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Abstract

Human-Object Interaction (HOI) detection is a task of

identifying “a set of interactions” in an image, which in-

volves the i) localization of the subject (i.e., humans) and

target (i.e., objects) of interaction, and ii) the classifica-

tion of the interaction labels. Most existing methods have

indirectly addressed this task by detecting human and ob-

ject instances and individually inferring every pair of the

detected instances. In this paper, we present a novel frame-

work, referred by HOTR, which directly predicts a set of

〈human, object, interaction〉 triplets from an image based

on a transformer encoder-decoder architecture. Through

the set prediction, our method effectively exploits the in-

herent semantic relationships in an image and does not

require time-consuming post-processing which is the main

bottleneck of existing methods. Our proposed algorithm

achieves the state-of-the-art performance in two HOI de-

tection benchmarks with an inference time under 1 ms after

object detection.

1. Introduction

Human-Object Interaction (HOI) detection has been for-

mally defined in [8] as the task to predict a set of 〈human,

object, interaction〉 triplets within an image. Previous meth-

ods have addressed this task in an indirect manner by

performing object detection first and associating 〈human,

object〉 pairs afterward with separate post-processing steps.

Especially, early attempts (i.e., sequential HOI detectors [5,

18, 17, 26]) have performed this association with a subse-

quent neural network, thus being time-consuming and com-

putationally expensive.

To overcome the redundant inference structure of se-

quential HOI detectors, recent researches [30, 19, 12] pro-

posed parallel HOI detectors. These works explicitly lo-

calize interactions with either interaction boxes (i.e., the

tightest box that covers both the center point of an object

†corresponding authors

Figure 1. Time vs. Performance analysis for HOI detectors on

V-COCO dataset. HOI recognition inference time is measured by

subtracting the object detection time from the end-to-end inference

time. Blue circle represents sequential HOI detectors, orange cir-

cle represents parallel HOI detectors and red star represents ours.

Our method achieves an HOI recognition inference time of 0.9ms,

being significantly faster than the parallel HOI detectors such as

IPNet [30] or UnionDet [12] (the comparison between parallel

HOI detectors is highlighted in blue).

pair) [30, 19] or union boxes (i.e., the tightest box that cov-

ers both the box regions of an object pair) [12]. The lo-

calized interactions are associated with object detection re-

sults to complete the 〈human, object, interaction〉 triplet.

The time-consuming neural network inference is replaced

with a simple matching based on heuristics such as dis-

tance [30, 19] or IoU [12].

However, previous works in HOI detection are still

limited in two aspects; i) They require additional post-

processing steps like suppressing near-duplicate predictions

and heuristic thresholding. ii) Although it has been shown

that modeling relations between objects helps object detec-

tion [11, 2], the effectiveness of considering high-level de-

pendency for interactions in HOI detection has not yet been

fully explored.

In this paper, we propose a fast and accurate HOI al-

gorithm named HOTR (Human-Object interaction TRans-
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former) that predicts a set of human-object interactions in a

scene at once with a direct set prediction approach. We de-

sign an encoder-decoder architecture based on transformers

to predict a set of HOI triplets, which enables the model

to overcome both limitations of previous works. First, di-

rect set-level prediction enables us to eliminate hand-crafted

post-processing stage. Our model is trained in an end-

to-end fashion with a set loss function that matches the

predicted interactions with ground-truth 〈human, object,

interaction〉 triplets. Second, the self-attention mechanisms

of transformers makes the model exploit the contextual rela-

tionships between human and object and their interactions,

encouraging our set-level prediction framework more suit-

able for high-level scene understanding.

We evaluate our model in two HOI detection bench-

marks: V-COCO and HICO-DET datasets. Our proposed

architecture achieves state-of-the-art performance on two

datasets compared to both sequential and parallel HOI de-

tectors. Also, note that our method is much faster than other

algorithms as illustrated in Figure 1, by eliminating time-

consuming post-processing through the direct set-level pre-

diction. The contribution of this work can be summarized

as the following:

• We propose HOTR, the first transformer-based set pre-

diction approach in HOI detection. HOTR elimi-

nates the hand-crafted post-processing stage of previ-

ous HOI detectors while being able to model the cor-

relations between interactions.

• We propose various training and inference techniques

for HOTR: HO Pointers to associate the outputs of two

parallel decoders, a recomposition step to predict a set

of final HOI triplets, and a new loss function to enable

end-to-end training.

• HOTR achieves state-of-the-art performance on both

benchmark datasets in HOI detection with an inference

time under 1 ms, being significantly faster than previ-

ous parallel HOI detectors (5∼9 ms).

2. Related Work

2.1. Human­Object Interaction Detection

Human-Object Interaction detection has been initially

proposed in [8], and has been developed in two main

streams: sequential methods and parallel methods. In

sequential methods, object detection is performed first

and every pair of the detected object is inferred with a

separate neural network to predict interactions. Parallel

HOI detectors perform object detection and interaction

prediction in parallel and associates them with simple

heuristics such as distance or IoU.

Sequential HOI Detectors: InteractNet [6] extended an

existing object detector by introducing an action-specific

density map to localize target objects based on the human-

centric appearance, and combined features from individual

boxes to predict the interaction. Note that interaction

detection based on visual cues from individual boxes often

suffers from the lack of contextual information.

To this end, iCAN [5] proposed an instance-centric

attention module that extracts contextual features comple-

mentary to the features from the localized objects/humans.

No-Frills HOI detection [9] propose a training and infer-

ence HOI detection pipeline only using simple multi-layer

perceptron. Graph-based approaches have proposed frame-

works that can explicitly represent HOI structures with

graphs [24, 26, 4, 28, 21]. Deep Contextual Attention [29]

leverages contextual information by a contextual attention

framework in HOI. [28] proposes a heterogeneous graph

network that models humans and objects as different kinds

of nodes. Various external sources such as linguistic

priors [23, 31, 17, 4, 1, 32, 20] or human pose infor-

mation [15, 33, 18, 9, 27, 33] have also been leveraged

for further improve performance. Although sequential

HOI detectors feature a fairly intuitive pipeline and solid

performance, they are time-consuming and computation-

ally expensive because of the additional neural network

inference after the object detection phase.

Parallel HOI Detectors: Attempts for faster HOI detec-

tion has been also introduced in recent works as parallel

HOI detectors. These works have directly localized inter-

actions with interaction points [30, 19] or union boxes [12],

replacing the separate neural network for interaction predic-

tion with a simple heuristic based matching with distance

or IoUs. Since they can be parallelized with existing ob-

ject detectors, they feature fast inference time. However,

these works are limited in that they require a hand-crafted

postprocessing stage to associate the localized interactions

with object detection results. This post-processing step i)

requires manual search for the threshold, and ii) generates

extra time complexity for matching each object pairs with

the localized interactions (5∼9 ms).

2.2. Object Detection with Transformers

DETR [2] has been recently proposed to eliminate the

need for many hand-designed components in object detec-

tion while demonstrating good performance. DETR infers

a fixed-size set of N predictions, in a single pass through

the decoder, where N is set to be significantly larger than

the typical number of objects in an image. The main loss

for DETR produces an optimal bipartite matching between

predicted and ground-truth objects. Afterward, the object-

specific losses (for class and bounding box) are optimized.
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Figure 2. Overall pipeline of our proposed model. The Instance Decoder and Interaction Decoder run in parallel, and share the Encoder. In

our recomposition, the interaction representations predicted by the Interaction Decoder are associated with the instance representations to

predict a fixed set of HOI triplets (see Fig.3). The positional encoding is identical to [2].

3. Method

The goal of this paper is to predict a set of 〈human, ob-

ject, interaction〉 triplets while considering the inherent se-

mantic relationships between the triplets in an end-to-end

manner. To achieve this goal, we formulate HOI detection

as set prediction. In this section, we first discuss the prob-

lems of directly extending the set prediction architecture for

object detection [2] to HOI detection. Then, we propose our

architecture HOTR that parallelly predicts a set of object

detection and associates the human and object of the inter-

action, while the self-attention in transformers models the

relationships between the interactions. Finally, we present

the details of training for our model including Hungarian

Matching for HOI detection and our loss function.

3.1. Detection as Set Prediction

We first start from object detection as set prediction with

transformers, then show how we extend this architecture to

capture HOI detection with transformers.

Object Detection as Set Prediction. Object Detection has

been explored as a set prediction problem by DETR [2].

Since object detection includes a single classification

and a single localization for each object, the transformer

encoder-decoder structure in DETR transforms N posi-

tional embeddings to a set of N predictions for the object

class and bounding box.

HOI Detection as Set Prediction. Similar to object

detection, HOI detection can be defined as a set prediction

problem where each prediction includes the localization

of a human region (i.e., subject of the interaction), an

object region (i.e., target of the interaction) and multi-label

classification of the interaction types. One straightfor-

ward extension is to modify the MLP heads of DETR to

transform each positional embedding to predict a human

box, object box, and action classification. However, this

architecture poses a problem where the localization for

the same object needs to be redundantly predicted with

multiple positional embeddings (e.g., if the same person

works on a computer while sitting on a chair, two different

queries have to infer redundant regression for the same

human).

3.2. HOTR architecture

The overall pipeline of HOTR is illustrated in Figure 2.

Our architecture features a transformer encoder-decoder

structure with a shared encoder and two parallel decoders

(i.e., instance decoder and interaction decoder). The

results of the two decoders are associated with using our

proposed HO Pointers to generate final HOI triplets. We

will introduce HO Pointers shortly after discussing the

architecture of HOTR.

Transformer Encoder-Decoder architecture. Similar

to DETR [2], the global context is extracted from the

input image by the backbone CNN and a shared encoder.

Afterward, two sets of positional embeddings (i.e., the

instance queries and the interaction queries) are fed into

the two parallel decoders (i.e., the instance decoder and

interaction decoder in Fig. 2). The instance decoder trans-

forms the instance queries to instance representations for

object detection while the interaction decoder transforms

the interaction queries to interaction representations for
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Figure 3. Conceptual illustration of how HO Pointers associates

the interaction representations with instance representations. As

instance representations are pre-trained to perform standard object

detection, the interaction representation learns localization by pre-

dicting the pointer to the index of the instance representations for

each human and object boxes. Note that the index pointer predic-

tion is obtained in parallel with instance representations.

interaction detection. We apply feed-forward networks

(FFNs) to the interaction representation and obtain a

Human Pointer, an Object Pointer, and interaction type,

see Fig. 3. In other words, the interaction representation

localizes human and object regions by pointing the relevant

instance representations using the Human Pointer and

Object Pointer (HO Pointers), instead of directly regressing

the bounding box. Our architecture has several advantages

compared to the direct regression approach. We found that

directly regressing the bounding box has a problem when

an object participates in multiple interactions. In the direct

regression approach, the localization of the identical object

differs across interactions. Our architecture addresses

this issue by having separate instance and interaction

representations and associating them using HO Pointers.

Also, our architecture allows learning the localization more

efficiently without the need of learning the localization re-

dundantly for every interaction. Note that our experiments

show that our shared encoder is more effective to learn HO

Pointers than two separate encoders.

HO Pointers. A conceptual overview of how HO Pointers

associate the parallel predictions from the instance decoder

and the interaction decoder is illustrated in Figure 3. HO

Pointers (i.e., Human Pointer and Object Pointer) contain

the indices of the corresponding instance representations of

the human and the object in the interaction. After the in-

teraction decoder transforms K interaction queries to K in-

teraction representations, an interaction representation zi is

fed into two feed-forward networks FFNh : R
d → R

d,

FFNo : R
d → R

d to obtain vectors vhi and voi , i.e.,

vhi = FFNh(zi) and voi = FFNo(zi). Then finally the Hu-

man/Object Pointers ĉhi and ĉoi , which are the indices of the

instance representations with the highest similarity scores,

are obtained by

ĉhi = argmax
j

(

sim(vhi , µj)
)

,

ĉoi = argmax
j

(

sim(voi , µj)
)

,
(1)

where µj is the j-th instance representation and

sim(u, v) = u⊤v/‖u‖‖v‖.

Recomposition for HOI Set Prediction. From the previ-

ous steps, we now have the following: i) N instance rep-

resentations µ, and ii) K interaction representations z and

their HO Pointers ĉh and ĉo. Given γ interaction classes,

our recomposition is to apply the feed-forward networks

for bounding box regression and action classification as

FFNbox : R
d → R

4, and FFNact : R
d → R

γ , respec-

tively. Then, the final HOI prediction for the i-th interaction

representation zi is obtained by,

b̂hi = FFNbox(µĉh
i

) ∈ R
4,

b̂oi = FFNbox(µĉo
i
) ∈ R

4,

âi = FFNact(zi) ∈ R
γ .

(2)

The final HOI prediction by our HOTR is the set of K
triplets, {〈b̂hi , b̂

o
i , âi〉}

K
i=1.

Complexity & Inference time. Previous parallel methods

have substituted the costly pair-wise neural network

inference with a fast matching of triplets (associating

interaction regions with corresponding human regions and

object regions based on distance [30] or IoU [12]). HOTR

further reduces the inference time after object detection

by associating K interactions with N instances, resulting

in a smaller time complexity O(KN). By eliminating

the post-processing stages in the previous one-stage HOI

detectors including NMS for the interaction region and

triplet matching, HOTR diminishes the inference time by

4 ∼ 8ms while showing improvement in performance.

3.3. Training HOTR

In this section, we explain the details of HOTR training.

We first introduce the cost matrix of Hungarian Matching

for unique matching between the ground-truth HOI triplets

and HOI set predictions obtained by recomposition. Then,

using the matching result, we define the loss for HO
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Pointers and the final training loss.

Hungarian Matching for HOI Detection. HOTR predicts

K HOI triplets that consist of human box, object box and

binary classification for the a types of actions. Each predic-

tion captures a unique 〈human,object〉 pair with one or more

interactions. K is set to be larger than the typical number

of interacting pairs in an image. We start with the basic cost

function that defines an optimal bipartite matching between

predicted and ground truth HOI triplets, and then show how

we modify this matching cost for our interaction represen-

tations.

Let Y denote the set of ground truth HOI triplets and

Ŷ = {ŷi}
K
i=1 as the set of K predictions. As K is larger

than the number of unique interacting pairs in the image,

we consider Y also as a set of size K padded with ∅ (no

interaction). To find a bipartite matching between these two

sets we search for a permutation of K elements σ ∈ SK

with the lowest cost:

σ̂ = argmin
σ∈SK

K
∑

i

Cmatch(yi, ŷσ(i)), (3)

where Cmatch is a pair-wise matching cost between ground

truth yi and a prediction with index σ(i). However, since yi
is in the form of 〈hbox,obox,action〉 and ŷσ(i) is in the form

of 〈hidx,oidx,action〉, we need to modify the cost function

to compute the matching cost.

Let Φ : idx → box be a mapping function from ground-

truth 〈hidx,oidx〉 to ground-truth 〈hbox,obox〉 by optimal

assignment for object detection. Using the inverse mapping

Φ−1 : box → idx, we get the ground-truth idx from the

ground-truth box.

Let M ∈ R
d×N be a set of normalized instance repre-

sentations µ′ = µ/‖µ‖ ∈ R
d, i.e., M = [µ′

1 . . . µ
′
N ]. We

compute P̂h ∈ R
K×N that is the set of softmax predictions

for the H Pointer in (1) given as

P̂h = ‖Ki=1softmax((v̄hi )
TM), (4)

where ‖Ki=1 denotes the vertical stack of row vectors and

v̄hi = vhi /||v
h
i ||. P̂

o is analogously defined.

Given the ground-truth yi = (bhi , b
o
i , ai), P̂

h, and , P̂ o,

we convert the ground-truth box to indices by chi =
Φ−1(bhi ) and coi = Φ−1(boi ) and compute our matching cost

function written as

Cmatch(yi, ŷσ(i)) = −α·✶{ai 6=∅}P̂
h[σ(i), chi ]

−β·✶{ai 6=∅}P̂
o[σ(i), coi ]

+✶{ai 6=∅}Lact(ai, âσ(i)),

(5)

where P̂ [i, j] denotes the element at i-th row and j-th col-

umn, and âσ(i) is the predicted action. The action matching

cost is calculated as Lact(ai, âσ(i)) = BCELoss(ai, âσ(i)).
α and β is set as a fixed number to balance the different

scales of the cost function for index prediction and action

classification.

Final Set Prediction Loss for HOTR. We then compute the

Hungarian loss for all pairs matched above, where the loss

for the HOI triplets has the localization loss and the action

classification loss as

LH =

K
∑

i=1

[

Lloc(c
h
i , coi , zσ(i)) + Lact(ai, âσ(i))

]

. (6)

The localization loss Lloc(c
h
i , c

o
i , zσ(i)) is denoted as

Lloc =− log
exp(sim(FFNh(zσ(i)), µch

i

)/τ)
∑N

k=1 exp(sim(FFNh(zσ(i)), µk)/τ)

− log
exp(sim(FFNo(zσ(i)), µco

i
/τ)

∑N

k=1 exp(sim(FFNo(zσ(i)), µk)/τ)
,

(7)

where τ is the temperature that controls the smoothness of

the loss function. We empirically found that τ = 0.1 is the

best value for our experiments.

Defining No-Interaction with HOTR. In DETR [2],

maximizing the probability of the no-object class for

the softmax output naturally suppresses the probability

of other classes. However, in HOI detection the action

classification is a multi-label classification where each

action is treated as an individual binary classification.

Due to the absence of an explicit class that can suppress

the redundant predictions, HOTR ends up with multiple

predictions for the same 〈human,object〉 pair. Therefore,

HOTR sets an explicit class that learns the interactiveness

(1 if there is any interaction between the pair, 0 otherwise),

and suppresses the predictions for redundant pairs that

have a low interactiveness score (defined as No-Interaction

class). In our experiment in Table. 3, we show that setting

an explicit class for interactiveness contributes to the final

performance.

Implementation Details. We train HOTR with

AdamW [22]. We set the transformer’s initial learn-

ing rate to 10−4 and weight decay to 10−4. All transformer

weights are initialized with Xavier init [7]. For a fair

evaluation with baselines, the Backbone, Encoder, and

Instance Decoder are pre-trained in MS-COCO and frozen

during training. We use the scale augmentation as in

DETR [2], resizing the input images such that the shortest

side is at least 480 and at most 800 pixels while the longest

side at most is 1333.

78



4. Experiments

In this section, we demonstrate the effectiveness of

our model in HOI detection. We first describe the two

public datasets that we use as our benchmark: V-COCO

and HICO-DET. Next, we show that HOTR successfully

captures HOI triplets, by achieving state-of-the-art perfor-

mance in both mAP and inference time. Then, we provide

a detailed ablation study of the HOTR architecture.

4.1. Datasets

To validate the performance of our model, we evaluate

our model on two public benchmark datasets: the V-COCO

(Verbs in COCO) dataset and HICO-DET dataset. V-COCO

is a subset of COCO and has 5,400 trainval images

and 4,946 test images. For V-COCO dataset, we report

the AProle over 25 interactions in two scenarios AP
#1
role and

AP
#2
role. The two scenarios represent the different scoring

ways for object occlusion cases. In Scenario1, the model

should correctly predict the bounding box of the occluded

object as [0,0,0,0] while predicting human bounding box

and actions correctly. In Scenario2, the model does not

need to predict about the occluded object. HICO-DET [3]

is a subset of HICO dataset and has more than 150K an-

notated instances of human-object pairs in 47,051 images

(37,536 training and 9,515 testing) and is annotated with

600 〈verb, object〉 interaction types. For HICO-DET, we

report our performance in the Default setting where we

evaluate the detection on the full test set. We follow the

previous settings and report the mAP over three different

category sets: (1) all 600 HOI categories in HICO (Full),

(2) 138 HOI categories with less than 10 training instances

(Rare), and (3) 462 HOI categories with 10 or more training

instances (Non-Rare).

4.2. Quantitative Analysis

For quantitative analysis, we use the official evaluation

code for computing the performance of both V-COCO and

HICO-DET. Table 1 and Table 2 show the comparison of

HOTR with the latest HOI detectors including both se-

quential and parallel methods. For fair comparison, the

instance detectors are fixed by the parameters pre-trained

in MS-COCO. All results in V-COCO dataset are evalu-

ated with the fixed detector. For the HICO-DET dataset,

we provide both results using the fixed detector and the

fine-tuned detector following the common evaluation pro-

tocol [1, 18, 10, 21, 4, 16, 12, 19].

Our HOTR achieves a new state-of-the-art performance

on both V-COCO and HICO-DET datasets, while being

the fastest parallel detector. Table 1 shows our result

in the V-COCO dataset with both Scenario1 and Sce-

nario2. HOTR outperforms the state-of-the-art parallel

HOI detector [30] in Scenario1 with a margin of 4.2mAP.

Method Backbone AP#1
role AP#2

role

Models with external features

TIN (RPDCD) [18] R50 47.8

Verb Embedding [31] R50 45.9

RPNN [33] R50 - 47.5

PMFNet [27] R50-FPN 52.0

PastaNet [17] R50-FPN 51.0 57.5

PD-Net [32] R50 52.0 -

ACP [13] R152 53.0

FCMNet [20] R50 53.1 -

ConsNet [21] R50-FPN 53.2 -

Sequential HOI Detectors

VSRL [8] R50-FPN 31.8 -

InteractNet [6] R50-FPN 40.0 48.0

BAR-CNN [14] R50-FPN 43.6 -

GPNN [24] R152 44.0 -

iCAN [5] R50 45.3 52.4

TIN (RCD) [18] R50 43.2 -

DCA [29] R50 47.3 -

VSGNet [26] R152 51.8 57.0

VCL [10] R50-FPN 48.3

DRG [4] R50-FPN 51.0

IDN [16] R50 53.3 60.3

Parallel HOI Detectors

IPNet [30] HG104 51.0 -

UnionDet [12] R50-FPN 47.5 56.2

Ours R50 55.2 64.4

Table 1. Comparison of performance on V-COCO test set. AP
#1

role ,

AP
#2

role denotes the performance under Scenario1 and Scenario2 in

V-COCO, respectively.

Table 2 shows the result in HICO-DET in the Default

setting for each Full/Rare/Non-Rare class. Due to the noisy

labeling for objects in the HICO-DET dataset, fine-tuning

the pre-trained object detector on the HICO-DET train set

provides a prior that benefits the overall performance [1].

Therefore, we evaluate our performance in HICO-DET

dataset under two conditions: i) using pre-trained weights

from MS-COCO which are frozen during training (denoted

as COCO in the Detector column) and ii) performance

after fine-tuning the pre-trained detector on the HICO-DET

train set (denoted as HICO-DET in the Detector column).

Our model outperforms the state-of-the-art parallel HOI

detector under both conditions by a margin of 4.1mAP and

4mAP, respectively. Below, we provide a more detailed

analysis of our performance.

HOTR vs Sequential Prediction. In comparative analysis

with various HOI methods summarized in Table 1 and 2,

we also compare the experimental results of HOTR with

sequential prediction methods. Even though the sequential
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Default

Method Detector Backbone Feature Full Rare Non Rare

Sequential HOI Detectors

InteractNet [6] COCO R50-FPN A 9.94 7.16 10.77

GPNN [24] COCO R101 A 13.11 9.41 14.23

iCAN [5] COCO R50 A+S 14.84 10.45 16.15

DCA [29] COCO R50 A+S 16.24 11.16 17.75

TIN [18] COCO R50 A+S+P 17.03 13.42 18.11

RPNN [33] COCO R50 A+P 17.35 12.78 18.71

PMFNet [27] COCO R50-FPN A+S+P 17.46 15.65 18.00

No-Frills HOI [9] COCO R152 A+S+P 17.18 12.17 18.68

DRG [4] COCO R50-FPN A+S+L 19.26 17.74 19.71

VCL [10] COCO R50 A+S 19.43 16.55 20.29

VSGNet [26] COCO R152 A+S 19.80 16.05 20.91

FCMNet [20] COCO R50 A+S+P 20.41 17.34 21.56

ACP [13] COCO R152 A+S+P 20.59 15.92 21.98

PD-Net [32] COCO R50 A+S+P+L 20.81 15.90 22.28

DJ-RN [15] COCO R50 A+S+V 21.34 18.53 22.18

ConsNet [21] COCO R50-FPN A+S+L 22.15 17.12 23.65

PastaNet [17] COCO R50 A+S+P+L 22.65 21.17 23.09

IDN [16] COCO R50 A+S 23.36 22.47 23.63

Functional Gen. [1] HICO-DET R101 A+S+L 21.96 16.43 23.62

TIN [18] HICO-DET R50 A+S+P 22.90 14.97 25.26

VCL [10] HICO-DET R50 A+S 23.63 17.21 25.55

ConsNet [21] HICO-DET R50-FPN A+S+L 24.39 17.10 26.56

DRG [4] HICO-DET R50-FPN A+S 24.53 19.47 26.04

IDN [16] HICO-DET R50 A+S 24.58 20.33 25.86

Parallel HOI Detectors

UnionDet [12] COCO R50-FPN A 14.25 10.23 15.46

IPNet [30] COCO R50-FPN A 19.56 12.79 21.58

Ours COCO R50 A 23.46 16.21 25.62

UnionDet [12] HICO-DET R50-FPN A 17.58 11.72 19.33

PPDM [19] HICO-DET HG104 A 21.10 14.46 23.09

Ours HICO-DET R50 A 25.10 17.34 27.42

Table 2. Performance comparison in HICO-DET. The Detector column is denoted as ‘COCO’ for the models that freeze the object detectors

with the weights pre-trained in MS-COCO and ‘HICO-DET’ if the object detector is fine-tuned with the HICO-DET train set. The each

letter in Feature column stands for A: Appearance (Visual features), S: Interaction Patterns (Spatial Correlations [5]), P: Pose Estimation,

L: Linguistic Priors, V: Volume [15].

methods take advantages from additional information while

HOTR only utilize visual information, HOTR outperforms

the state-of-the-art sequential HOI detector [16] in both

Scenario1 and Scenario2 by 1.9 mAP and 4.1 mAP in

V-COCO while showing comparable performance (with a

margin of 0.1∼0.52 mAP) in the Default(Full) evaluation

of HICO-DET.

Performance on HICO-DET Rare Categories. HOTR

shows state-of-the-art performance across both sequential

and parallel HOI detectors in the Full evaluation for HICO-

DET dataset (see Table. 2). However, HOTR underperforms

than baseline methods [16] in the Rare setting. Since this

setting deals with the action categories that has less than

10 training instances, it is difficult to achieve accuracy on

this setting without the help of external features. There-

fore, most of the studies that have shown high performance

in Rare settings make use of additional information, such

as spatial layouts [5], pose information [18], linguistic pri-

ors [17], and coherence patterns between the humans and

objects [16]. In this work, our method is a completely

vision-based pipeline but if we include the prior knowledge,

we expect further improvement in the Rare setting.

Time analysis. Since the inference time of the object detec-

tor network (e.g., Faster-RCNN [25]) can vary depending

on benchmark settings (e.g., the library, CUDA, CUDNN

version or hyperparameters), the time analysis is based on

the pure inference time of the HOI interaction prediction

model excluding the time of the object detection phase

for fair comparison with our model. For detailed analysis,
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HOTR takes an average of 36.3ms for the backbone and

encoder, 23.8ms for the instance decoder and interaction

decoder (note that the two decoders run in parallel), and

0.9ms for the recomposition and final HOI triplet inference.

We excluded the i/o times in all models including the time

of previous models loading the RoI align features of Faster-

RCNN (see Figure.1 for a speed vs time comparison).

Note that our HOTR runs ×5 ∼ ×9 faster compared to

the state-of-the-art parallel HOI detectors, since an explicit

post-processing stage to assemble the detected objects

and interaction regions is replaced with a simple O(KN)
search to infer the HO Pointers.

4.3. Ablation Study

Method AP#1
role Default(Full)

HOTR 55.2 23.5

w/o HO Pointers 39.3 17.2

w/o Shared Encoders 33.9 14.5

w/o Interactiveness Suppression 52.2 22.0

Table 3. Ablation Study on both V-COCO test set (scenario 1,

AP
#1

role ) and HICO-DET test set (Default, Full setting without fine-

tuning the object detector)

In this section, we explore how each of the components

of HOTR contributes to the final performance. Table 3

shows the final performance in the V-COCO test set after

excluding each components of HOTR. We perform all

experiments with the most basic R50-C4 backbone, and

fix the transformer layers to 6 and attention heads 8 and

the feed-forward network dimension to d = 1024 unless

otherwise mentioned.

With vs Without HO Pointers. In HOTR, the interaction

representation localizes human and object region by

pointing the relevant instance representations using the

Human Pointer and Object Pointer (HO Pointers), instead

of directly regressing the bounding box. We pose that

our architecture has advantages compared to the direct

regression approach, since directly regressing the bounding

box for every interaction prediction requires redundant

bounding box regression for the same object when an object

participates in multiple interactions. Based on the perfor-

mance gap (55.2 → 39.3 in V-COCO and 23.5 → 17.2 in

HICO-DET), it can be concluded that using HO Pointers

alleviates the issue of direct regression approach.

Shared Encoder vs Separate Encoders. From the Fig. 2,

the architecture having separate encoders for each Instance

and Interaction Decoder can be considered. In this ablation,

we verify the role of the shared encoder of the HOTR. In

Table 3, it is shown that sharing the encoder outperforms

the model with separate encoders by a margin of 21.3mAP

and 9.0mAP in V-COCO and HICO-DET, respectively.

We suppose the reason is that the shared encoder helps

the decoders learn common visual patterns, thus the HO

Pointers can share the overall context.

With vs Without Interactiveness Suppression. Unlike

softmax based classification where maximizing the prob-

ability for the no-object class can explicitly diminish

the probability of other classes, action classification is

a multi-label binary classification that treats each class

independently. So HOTR sets an explicit class that learns

the interactiveness, and suppresses the predictions for

redundant pairs that have low probability. Table 3 shows

that setting an explicit class for interactiveness contributes

3mAP to the final performance.

5. Conclusion

In this paper, we present HOTR, the first transformer-

based set prediction approach in human-object interaction

problem. The set prediction approach of HOTR eliminates

the hand-crafted post-processing steps of previous HOI

detectors while being able to model the correlations

between interactions. We propose various training and

inference techniques for HOTR: HOI decomposition with

parallel decoders for training, recomposition layer based

on similarity for inference, and interactiveness suppression.

We develop a novel set-based matching for HOI detection

that associates the interaction representations to point at

instance representations. Our model achieves state-of-

the-art performance in two benchmark datasets in HOI

detection: V-COCO and HICO-DET, with a significant

margin to previous parallel HOI detectors. HOTR achieves

state-of-the-art performance on both benchmark datasets

in HOI detection with an inference time under 1 ms, being

significantly faster than previous parallel HOI detectors

(5∼9 ms).
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