to be much worse compared to all the DL
based approaches, and models optimized for MSE (or,
equivalently, PSNR) to be inferior to models trained
with additional adversarial objectives. For comparison
reasons, we also add the MOS values from [12]. For
other baselines, we simply compute its predicted score
for each image in the dataset and then average across
all the images.

The results are summarized in Table 4 and in Ta-
ble 5, where for each pair of models (resulting in 21
comparisons) for each dataset we find the number of
models correctly ranked by each of the no–reference
methods (where we assume correct ranking to be given
by LPIPS values computed using the ground truth im-
ages). We highlight several key observations below:

1. The ranking of models, provided by NeuralSBS, is
the same as provided by human evaluation (MOS).

Meanwhile, other measures often disagree with
LPIPS values.

2. The NIMA and PARNAC baselines often rank
simple interpolation techniques higher than the re-
cent MSRResNet model, see the BSD100 dataset.
In contrast, for all datasets, NeuralSBS scores of
deep models are much higher compared to shallow
counterparts.

3. The range of NeuralSBS values is much wider com-
pared to the competitors, i.e. it is a more sensitive
measure, which is useful for the development pro-
cess.

Overall, among all the measures, NeuralSBS is the
most consistent with the human evaluation results, re-
ported in the previous works. We argue that it justifies
its usage as an evaluation measure of SR models in sce-
narios when ground truth data is absent.

As a demonstrative example, on Figure 5 we provide
a gradient saliency map [25], produced with the Neu-
ralSBS model, for two images of significantly different
visual quality. Interestingly, the model is focused more
on minor details of the main object on the image (a
tiger), than on the background. We conjecture that
this behavior is quite similar to how humans assess the
relative perceptual quality of two images.

5. Discussion

In this paper, we have introduced Neural Side-By-
Side (NeuralSBS) — a new no-reference measure for
image super-resolution, which allows us to compare dif-
ferent SR models or to tune their hyperparameters. By
extensive experiments, we show that NeuralSBS out-
performs existing no-reference measures in terms of ap-
proximating human preferences for super-resolved im-
ages. The NeuralSBS design is motivated by a realistic
practical scenario, where developers currently have to
use expensive human evaluation to understand if cer-
tain tweaks or model changes result in higher percep-
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Dataset Model
Metric

NIMA PARNAC NeuralSBS NeuralSBS− NIQE MOS LPIPS

Set14

nearest 5.018 0.437 0.117 0.408 21.33 1.28 0.405
bicubic 4.575 0.372 0.115 0.357 22.06 1.97 0.439
MSRResNet 5.102 0.425 0.500 0.500 22.36 3.37 0.284
SRFBN 5.106 0.426 0.511 0.501 22.24 - 0.280
MSRGAN 5.326 0.467 0.587 0.604 20.30 2.29 0.145
ESRGAN (PSNR) 5.149 0.429 0.543 0.526 22.28 3.58 0.271
ESRGAN (GAN) 5.355 0.464 0.618 0.592 19.50 - 0.133

Urban100

nearest 5.416 0.473 0.167 0.372 20.03 - 0.411
bicubic 5.335 0.460 0.142 0.318 19.96 - 0.473
MSRResNet 5.722 0.513 0.500 0.500 20.24 - 0.227
SRFBN 5.729 0.514 0.514 0.502 20.03 - 0.214
MSRGAN 5.752 0.515 0.530 0.516 18.81 - 0.143
ESRGAN (PSNR) 5.734 0.514 0.520 0.503 19.87 - 0.196
ESRGAN (GAN) 5.757 0.516 0.552 0.521 18.02 - 0.123

BSD100

nearest 5.292 0.426 0.107 0.449 21.53 1.11 0.475
bicubic 4.521 0.348 0.118 0.366 21.73 1.47 0.526
MSRResNet 4.873 0.395 0.500 0.500 22.66 2.29 0.371
SRFBN 4.898 0.397 0.517 0.503 22.58 - 0.367
MSRGAN 5.420 0.452 0.640 0.668 19.57 3.56 0.178
ESRGAN (PSNR) 4.956 0.403 0.568 0.531 22.62 - 0.357
ESRGAN (GAN) 5.449 0.455 0.642 0.662 19.10 - 0.161

Table 4: Evaluation results of various SR models on popular SR datasets. For NeuralSBS and NeuralSBS−

evaluation was performed against the images produced by MSRResNet [28, 12]. Mean Opinion Scores (MOS) were
taken from [12]. For LPIPS and NIQE a lower score indicates a better quality, for other algorithms — a higher
score is better.

Set14 Urban100 BSD100 Total (of 63)

NIQE 14 17 14 45
PARNAC 17 21 18 56
NIMA 21 21 18 60
NeuralSBS− 20 21 20 61
NeuralSBS 21 21 20 62

Table 5: The number of pairs of models correctly com-
pared by each method.

tual quality. As demonstrated in the experiments, the
usage of NeuralSBS allows to automate the evaluation,
thereby substantially expediting the development pro-
cess. Given that our dataset is large and diverse, we
expect that it can serve as a useful benchmark for new
super-resolution methods, which comes with a “build-
in” human evaluation, provided by our model. Fur-
thermore, SBS180K is a natural fit to train image en-
hancement models. Finally, since NeuralSBS per se is a
differentiable computational unit, it can be used as an

Figure 5: Visualization of the saliency map of the Neu-
ralSBS model. Images were produced by MSRRes-
Net and MSRGAN respectively. The score assigned
by NeuralSBS to this pair is 0.89. Notably, the model
is focused on minor details, such as tiger whiskers and
stripes.

additional optimization objective in the future models
for super-resolution or general image generation.
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