
Discriminative Appearance Modeling with Multi-track Pooling for Real-time

Multi-object Tracking

Chanho Kim 1∗ Li Fuxin 2 Mazen Alotaibi 2 James M. Rehg 1

1Georgia Institute of Technology 2Oregon State University

Abstract

In multi-object tracking, the tracker maintains in its

memory the appearance and motion information for each

object in the scene. This memory is utilized for finding

matches between tracks and detections, and is updated

based on the matching. Many approaches model each target

in isolation and lack the ability to use all the targets in the

scene to jointly update the memory. This can be problematic

when there are similarly looking objects in the scene. In this

paper, we solve the problem of simultaneously considering

all tracks during memory updating, with only a small spatial

overhead, via a novel multi-track pooling module. We addi-

tionally propose a training strategy adapted to multi-track

pooling which generates hard tracking episodes online. We

show that the combination of these innovations results in

a strong discriminative appearance model under the bilin-

ear LSTM tracking framework, enabling the use of greedy

data association to achieve online tracking performance.

Our experiments demonstrate real-time, state-of-the-art on-

line tracking performance on public multi-object tracking

(MOT) datasets. The code and trained models are available

at https://github.com/chkim403/blstm-mtp.

1. Introduction

In the typical tracking-by-detection setting of multi-

object tracking, a trained target detector is assumed to exist,

and the goal of the tracking algorithm is to solve the data

association problem: associating detections from different

frames into tracks. The standard approach involves building

an appearance model and a motion model for each target be-

ing tracked. The appearance model stores features from past

appearances, which are compared against detections in each

new frame, and the motion model predicts where the target

will be located in the next frame. Because of the ambiguity

in appearance, many previous trackers utilized sophisticated

* Part of this work was conducted while Chanho Kim was visiting

Oregon State University.

data association schemes that relied on evidence from mul-

tiple frames to determine the correct track. These choices

result in a tracker which is not capable of real-time online

performance, i.e. it cannot generate a result without delay

after processing a new frame in the video. This is unfortu-

nate, because real-time online tracking is critically impor-

tant for numerous practical applications in AI. For example,

in robotics applications such as autonomous driving, online

processing is critical to support real-time decision-making.

One issue that has necessitated sophisticated data asso-

ciation schemes is that the appearance models are usually

built to match tracks and detections individually, without

considering other tracks and detections in the matching pro-

cess. This approach does not have sufficient discriminative

power to address the ambiguities arising when several sim-

ilar targets move adjacent to each other in the video, e.g.

multiple men in black suits. In this situation, either more

subtle features need to be utilized for target discrimination,

or the likelihood of the matching needs to be decreased to

accommodate this uncertainty. This in turn requires the

matching approach to utilize the appearance information

from other nearby tracks in making a determination.

This paper introduces a novel approach to appearance

modeling that takes all tracked objects into account when

matching detections. Suppose each track has a stored on-

line memory about all of its past appearances, we propose

a novel multi-track pooling module which stores a max-

pooled version of the memory from all other tracks. This

extension allows the appearance model to take into account

online negative examples from other objects within the

same video (see Fig. 1). We show that multi-track pooling

greatly enhances the discriminative power of the appearance

model for track scoring and improves overall performance.

We leverage the additional discriminative power of our

matching approach to achieve real-time online tracking by

means of a simple, greedy data association method: Each

track is matched with the detection that has the highest like-

lihood of belonging to the track. Greedy association is ex-

tremely efficient, resulting in fast performance. In this work

we test the hypothesis that our discriminative appearance

and motion modeling can enable this simple data associa-

19553

2
3 4

5

1

LSTM

LSTM

LSTM

LSTM

LSTM

Track 1’s Classifier

· · ·

Track 2’s Classifier

Track 1’s Classifier

Track 2’s Classifier

· · ·

Proposed Work Previous Work

Figure 1. Existing recurrent neural network-based track classifiers used only matched detections for updating its appearance memory during

tracking. This does not consider other objects in the scene (i.e. negative examples), which may have similar appearances. We propose to

improve the predicted likelihood of such a classifier by augmenting its memory with appearance information about other tracks in the scene

with multi-track pooling, leveraging the appearance information from the full set of tracks in the scene. The resulting classifier learns to

adapt its prediction based on the information from other tracks in the scene.

tion mechanism to achieve strong tracking performance.

Our online tracking framework additionally incorporates

components from recent tracking works. First, we utilize

the Bilinear LSTM framework [17] as the basis for our

matching approach, due to its effective memory construc-

tion. Second, we incorporate training strategies that han-

dle long tracks using truncated backpropagation through

time [32], in contrast to prior works [31, 17] in which

the models were trained with short tracks. Third, we ex-

tend object tracks to frames without detections using a mo-

tion model, thereby compensating for missing detections.

Fourth, we trained a bounding box corrector to correct

bounding box coordinates, which is especially helpful for

the extended tracks.

In summary, this paper makes the following contribu-

tions:

1. A novel multi-track pooling module which enables a

track classifier to take online negative examples into

account during testing and thus adjust its prediction

adaptively depending on the objects in the scene.

2. A training strategy that is adapted to train the proposed

track pooling module by utilizing within-batch depen-

dencies among tracks and that enables long sequence

training with the original full tracks instead of short

tracks used in [31, 17].

3. A real-time, online multi-object tracking algorithm

that achieves state-of-the-art online tracking perfor-

mance on standard tracking benchmarks.

2. Related Work

Two groups of prior works have explored the incorpora-

tion of positive and negative samples during on-the-fly test-

ing, and these are the closest related works to this paper.

One line of work incorporates these samples by fine-tuning

a pretrained CNN using positive examples (target object)

and negative examples (background in [27], other objects

in [23]) during testing. While these approaches share our

interest in utilizing scene-specific information during track-

ing, the need to fine-tune during testing adds an additional

source of complexity and is a barrier to efficient online per-

formance. In contrast, our model automatically adjusts its

prediction based on scene-specific information without the

need for fine-tuning. The second line of work uses rela-

tional networks or graph convolutional networks (GCNs) to

incorporate the appearance of other detections in the same

frame [35] and in neighboring frames [3] when computing

the appearance features of each detection. However, [3]

operates in a batch setting whereas our approach is online.

In addition, our multi-track pooling method is significantly

simpler and faster than graph convolutional networks which

require multiple iterations of message passing.

We utilize the Bilinear LSTM architecture of [17] in de-

veloping our matching approach. We extend beyond this

work in multiple ways, the primary difference being the in-

troduction of a novel multi-object pooling approach which

utilizes appearance information across tracks to signifi-

cantly improve data association performance. We demon-

strate that this makes it feasible to use a much simpler

and more cost-effective matching algorithm following track

scoring, achieving real-time multi-object tracking.

[31, 26] presented an LSTM-based track proposal classi-

fier that integrates motion, appearance, and interaction cues.

[40] presented a new attention network where attentions are

computed both spatially and temporally to predict binary

labels for track proposals. [11] proposed recurrent autore-

gressive networks where they learn generative models for

both motion and appearance, and these generative models

are used in data association to determine how likely it is

that a detection belongs to a track. The primary difference

between our work and these prior approaches is that our

model makes a prediction for a detection-track pair by tak-

29554

ing appearances of all tracks into account.

[28] and [6] exploited interactions between tracks in

solving the multi-object tracking problem. [28] incorpo-

rated a social behavior model into their tracking algorithm.

The social behavior model is based on the assumption that

each person moves in such a way as to avoid collisions

with other people. [6] incorporated high-level human ac-

tivity cues into their tracking algorithm by exploiting the

fact that human activities can influence how people move in

the scene. In contrast to these works, our work focuses on

incorporating multiple appearances from all tracks into our

model, in order to make it more discriminative.

3. Track Proposal Classifier

Tracking-by-detection approaches in multi-object track-

ing evaluate multiple track proposals [5, 16, 33, 31, 17]

when finding correspondences between tracks and detec-

tions. Track proposals are typically constructed by ex-

tending existing tracks from the previous frame with new

detections in the current frame. Let us denote Tl(t) as

the lth track at time t. Let s(l) be the starting frame of

the lth track and dlt be the detection selected by the lth

track at time t. We then write the lth track at time t as

Tl(t) = {dl
s(l), d

l
s(l)+1, ... , d

l
t−1, d

l
t}. Recurrent networks

are trained to output the following conditional probability:

f(dt, Tl(t− 1); θ) = p(dt ∈ Tl(t)|Tl(t− 1)) (1)

where f(·) and θ represent a neural network and its learn-

able parameters respectively. The input to the neural net-

work is the detection-track pair (dt, Tl(t− 1)).

3.1. Bilinear LSTM

Vanilla LSTM equations are defined as follows [15]:

ft = σ(Wf [ht−1;xt]), it = σ(Wi[ht−1;xt]),

gt = σ(Wg[ht−1;xt]), ot = tanh(Wo[ht−1;xt]),

ct = ft ◦ ct−1 + it ◦ gt, ht = ot ◦ tanh(ct) (2)

where [;] denotes concatenation of 2 column vectors. In the

sequence labeling problem, ht stores the information about

the sequence and is fed into additional fully-connected or

convolutional layers to generate the final prediction. The

input xt and the LSTM memory ht−1 are combined by ad-

ditive interactions in the above equations.

There are two issues with this formulation. First, the

matching operation is usually more easily represented by

multiplicative relationships instead of additive, an intuitive

example being the inner product as a correlation metric.

Second, it is difficult to store and clearly distinguish mul-

tiple different appearances in the same LSTM memory vec-

tor, but a track exhibiting multiple different appearances in

different frames is very common in multi-target tracking.

Bilinear LSTM [17] solves these issues by introducing a

new representation based on the multiplicative interaction

between the input and the LSTM memory:

ht−1 = [h⊤

t−1,1,h
⊤

t−1,2, ...,h
⊤

t−1,r]
⊤

H
reshaped
t−1 = [ht−1,1,ht−1,2, ...,ht−1,r]

⊤

mt = g(Hreshaped
t−1 xt) (3)

where g(·) is a non-linear activation function. A long vector

ht−1 from LSTM is reshaped into a matrix H
reshaped
t−1 before

it being multiplied to the input xt. Hence, multiple mem-

ory vectors can be matched with the feature from the detec-

tion with an inner product. The new matching vector mt is

then fed into additional fully-connected layers to generate

the final prediction. Note that the way that the LSTM mem-

ory ht−1 interacts with the input xt is changed in Bilinear

LSTM, the output gate is not used, while standard LSTM

memory updates in Eq. (2) are used since the memory vec-

tor ht−1 is retained as in Eq. (3).

Bilinear LSTM bears some resemblance to the popular

transformers model [34] in natural language processing in

that both utilize a multiplicative relationship between the se-

quence and a new token, but they have some important dif-

ferences. In a transformer model, the inner product is taken

between the key of a new token with all previous tokens

in the sequence. This makes them very memory-inefficient

and unsuitable for online operations that span hundreds of

frames in multi-object tracking. In Bilinear LSTM, the

memory size is fixed, and the memory is updated automati-

cally using the LSTM updating rule. This has the effect of

automatically grouping similar appearances into the same

row of the memory H
reshaped
t−1 in Eq. (3), so that the mem-

ory size does not grow linearly with respect to the sequence

length. Hence, we believe that Bilinear LSTM is a suitable

choice for online tracking in which multiple appearances

for each track need to be stored.

3.2. Application to Multi­object Tracking

When Bilinear LSTM is used in multi-object tracking,

each track Tl(t− 1) will have its own LSTM memory hl
t−1

which is stored during the tracking process. All new detec-

tions at frame t go through a CNN to generate their corre-

sponding xt, which are then used to compare with hl
t−1 for

all the tracks. When each detection has been scored with

each track, the detections will be assigned to the existing

tracks by either greedy assignment, or multiple hypothe-

sis tracking (MHT) assignment [16]. Finally, the features

from the assigned bounding box are used as xl
t to update

the track memory with Eq. (2). The updated memory hl
t

will be stored and then the same process will be repeated in

the next frame. All tracks share the same LSTM network as

their appearances will be dynamically updated in the mem-

ory, hence there is no re-training needed for any new object.

39555

ℎ!

𝑥

ℎ"

ℎ#

ℎ$

Bilinear LSTM memory vectors

from a target track

Bilinear LSTM memory vectors

from other tracks

Appearance of new detection 𝑥

Figure 2. Bilinear LSTM and the proposed improvements by

multi-track pooling module. Bilinear LSTM stores multiple mem-

ory vectors for each track (in blue) so that a new detection xt can

be matched with multiple templates via inner products. In this

work, we improve on it by concatenating the memory with multi-

ple stored memory vectors from other simultaneously tracked tar-

gets (in red) to serve as negative examples, so that the template

matching process can take into account more subtle differences

between the positive track and negative tracks. (best viewed in

color)

3.3. Multi­Track Pooling Module

A limitation of the previous work [31, 17] is that only

past appearances of the same track were considered, as

only matched detections were inputted as xl
t to update the

LSTM memory at time t. However, during tracking, dif-

ferent targets can have similar appearances. For example,

in pedestrian tracking, there could always be many people

wearing similar white shirt and black pants, or black suits

and black pants. These people need to be distinguished via

more detailed features, such as shoes, objects in hand, etc.

Thus, simple appearance matching may not be discrimina-

tive enough.

We propose to extend the track scoring process to con-

sider all the tracked objects, other than only the current ob-

ject of concern. Instead of simply growing the memory to

store more templates, which can hit a memory bottleneck,

we jointly consider all the objects that have been tracked.

Tracked objects are usually the ones most easily confused

with the target (if a detection does not come from a track,

then its appearance is likely significantly different from any

tracked objects (e.g. pedestrians)). Hence, taking the ap-

pearance information about these objects into considera-

tion could greatly improve the discriminative power of the

tracker for each target (see Fig. 2).

In order to consider other tracked objects as well, we

propose to modify Eq. (1) to:

f(dt, T1:M (t− 1); θ) = p(dt ∈ Tl(t)|T1:M (t− 1)) (4)

where T1:M (t− 1) = {T1(t− 1), T2(t− 1), ..., TM (t− 1)}
represents the existing tracks in the previous frame. In this

paper, we denote M as the number of tracks in the previous

frame t−1 and denote N as the number of detections in the

current frame t. [31] also trained recurrent neural networks

to output this kind of conditional probability by using track

interaction cues, but their interaction cues were the most

recent locations of other tracks, not appearances of other

tracks.

In Bilinear LSTM, each track in the previous frame is

associated with a unique LSTM memory hl
t−1. When new

detections xt arrive in the current frame, we compute mt

in Eq. (3) between each of the M existing tracks and each

of the N new detections. We denote m+
t as the matching

vector between hl
t−1 computed using the target track (i.e.

the current object of concern) and xt (as computed by Eq.

(3)). For the other M−1 tracks in the scene, we denote M−

t

as a matrix in which each row represents mt computed by a

non-target object track (i.e. other objects in the scene) and

the new detection (xt):

M−

t = [m−

t,1,m
−

t,2, ...,m
−

t,M−1]
⊤ (5)

where m−

t,i represents the matching between the i-th non-

target object track and the new detection.

Here the main difficulty is that we have one positive track

and an indefinite number of negative tracks. We propose to

compress M − 1 mts using max pooling in order to obtain

a fixed size matching representation m−

t regardless of the

number of the tracks in the previous frame:

m−

t (j) = max
i

M−

t (i, j) (6)

where m−

t (j) represents the j-th element in m−

t , and

M−

t (i, j) represents an element located in the i-th row and

j-th column of M−

t . Thus, the j-th element in m−

t is com-

puted by taking the maximum of the j-th column of M−

t .

Since the Bilinear LSTM matching vector stores corre-

lation responses between multiple templates and the input,

applying max pooling to M−

t allows us to detect high cor-

relation responses generated by non-target object tracks for

the detection which is currently considered. Thus, values

in m−

t can show whether any of the non-target object tracks

has a similar appearance to that of the current detection. We

obtain the final matching representation for a track classifier

by concatenating m+
t and m−

t as:

mall
t = [

(

m+
t

)

;
(

m−

t

)

] (7)

The network runs a fully-connected layer after mall
t fol-

lowed by softmax, that outputs the binary decision that de-

termines whether the new detection belongs to the target

track (m+
t).

Table 1 shows the proposed network architecture. In

practice we compute the Bilinear LSTM representation mt

for all the tracks and then construct M−

t by simply stack-

ing the precomputed vectors into a matrix, which can be

done efficiently. We adopt ResNet 50 [14] as our convolu-

tional neural network and use Bilinear LSTM [17] as our

recurrent network. In addition to the proposed appearance

49556

Soft-max 2

FC 2

Concatenation (mall
t) 16

Matrix-vector Multiplication-relu (m+
t) 8 Max-pooling (m−

t) 8

Matrix-vector Multiplication-relu (M−

t) (M − 1)× 8
Reshape 8× 256 Reshape 256× 1 Reshape (M − 1)× 8× 256 Reshape 256× 1
LSTM 2048 LSTM (M − 1)× 2048
FC-relu 256 FC-relu 256 FC-relu (M − 1)× 256 FC-relu 256

ResNet-50 2048 ResNet50 2048 ResNet-50 (M − 1)× 2048 ResNet50 2048

x+
t−1 128× 64× 3 xt 128× 64× 3 x−

t−1,i (M − 1)× 128× 64× 3 xt 128× 64× 3

Table 1. Proposed Network Architecture for the Track Proposal

Classifier. The right two columns represent the multi-track pooling

module where (M − 1) other tracks are processed.

model, we adopt the motion model in [17] as the learned

motion model. It is a binary classifier based on a traditional

LSTM that receives the bounding box coordinates as input.

We combine the appearance model and motion model to

form a joint model that utilizes both appearance and motion

cues. We used this joint model to generate the results in

Table 6, 7, and 8. More details about the joint model are

included in the supplementary.

4. Training

In this section, we describe the training strategy for the

proposed neural network architecture by sampling mini-

batches so that tracks within the mini-batch are correlated,

in order for the multi-track pooling module to train effec-

tively. We explain the method that generates our train-

ing data consisting of both actual multi-object tracking

episodes and random tracking episodes from public multi-

object tracking datasets [18, 25] and then present our choice

of loss function.

4.1. Actual Tracking Episodes as Training Data

We generate actual tracking episodes by processing

ground truth track labels sequentially and generating track

proposals every frame in an online manner. Specifically,

when we have M tracks in the previous frame and N detec-

tions in the current frame, we generate MN track-detection

pairs in the current frame by considering all possible pairs

between the existing tracks and the new detections. Each

proposal of a track-detection pair is associated with a binary

label where positive label indicates a match and negative

represents that the track and detection belong to different

objects. We use these MN proposals as a mini-batch for

each training iteration and repeat this process until we pro-

cess all the frames in video. Then we move on to the next

training video. This process is repeated over all training

videos during training.

Truncated backpropagation through time. As we pro-

cess training videos sequentially, tracks become too long

to fit into GPU memory. One way to avoid this is to split

tracks into shorter ones, which is similar to the training data

used in [31, 17] for recurrent models. However, this is sub-

optimal because a recurrent model would only be able to

learn temporal structures with an extent limited by the max-

imum sequence length that the model sees during training.

In order to address this issue, we adopt truncated back-

propagation through time (BPTT) [32]. In truncated BPTT,

the maximum number of time steps where the loss is back-

propagated is limited by a fixed-size time window. How-

ever, entire sequences are processed by a recurrent model

through multiple training iterations by a moving time win-

dow. Since long sequences are processed through multiple

training iterations, the recurrent memories that store the se-

quence information need to be shared across the training

iterations. This allows the model to access the temporal

context beyond the temporal extent which is determined by

the size of the time window. By training a recurrent model

with the original long tracks, the model has a better chance

to learn how to exploit long-term information when solving

the track proposal classification problem.

4.2. Random Tracking Episodes as Training Data

We also use short random track proposals, which is sim-

ilar to the training data used in [31, 17], as our additional

training data. We generate short random track proposals as

follows. At each training iteration, we first pick a video

where we generate tracks and randomly select the start

frame and end frame for obtaining track proposals. We take

all the tracks that exist in the end frame. Denote Nmax as the

maximum number of tracks that we use to construct random

track proposals. If the number of the tracks in the end frame

is greater than Nmax, we randomly pick Nmax tracks among

them. In order for each mini-batch to have tracks of differ-

ent lengths, we randomly clip the selected tracks such that

each track in the batch start in different frames.

We take N detections from the selected tracks in the

end frame and take M tracks from the previous frame to

form track proposals (M < N when new tracks are born

in the selected end frame. Otherwise, M = N). We gen-

erate MN track-detection pairs by considering all possi-

ble matchings between these two. Thus, M track-detection

pairs are associated with a positive label (same object), and

MN −M pairs are associated with a negative label.

4.3. Loss Function

For each mini-batch, there are MN track-detection

pairs, each of which incurs a loss value. Thus, our cross-

entropy loss is written as:

L(t) =
1

MN

M
∑

i=1

N
∑

j=1

αij(t)Lij(t) (8)

where t represents a frame number in video, and αij is a

weighting factor. The cross-entropy loss term for each train-

59557

ing example Lij(t) is defined as:

Lij(t) =
{

− log p(djt ∈ Ti(t)|T1:M (t− 1)), ifyij(t) = 1

− log(1− p(djt ∈ Ti(t)|T1:M (t− 1))), otherwise

(9)

where djt represents a jth detection in t, and yij(t) is a

ground truth binary label representing whether djt belongs

to a track Ti(t) or not. For the weighting factor αij(t),
we adopted the weighting factor of Focal loss [20] to ad-

dress the class imbalance of our training data (i.e. there are

much more negative examples than positive examples). The

weighting factor is then written as:

αij(t) =
{

β+(1− p(djt ∈ Ti(t)|T1:M (t− 1)))2, if yij(t) = 1

β−(p(djt ∈ Ti(t)|T1:M (t− 1)))2, otherwise

(10)

where β+ and β− are class-specific constant weights which

are found empirically as suggested in [20]. For positive

labels, we used β+ = 4, and, for negative labels (i.e.

djt /∈ Ti(t)), we used β− = 1.

5. Tracking Algorithm

In this work, we choose to use the greedy association be-

cause it is the fastest association algorithm, and our training

setting simulates such a greedy association algorithm (i.e.

the loss value was calculated for each track independently

and then averaged across all tracks in a mini-batch). The

greedy data association algorithm runs in O(MN) time. A

more complicated scheme would require additional compu-

tational complexity (e.g. the Hungarian algorithm runs in

O(MN2)) and would require more careful parameter tun-

ing for the tracker.

5.1. Greedy Data Association

Our greedy data-association works as follows. It initial-

izes new tracks with the detections in the first frame. The

tracker generates and stores the LSTM memory ht−1 for

each of the tracks. When new detections xt arrive in the

next frame, we compute the association likelihood for every

possible track-detection pair using the track proposal clas-

sifier. We set the threshold for the association likelihood to

0.5. The data association problem is then solved in a greedy

manner starting from the highest matching likelihood. The

tracks are updated with the newly assigned detections, and

new tracks are born from the detections which are not asso-

ciated with any of the existing tracks. The tracker updates

the LSTM memory from ht−1 to ht for every track accord-

ing to the data association result. This process is repeated

until all the video frames are processed.

We adopt a simple track termination strategy which ter-

minates tracks if they have more missing detections than ac-

tual detections or the number of consecutive missing detec-

tions becomes larger than a threshold Nmiss. The terminated

tracks will not be used in the data association process any-

more and will not be used for computing non-target object

memories either.

5.2. Track Extension and Bounding Box Correction

In online tracking, we attempt to extend a track by gen-

erating additional detections. When there is no detection in

a predicted target location in the current frame, we generate

a new detection bounding box using the location predicted

by a Kalman filter and then use our track proposal classi-

fier to decide whether or not the newly generated detection

belongs to the current target. Since we rely on motion cues

when generating these additional detections, the bounding

box coordinates of the newly generated detections might not

be accurate. Thus, we train a bounding box corrector which

predicts the correct bounding box coordinates based on the

CNN features, which is similar to the bounding box regres-

sion module presented in [13]. More details are included in

the supplementary material.

6. Experiments

We tested the proposed method on the MOT 16 and MOT

17 (Multiple Object Tracking) Challenge Benchmarks [25].

We trained on the MOT 17 training sequences, as well as

additional public training sequences including 7 MOT 15

training sequences [18] which were not included in MOT

17 training/testing sequences to our training data. In con-

trast to several recent work [33, 31, 17], we did not utilize

the Person Re-identification datasets [19, 38] to pretrain our

CNN.

For our ablation study, we used two validation sets. The

first one is the MOT 19 Challenge training sequences [10]

which have 2,390 annotated object tracks. In contrast to

the MOT 17 sequences, this new challenge dataset pro-

vides heavily crowded scenes captured in new environ-

ments, which makes it good for validating the proposed ap-

pearance model. Note that this dataset was only used for our

ablation study and thus was not used to train our model in

Table 6, 7, and 8. The second validation set is the MOT 17

Challenge training sequences which have 512 annotated ob-

ject tracks. When the second validation set is used, we used

the MOT 15 training sequences as our training data. See

the supplementary document for the video sequence names

used in the training, validation, and test sets.

We used the standard MOT metrics such as IDF1 [29],

IDS, MOTA [2], Mostly Tracked (MT), Mostly Lost (ML),

and Fragmentation (Frag) [25] for performance comparison

in our experiments.

69558

Method MOTA IDF1 IDS Rcll Prcn MT ML Frag

B-LSTM 44.8 31.3 15,367 46.1 99.8 12.6 27.0 38,182

Ours 44.9 35.0 11,940 45.9 99.8 12.7 27.5 37,017

Table 2. Performance comparison on MOT 19 train sequences

(val1) when motion gating is not used

Method MOTA IDF1 IDS Rcll Prcn MT ML Frag

B-LSTM 49.1 52.5 1,112 51.7 96.9 21.1 31.9 1,066

Ours 49.4 53.9 809 51.6 97.1 21.1 31.5 1,070

Table 3. Performance comparison on MOT 17 train sequences

(val2) when motion gating is not used

Method MOTA IDF1 IDS Rcll Prcn MT ML Frag

B-LSTM 45.1 39.6 9,137 45.9 99.8 12.6 27.6 36,379

Ours 45.0 40.5 7,873 45.7 99.8 12.6 28.1 35,169

Table 4. Performance comparison on MOT 19 train sequences

(val1) when the simple motion gating strategy is used

Method MOTA IDF1 IDS Rcll Prcn MT ML Frag

B-LSTM 49.3 56.7 847 51.6 97.1 21.1 32.1 1,038

Ours 49.6 56.8 616 51.6 97.3 21.1 32.1 1,040

Table 5. Performance comparison on MOT 17 train sequences

(val2) when the simple motion gating strategy is used

6.1. Ablation Study

In the ablation study, we show the effectiveness of the

proposed multi-track pooling module by comparing its per-

formance to the original Bilinear LSTM. Firstly, we tested

their performance without using any motion cues during

tracking. Secondly, we used motion cues during tracking

by adopting a simple motion gating strategy that allows de-

tections that are close to the current track to be considered

as a possible matching.

Data Association. We ran the greedy data association

algorithm described in the previous section with the follow-

ing hyperparameter setting: 0.5 as the association threshold

and Nmiss = 60. In the ablation study, we did not inter-

polate missing detections in the final tracks using our track

extension module in order to make the MOTA scores (also,

Recall, Precision, MT, and ML) close across different meth-

ods. This allowed us to compare other tracking metrics in a

fairer setting.

Comparison with Bilinear LSTM. We examined the

effect of the proposed multi-track pooling module on the

tracking performance. For this ablation study to be fair,

both Bilinear LSTM and our method were trained on the

same training set (see the supplementary document) with

the same training setup. Table 2 and 3 show the tracking

results when no motion cues were used during tracking. In

this case, the appearance model needed to do the heavy lift-

ing. Table 4 and 5 show the tracking results when a simple

motion gating strategy was applied. Bilinear LSTM with

the multi-track pooling module consistently outperformed

the original Bilinear LSTM on IDF1, IDS and Fragmenta-

tions, showing its effectiveness in multi-object tracking on

both of our validation sets.

In Table 2 - 5, the differences on IDF1 between the B-

LSTM baseline and the proposed approach were relatively

small compared to the differences on IDS. We suspect that

this is a result of a mismatch between the binary classifi-

cation loss and the IDF1 metric. As pointed out by [24],

minimizing the binary classification loss does not always

guarantee the model to perform better on IDF1.

6.2. MOT Challenges

We evaluated both the online and near-online versions of

our tracker for the MOT 17/16 Benchmarks. In the online

version, we utilized the track extension module described

in Sec. 5.2 to recover missing detections (except for the

online tracker in Table 6 in which we turned off both the

extension module and the bounding box corrector). In the

near-online version, we performed local track smoothing to

recover missing detections instead of using the track exten-

sion module. For the second case, we denote the method

as near-online in Table 7 and 8 since local track smoothing

requires lookahead frames.

Recent approaches [36, 21] utilized Tracktor [1] to first

refine public detections, which resulted in higher scores due

to more accurate detections. In order to compare with these

recent approaches, we also used public detections processed

by Tracktor as input to our tracker and presented the com-

parison in Table 6 separately. For this experiment, we used

the public detections provided by [3]. In Table 6, it can

be seen that our approach significantly improves the IDF1

score and identity switches over other online tracktor-based

approaches. We also compared our performance with [39]

which also refined public detections using CenterNet. Note

that CenterNet offers a significantly better refinement mod-

ule than Tracktor, shown by their high detection accuracy in

MOTA with significantly less false negatives, despite higher

identity switches. In this case, a direct comparison cannot

be made since a different method was used to refine the pub-

lic detections. Note that our performance on IDF1 and ID

switches still remains strong compared to [39].

In Table 7 and 8, we did not utilize Tracktor and com-

pared our results with other online and near-online trackers

which did not utilize Tracktor. Again our greedy tracker is

the fastest among the top performing trackers and our per-

formance is comparable with the best trackers. Considering

its simplicity and speed, we believe our method demon-

strates strong state-of-the-art performance on the MOT

Challenge.

In near-online trackers, we significantly improve over

our baseline MHT-bLSTM on both IDF1 (by 7.5%) and

MOTA (by 12.8%), obtaining the best performance in near-

online tracking. We also have the smallest amount of ID

switches, fragmentations and the highest amount of mostly

79559

Method Type IDF1 MOTA IDS MT ML Frag FP FN Hz

CTTrackPub [39] online 59.6 61.5 2,583 26.4 31.9 4,965 14,076 200,672 17.0

GSM-Tracktor [21] online 57.8 56.4 1,485 22.2 34.5 2,763 14,379 230,174 8.7

Tracktor++v2 [1] online 55.1 56.3 1,987 21.1 35.3 3,763 8,866 235,449 1.5

TrctrD17 [36] online 53.8 53.7 1,947 19.4 36.6 4,792 11,731 247,447 4.9

Tracktor++ [1] online 52.3 53.5 2,072 19.5 36.6 4,611 12,201 248,047 1.5

BLSTM-MTP-T online 60.5 55.9 1,188 20.5 36.7 4,185 8,663 238,863 6.0 (24.8)

Table 6. MOT 17 Challenge (with trackers that utilized public detections + Tracktor [1] or public detections + CenterTrack [39]). We used

the public detections provided by [3] as input to our tracker. Our tracker runs at 24.8 Hz when the detections processed by Tracktor were

used as input. When we consider the processing time spent by Tracktor (8 Hz, calculated by [3]), our tracker runs at 6 Hz. Note that we

used bold for the best number and blue color for the second-best number.

Method Type IDF1 MOTA IDS MT ML Frag FP FN Hz

STRN-MOT17 [35] online 56.0 50.9 2,397 18.9 33.8 9,363 25,295 249,365 13.8

DMAN [40] online 55.7 48.2 2,194 19.3 38.3 5,378 26,218 263,608 0.3

MOTDT17 [22] online 52.7 50.9 2,474 17.5 35.7 5,317 24,069 250,768 18.3

AM-ADM17 [30] online 52.1 48.1 2,214 13.4 39.7 5,027 25,061 265,495 5.7

HAM-SADF17 [37] online 51.1 48.3 1,871 17.1 41.7 3,020 20,967 269,038 5.0

PHD-GSDL17 [12] online 49.6 48.0 3,998 17.1 35.6 8,886 23,199 265,954 6.7

FAMNet [8] online 48.7 52.0 3,072 19.1 33.4 5,318 14,138 253,616 0.0

BLSTM-MTP-O online 54.9 51.5 2,566 20.4 35.5 7,748 29,616 241,619 20.1

MHT-bLSTM [17] near-online 51.9 47.5 2,069 18.2 41.7 3,124 25,981 268,042 1.9

EDMT17 [4] near-online 51.3 50.0 2,264 21.6 36.3 3,260 32,279 247,297 0.6

MHT-DAM [16] near-online 47.2 50.7 2,314 20.8 36.9 2,865 22,875 252,889 0.9

BLSTM-MTP-N near-online 55.8 53.6 1,845 23.5 34.4 2,294 23,583 236,185 22.7

Table 7. MOT 17 Challenge (Published online and near-online methods using public detections)

Method Type IDF1 MOTA IDS MT ML Frag FP FN Hz

STRN-MOT16 [35] online 53.9 48.5 747 17.0 34.9 2,919 9,038 84,178 13.5

DMAN [40] online 54.8 46.1 532 17.4 42.7 1,616 7,909 89,874 0.3

MOTDT [22] online 50.9 47.6 792 15.2 38.3 1,858 9,253 85,431 20.6

STAM16 [9] online 50.0 46.0 473 14.6 43.6 1,422 6,895 91,117 0.2

RAR16pub [11] online 48.8 45.9 648 13.2 41.9 1,992 6,871 91,173 0.9

KCF16 [7] online 47.2 48.8 648 15.8 38.1 1,116 5,875 86,567 0.1

AMIR [31] online 46.3 47.2 774 14.0 41.6 1,675 2,681 92,856 1.0

BLSTM-MTP-O online 53.5 48.3 735 17.0 38.7 2,349 9,792 83,707 21.0

NOMT [5] near-online 53.3 46.4 359 18.3 41.4 504 9,753 87,565 2.6

EDMT [4] near-online 47.9 45.3 639 17.0 39.9 946 11,122 87,890 1.8

MHT-bLSTM [17] near-online 47.8 42.1 753 14.9 44.4 1,156 11,637 93,172 1.8

MHT-DAM [16] near-online 46.1 45.8 590 16.2 43.2 781 6,412 91,758 0.8

BLSTM-MTP-N near-online 52.6 49.9 573 19.6 38.9 680 7,098 83,657 23.8

Table 8. MOT 16 Challenge (Published online and near-online methods using public detections)

tracked objects in MOT 17. Note that these are obtained

with greedy data association and only local smoothing is

added on top of the online tracker performance. The speed

is also faster than the online version since the track exten-

sion module used for the online tracker is replaced with sim-

ple local track smoothing in the near-online version.

7. Conclusion

In this paper, we introduce a novel multi-track pool-

ing module that enables joint updating of appearance mod-

els using all tracks, thereby improving matching reliabil-

ity when targets are similar in appearance. We propose a

novel training strategy for track pooling that utilizes within-

batch dependencies among tracks and supports training over

long sequences. The resulting tracker is based on a Bilinear

LSTM architecture and performs greedy data association.

With this simple approach, it achieves real-time tracking

performance with an accuracy equivalent to state-of-the-art

online trackers.

Acknowledgements

This work was supported in part by NIH award 1R24O

D020174-01A1 and DARPA contract N66001-19-2-4035.

Any opinions, findings and conclusions or recommenda-

tions expressed in this material are those of the author(s)

and do not necessarily reflect the views of the Defense Ad-

vanced Research Projects Agency (DARPA).

89560

References

[1] Philipp Bergmann, Tim Meinhardt, and Laura Leal-Taixé.

Tracking without bells and whistles. In ICCV 2019, 2019. 7,

8

[2] Keni Bernardin and Rainer Stiefelhagen. Evaluating multi-

ple object tracking performance: the CLEAR MOT metrics.

Image and Video Processing, 2008. 6

[3] Guillem Brasó and Laura Leal-Taixé. Learning a neural

solver for multiple object tracking. In CVPR, June 2020.

2, 7, 8

[4] Jiahui Chen, Hao Sheng, Yonghui Zhang, and Zhang Xiong.

Enhancing detection model for multiple hypothesis tracking.

In CVPR Workshops, 2017. 8

[5] Wongun Choi. Near-online multi-target tracking with aggre-

gated local flow descriptor. In ICCV, 2015. 3, 8

[6] W. Choi and S. Savarese. A unified framework for multi-

target tracking and collective activity recognition. In ECCV,

2012. 3

[7] Peng Chu, Heng Fan, Chiu Tan, and Haibin Ling. Online

multi-object tracking with instance-aware tracker and dy-

namic model refreshment. In WACV, 2019. 8

[8] Peng Chu and Haibin Ling. Famnet: Joint learning of fea-

ture, affinity and multi-dimensional assignment for online

multiple object tracking. In ICCV 2019, 2019. 8

[9] Qi Chu, Wanli Ouyang, Hongsheng Li, Xiaogang Wang, Bin

Liu, and Nenghai Yu. Online multi-object tracking using

cnn-based single object tracker with spatial-temporal atten-

tion mechanism. In ICCV, 2017. 8

[10] P. Dendorfer, H. Rezatofighi, A. Milan, J. Shi, D. Cremers,

I. Reid, S. Roth, K. Schindler, and L. Leal-Taixé. CVPR19

tracking and detection challenge: How crowded can it get?

June 2019. arXiv: 1906.04567. 6

[11] Kuan Fang, Yu Xiang, Xiaocheng Li, and Silvio Savarese.

Recurrent autoregressive networks for online multi-object

tracking. In WACV, 2018. 2, 8

[12] Zeyu Fu, Pengming Feng, Federico Angelini, Jonathon A.

Chambers, and Syed Mohsen Naqvi. Particle phd filter based

multiple human tracking using online group-structured dic-

tionary learning. IEEE Access, 6:14764–14778, 2018. 8

[13] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra

Malik. Rich feature hierarchies for accurate object detection

and semantic segmentation. In CVPR, 2014. 6

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

2016. 4

[15] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term

memory. Neural computation, 9:1735–80, 12 1997. 3

[16] C. Kim, F. Li, A. Ciptadi, and J. Rehg. Multiple hypothesis

tracking revisited. In ICCV, 2015. 3, 8

[17] C. Kim, F. Li, and J. Rehg. Multi-object tracking with neural

gating using bilinear lstm. In ECCV, 2018. 2, 3, 4, 5, 6, 8

[18] L. Leal-Taixé, A. Milan, I. Reid, S. Roth, and K. Schindler.

MOTChallenge 2015: Towards a benchmark for multi-target

tracking. arXiv:1504.01942, 2015. 5, 6

[19] Wei Li, Rui Zhao, Tong Xiao, and Xiaogang Wang. Deep-

reid: Deep filter pairing neural network for person re-

identification. In CVPR, 2014. 6

[20] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and

Piotr Dollár. Focal loss for dense object detection (best stu-

dent paper award). In ICCV, 2017. 6

[21] Qiankun Liu, Qi Chu, Bin Liu, and Nenghai Yu. Gsm: Graph

similarity model for multi-object tracking. In IJCAI, 2020.

7, 8

[22] Chen Long, Ai Haizhou, Zhuang Zijie, and Shang Chong.

Real-time multiple people tracking with deeply learned can-

didate selection and person re-identification. In ICME, 2018.

8

[23] Liqian Ma, Siyu Tang, Michael J. Black, and Luc Van Gool.

Customized multi-person tracker. In ACCV 2018, 2018. 2

[24] Andrii Maksai and Pascal Fua. Eliminating exposure bias

and metric mismatch in multiple object tracking. In CVPR,

2019. 7

[25] A. Milan, L. Leal-Taixé, I. Reid, S. Roth, and K.

Schindler. MOT16: A benchmark for multi-object tracking.

arXiv:1603.00831, 2016. 5, 6

[26] A. Milan, S. H. Rezatofighi, A. Dick, I. Reid, and K.

Schindler. Online multi-target tracking using recurrent neu-

ral networks. In AAAI, 2017. 2

[27] Hyeonseob Nam and Bohyung Han. Learning multi-domain

convolutional neural networks for visual tracking. In CVPR,

2016. 2

[28] Stefano Pellegrini, Andreas Ess, Konrad Schindler, and Luc

J. Van Gool. You’ll never walk alone: Modeling social be-

havior for multi-target tracking. In ICCV, 2009. 3

[29] Ergys Ristani, Francesco Solera, Roger Zou, Rita Cucchiara,

and Carlo Tomasi. Performance measures and a data set

for multi-target, multi-camera tracking. In ECCV Workshop,

2016. 6

[30] S. Bae S. Lee, M. Kim. Learning discriminative appearance

models for online multi-object tracking with appearance dis-

criminability measures. IEEE Access, 2018. 8

[31] A. Sadeghian, A. Alahi, and S. Savarese. Tracking the un-

trackable: Learning to track multiple cues with long-term

dependencies. In ICCV, 2017. 2, 3, 4, 5, 6, 8

[32] Ilya Sutskever. Training recurrent neural networks. PhD

thesis, 2013. 2, 5

[33] S. Tang, M. Andriluka, B. Andres, and B. Schiele. Mul-

tiple people tracking with lifted multicut and person re-

identification. In CVPR, 2017. 3, 6

[34] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-

reit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser, and Il-

lia Polosukhin. Attention is all you need. In I. Guyon,

U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-

wanathan, and R. Garnett, editors, Advances in Neural In-

formation Processing Systems 30, pages 5998–6008. Curran

Associates, Inc., 2017. 3

[35] Jiarui Xu, Yue Cao, Zheng Zhang, and Han Hu. Spatial-

temporal relation networks for multi-object tracking. In

ICCV 2019, 2019. 2, 8

[36] Yihong Xu, Aljosa Osep, Yutong Ban, Radu Horaud, Laura

Leal-Taixé, and Xavier Alameda-Pineda. How to train your

deep multi-object tracker. In CVPR, pages 6787–6796, 2020.

7, 8

99561

[37] Youngchul Yoon, Abhijeet Boragule, Youngmin Song,

Kwangjin Yoon, and Moongu Jeon. Online multi-object

tracking with historical appearance matching and scene

adaptive detection filtering. In AVSS, 2018. 8

[38] Liang Zheng, Liyue Shen, Lu Tian, Shengjin Wang, Jing-

dong Wang, and Qi Tian. Scalable person re-identification:

A benchmark. In ICCV, 2015. 6

[39] Xingyi Zhou, Vladlen Koltun, and Philipp Krähenbühl.

Tracking objects as points. ECCV, 2020. 7, 8

[40] Ji Zhu, Hua Yang, Nian Liu, Minyoung Kim, Wenjun Zhang,

and Ming-Hsuan Yang. Online multi-object tracking with

dual matching attention networks. In ECCV, 2018. 2, 8

109562

