
Improving Accuracy of Binary Neural Networks using Unbalanced Activation

Distribution

Hyungjun Kim1 Jihoon Park1 Changhun Lee1 Jae-Joon Kim1,2

1Department of Convergence IT Engineering, 2Graduate School of Artificial Intelligence

Pohang University of Science and Technology (POSTECH), Korea

{hyungjun.kim, jihoon.park, changhun.lee, jaejoon}@postech.ac.kr

Abstract

Binarization of neural network models is considered as

one of the promising methods to deploy deep neural net-

work models on resource-constrained environments such as

mobile devices. However, Binary Neural Networks (BNNs)

tend to suffer from severe accuracy degradation compared

to the full-precision counterpart model. Several techniques

were proposed to improve the accuracy of BNNs. One of the

approaches is to balance the distribution of binary activa-

tions so that the amount of information in the binary acti-

vations becomes maximum. Based on extensive analysis, in

stark contrast to previous work, we argue that unbalanced

activation distribution can actually improve the accuracy of

BNNs. We also show that adjusting the threshold values of

binary activation functions results in the unbalanced distri-

bution of the binary activation, which increases the accu-

racy of BNN models. Experimental results show that the

accuracy of previous BNN models (e.g. XNOR-Net and Bi-

Real-Net) can be improved by simply shifting the threshold

values of binary activation functions without requiring any

other modification.

1. Introduction

Deep Neural Networks (DNNs) have achieved human-

level performance in many computer vision tasks such as

image classification, object detection, and segmentation.

However, the increased compute cost and memory require-

ment of large DNN models pose a burden on resource-

constrained environments such as mobile devices. To mit-

igate this problem, various techniques including network

quantization [7, 17, 23, 29, 37], network pruning [15, 34],

and efficient architecture design [16, 31, 35] were intro-

duced to reduce the compute cost and memory requirement

of DNN models. Among them, the network quantization

technique is being actively studied and recent works have

shown that a DNN model can even be quantized to a 1-bit

model [17, 25, 26, 29]. When a DNN model is binarized to a

Binary Neural Network (BNN) model, the memory require-

ment of the model is reduced by 32x since 32-bit floating-

point weights can be represented by 1-bit weights. In ad-

dition, high precision multiply-and-accumulate operations

can be replaced by XNOR-and-popcount logics in BNNs

since both activation and weight have 1-bit precision. Due

to the lightweight nature, BNNs are garnering interests as a

promising solution for DNN computing on edge devices.

However, BNNs still suffer from the accuracy degrada-

tion caused by the aggressive quantization (32-bit to 1-bit).

While recent researches have shown that a DNN model

can be quantized to 2-bit precision with marginal accu-

racy loss [11], a severe performance gap still exists be-

tween a BNN model and its full-precision counterpart DNN

model. In general, it is known that weight quantization is

much easier than activation quantization [5, 20, 37]. In ad-

dition, when quantizing the activation, the accuracy loss

is marginal until 2-bit quantization, but a significant ac-

curacy drop occurs when quantizing the activation to 1-

bit precision [20, 23, 27]. Previous works tried to ex-

plain the sharp accuracy drop from 2-bit activation to 1-

bit case based on the gradient mismatch problem caused

by the non-differentiable binary activation function [9, 25].

Since the quantization functions are non-differentiable, gra-

dients cannot propagate through the quantization layer in

the back-propagation process. Therefore, previous works

used straight-through-estimator (STE) to compute the ap-

proximate gradient on non-differentiable layers [1, 17].

While STE enables back-propagation through quantization

layers, the discrepancy between the actual function and the

approximated function causes gradient mismatch problem.

Especially in BNNs, sign function is used to binarize ac-

tivations and is usually approximated as hardtanh function

in back-propagation. Compared to other multi-bit quanti-

zation functions, sign function shows more severe gradi-

ent mismatch which leads to sharp accuracy degradation.

Hence, several works tried to design better approximation

function [9, 25] or to reduce the gradient mismatch using

7862



neuron coupling [20].

In this work, we argue that there is another reason for the

poor performance of BNN in addition to the gradient mis-

match. We speculate that the symmetry of the sign function

is also partly responsible for the degradation of BNN per-

formance. Most DNN models use ReLU activation func-

tion instead of sigmoid or Tanh functions. While the output

distributions of sigmoid and Tanh functions are symmetric

with respect to zero, ReLU function replaces all the nega-

tive values to zero so that the distribution of ReLU output

is highly skewed. When quantizing activations to 2-bit or

a higher precision, ReLU-based quantization functions are

usually used [6, 7, 11, 37]. In other words, multi-bit quan-

tization functions also output unbalanced activation distri-

butions similar to ReLU function. However, when binariz-

ing activations, sign function is used, and hence the distri-

bution of the binary activation becomes symmetric (or bal-

anced). We show that a model with unbalanced activation

distribution performs better than that with balanced activa-

tion distribution. We first show that the claim is valid even

in the full precision activation case by comparing hardtanh

and ReLU6 activation functions. We then show that the per-

formance of BNN can be improved by simply shifting the

threshold of the sign function. We also analyze the effect

of training the threshold of the sign function and show that

the thresholds cannot be trained efficiently through back-

propagation. Our contributions can be summarized as fol-

lows:

• To the best of our knowledge, we are the first to report

that the unbalanced distribution of binary activation ac-

tually helps improve the accuracy of BNNs.

• We propose to shift the thresholds of binary activation

functions to make the distribution of binary activation

unbalanced.

• Experimental results show that the accuracy of previ-

ous BNN models can be improved at almost no cost

by simply shifting the threshold of the binary activa-

tion function.

2. Related Work

2.1. Network binarization

There have been several approaches to quantize weights

and/or activations into 1-bit precision. Courbariaux et

al. [8] demonstrated binary weight networks which can be

successfully trained on small datasets such as CIFAR-10

and SVHN. Hubara et al. [17] further proposed BNN in

which both weights and activations are binarized. To ap-

ply back-propagation through a sign function which is non-

differentiable, the straight-through-estimator (STE) con-

cept was used [1]. Rastegari et al. [29] proposed XNOR-

Net which uses real-valued scaling factors when binariz-

ing weights and activations and demonstrated acceptable

accuracy on large scale ImageNet dataset. When binariz-

ing ResNet models, real-valued shortcut connections play a

critical role in propagating high resolution information. Liu

et al. [25] proposed to use additional shortcut connections

so that a shortcut connection exists for every binary convo-

lution layer.

2.2. Training quantization parameters

Recent studies suggested to train the quantization inter-

vals and ranges using back-propagation to improve the ac-

curacy of quantized neural networks. Choi et al. [6, 7]

proposed the parameterized clipping activation function

(PACT) in which the clipping range is trained using back-

propagation. While only the clipping range was trained in

PACT, several following works proposed to train both quan-

tization interval and range [11, 19, 36]. Note that these

works focused on training multi-bit networks and hence did

not report results on BNNs. For BNNs, several recent works

proposed to train the threshold of binary activation function.

Liu et al. [24] proposed to use trainable activation functions

so that the distribution of the activation can be balanced.

Wang et al. [33] proposed the trainable binarization which

learns the threshold as well as the gradient clipping range

used in back-propagation. We, however, observed results

contrary to the findings from previous works on trainable

threshold. Our experimental results show that the bias term

in Batch Normalization (BN) layer is already learning the

threshold and therefore the effect of training the threshold

of binary activation is limited. Details will be described in

Sec. 3.4.

2.3. Managing activation distribution

Since there are only two values available for activation

in BNNs, the distribution of binary activation plays a criti-

cal role in BNNs. There have been few works that tried to

manipulate the distribution of binary activation to improve

the accuracy of BNNs. Ding et al. [10] proposed to regu-

larize the distribution of pre-activation values to tackle the

difficulties that occurred during training BNNs. The work

mostly focused on avoiding extreme cases such as the case

when all the pre-activation values have the same sign. Liu

et al. [24] proposed to reshape the distribution of binary ac-

tivation using trainable thresholds. Using the trainable acti-

vation functions, they made the distribution of binary acti-

vation more balanced.

2.4. Additional activation function

Another simple yet effective technique to improve the

accuracy of BNNs is to use an additional activation func-

tion (e.g. PReLU) between the binary convolution layer

and the following BN layer. Rastegari et al. [29] men-

7863



tioned that inserting a ReLU function after the binary con-

volution helps training BNNs. Tang et al. [32] proposed

to use PReLU instead of ReLU to absorb the weight scale

factors. Bulat et al. [2, 4] explained that increasing the non-

linearity in BNNs helps training, and compared the effects

of ReLU and PReLU. Based on these findings, many re-

cent works utilized additional activation layers in their mod-

els [24, 26, 28].

3. Method

In this section, we introduce how to improve the ac-

curacy of BNNs using unbalanced activation distribution.

We first discuss the activation functions in conventional full

precision models to describe the motivation for using un-

balanced activation distribution (Sec. 3.1). Then we show

how to make the distribution of the binary activation unbal-

anced using threshold shifting in BNNs and how much the

proposed technique can improve the accuracy on various

benchmarks (Sec. 3.2). Experimental results on ImageNet

dataset will be given to show that the accuracy of various ex-

isting BNN models can be improved by simply shifting the

threshold of binary activation functions (Sec. 3.3). After

that, we discuss the ineffectiveness of the methodology to

train the threshold of binary activation in BNNs (Sec. 3.4).

We also show that the additional activation functions (i.e.

ReLU or PReLU) used in recent BNN models make the ac-

tivation distribution unbalanced thereby helping to improve

the accuracy (Sec. 3.5).

3.1. Accuracy gap between hardtanh and ReLU6

Before ReLU activation function was proposed, sigmoid

or Tanh functions had been used as an activation function. It

is widely known that ReLU works better because it solves

the gradient vanishing problem that occurs in sigmoid or

Tanh functions [14]. However, the gradient vanishing prob-

lem is largely diminished by using BN layers in recent mod-

els [18], so there might be other reasons for the success of

the ReLU function. We suspect that another main reason

for the good performance of ReLU is that the output dis-

tribution of the ReLU function is highly skewed. While

the output distributions of sigmoid and Tanh functions are

symmetric with respect to each mean value, ReLU makes

all the negative inputs to zero and passes the positive in-

puts. Therefore, the output distribution of the ReLU func-

tion is positively skewed (mean value is larger than the me-

dian value). We conducted a few experiments to monitor

whether the unbalanced activation distribution due to the

nature of ReLU function helps to improve accuracy. To

make the problem simple, we compare the performance of

hard hyper-tangent (hardtanh) and ReLU6 functions instead

of ReLU. The ReLU6 is a slight variant of the ReLU func-

tion where its positive outputs are clipped to 6. The hard-

tanh function is shown in Fig. 1a. It has been reported that

Figure 1. (a) Original hardtanh function. Hardtanh function shifted

along (b) the x-axis by x offset and (c) the y-axis by y offset. (d)

Hardtanh function with the increased range.

the performance of ReLU6 is as good as that of ReLU or

sometimes even better [22]. Also, ReLU6 and hardtanh

have very similar shape and ReLU6 can be thought as a

shifted-and-scaled form of hardtanh. As shown in Fig. 1,

we modified the hardtanh function in three different ways;

(b) shifting along the x-axis, (c) shifting along the y-axis

and (d) increasing the range. Note that the hardtanh func-

tion is identical to the ReLU6 function when it is shifted

along the x- and y-axis by 3 and its range is increased by

3 times. We trained vgg-small model [30] on CIFAR-10

dataset with different activation functions. The vgg-small

model has 4 convolution layers with 64, 64, 128, 128 out-

put channels in sequence followed by 3 fully-connected lay-

ers with 512 neurons. We trained the model in the same

condition with 10 different seeds and report the mean and

the standard deviation of the test accuracy. Detailed setup

for the training is described in the supplementary material.

When ReLU6 function is used as the activation function,

89.21% of test accuracy was achieved while 88.55% was

achieved when hardtanh function is used without any modi-

fication. When the hardtanh activation function is modified

as described in Fig. 1, the test accuracy of the model also

changes. Fig. 2 shows the change in the test accuracy de-

pending on the amount of shift along (a) the x-axis or (b)

y-axis or (c) increase in the range of the hardtanh activa-

tion function. We observe that shifting the hardtanh activa-

tion function along the x-axis increases the accuracy sub-

stantially (Fig. 2a). The highest test accuracy was obtained

when shifting the hardtanh function in a positive direction

along the x-axis by 1.2. On the other hand, shifting the

hardtanh activation along the y-axis or increasing the range

does not improve the accuracy as much as shifting the hard-

tanh along the x-axis (Fig. 2(b and c)). When the hardtanh

function is shifted to the right along the x-axis, the num-

ber of negative outputs increases and the output distribution

7864



90.0

87.5

85.0
-2 0 2

Shift amount

Te
st

 a
cc

ur
ac

y 
[%

]

87.5

85.0
-2 0 3

Shift amount

90.0

87.5

85.0
0 4 8

Range

90.0

-1 1 -1 1 2 2 6

89.289.289.2

(a) Shift along x-axis (b) Shift along y-axis (c) Increasing range

Figure 2. Test accuracy of vgg-small model with modified hard-

tanh activation functions. Red dotted line represents the test ac-

curacy of the model with ReLU6 activation function. The mean

(line) and standard deviation (shade) of 10 runs are plotted.

co
un

t

-2 0 2
value

(a) Pre-activation

co
un

t

-2 0 2
value

(c) hardtanh (shift x: 0.5)

co
un

t

-2 0 2
value

(b) hardtanh

co
un

t

-2 0 2
value

(d) hardtanh (shift y: 0.5)

Figure 3. Distributions of (a) pre-activation, (b) output of hard-

tanh activation function, (c) output of hardtanh activation function

shifted to the right along the x-axis by 0.5, and (d) output of hard-

tanh activation function shifted up along the y-axis by 0.5.

becomes positively skewed (Fig. 3c). Note that shifting the

hardtanh function along the y-axis also makes the output ac-

tivation distribution to have a non-zero mean. However, it

only shifts the activation distribution and the distribution is

not skewed in such a case (Fig. 3d). Therefore, we think

that the higher performance of ReLU activation function

compared to the hardtanh partly comes from the unbalanced

distribution of activation outputs. Interestingly, the effect of

the activation distribution becomes even more noticeable in

BNNs when the hardtanh function is replaced by the sign

function.

3.2. BNNs with unbalanced activation distribution

As described in the previous section, breaking the bal-

ance of the activation distribution by shifting the activa-

tion function along the x-axis helps improve the accuracy

of a model. When quantizing activations, previous multi-

bit quantization methods [5, 6, 7, 11, 12, 19, 27, 37] used

ReLU-based quantization which outputs unbalanced activa-

tion distributions. However, in BNNs, previous works used

sign function for binary activation function thus the distri-

bution of binary activation is balanced [3, 9, 10, 17, 25, 29].

Note that in BNNs, there are only two output values (+1

or -1) and the balanced distribution means that the ratio of

+1 to -1 is close to 1:1. We believe that the poor perfor-

mance of BNNs observed in previous literature [23, 27] is

partly due to the use of the sign function. Since shifting the

hardtanh function along the x-axis improved the test accu-

racy in the full precision model, we also tried shifting the

sign function along the x-axis. Note that shifting the sign

function is the same as just changing the threshold value of

the activation function. As expected, shifting the activation

function along the x-axis increases the accuracy of BNNs

also (Fig. 4a). To check the effect of the shape of the distri-

bution of activation outputs, we observed the distributions

of the binary activation in different layers. Fig. 4b shows

the distribution of the binary activations of the first, third,

and fifth activation layer when the original sign function is

used. For the first and the fifth activation layer, the distribu-

tion of pre-activation is Gaussian-like with zero mean and

hence the ratio of +1 to -1 in binary activation is close to

1:1. In the case of the third activation layer, the distribu-

tion of pre-activation values does not have zero mean due

to the preceding Max Pooling layer even when the origi-

nal sign function is used. Note that the convolution results

go through the Max Pooling layer first and then a BN layer

before the binary activation layer. The Max Pooling layer

makes the distribution positively skewed, thus the mean of

the distribution becomes larger than the median of the distri-

bution. Since the BN layer centers the distribution based on

the mean value, there exist more negative values than posi-

tive values in pre-activation values. As a result, the number

of -1 is larger than that of +1 in the binary activation after

the third activation layer (Fig. 4b). However, the output dis-

tributions of all other layers which do not come after Max

Pooling layer are balanced. When the threshold of binary

activation function is shifted by 1.2, which results in the

best accuracy, the distribution of binary activation changes.

Fig. 4c shows the distribution of the binary activations when

the threshold is shifted by 1.2. As expected, the output dis-

tributions of all the binary activation layers become unbal-

anced with the shifted threshold. Note that even though the

distribution of binary activation in a layer is unbalanced, the

imbalance does not propagate through layers because the bi-

nary weights in the following binary convolution layer are

zero-centered.

3.2.1 Effect of Max Pooling

Another interesting observation from the results of shifting

the activation function along the x-axis was that the accu-

racy improved only when the activation function was shifted

in a positive direction. Since the Max Pooling layer is the

only layer that gives asymmetry in the model, we suspect

7865



R
at

io

(a) (b) Distribution of binary activations (th=0)
Layer 1

Te
st

 a
cc

ur
ac

y 
[%

]

Shift amount

Vgg-small with Max Pooling

-1 1

87.0

84.5

82.0

-2 0 2

Te
st

 a
cc

ur
ac

y 
[%

]

Shift amount

87.0

84.5

82.0

-2 0 2

(d) Vgg-small with Average Pooling

1.2

Best test accuracy!

50.8% 49.2%

R
at

io

Layer 1

-1 1

74.0%

26.0%

R
at

io

Layer 3

-1 1

67.3%

32.7%

R
at

io

Layer 3

-1 1

76.8%

23.2%

R
at

io

Layer 5

-1 1

50.4% 49.6%

R
at

io

Layer 5

-1 1

72.6%

27.4%

(c) Distribution of binary activations (th=1.2)

Figure 4. (a) Test accuracy vs. threshold shift for vgg-small model. (b) Distribution of the binary activation of the first, third, and fifth

activation layer when threshold shift = 0. (c) Distribution of the same data with threshold shift = 1.2. (d) Test accuracy vs. threshold shift

when Max Pooling layers are replaced by Average Pooling layers.

99.5

99.0

98.5

-3 0 3

Te
st

 a
cc

ur
ac

y 
[%

] 98.0

97.5

97.0

-4 0 4

99.5

99.0

98.5

-3 0 3

92.0

89.0

86.0

-2 0 2

Shift amount

Te
st

 a
cc

ur
ac

y 
[%

] 86.5

86.0

85.5

0.0 1.0 1.8

Shift amount

86.0

83.0

80.0

-2 0 2

Shift amount

(a) Vgg-small on MNIST (b) 2-layer MLP on MNIST (c) LeNet-5 on MNIST

(d) vgg-small with hardtanh (e) vgg-small init. w/ pretrained (f) vgg-small with SGD

Figure 5. Test accuracy vs. threshold shift for (a) binary vgg-

small model on MNIST dataset, (b) binary 2-layer MLP model on

MNIST dataset, (c) binary LeNet-5 on MNIST dataset, (d) full-

precision vgg-small model on CIFAR-10 dataset, (e) binary vgg-

small model initialized with full-precision pretrained model, and

(f) binary vgg-small model optimized using SGD.

that Max Pooling causes the accuracy difference between

shifting of the threshold to the positive direction and the

negative direction. To gauge the effect of the Max Pooling,

we replaced the Max Pooling layers with Average Pooling

layers which do not have asymmetric effects. Fig. 4d shows

the training results. Since the model with Average Pooling

is symmetric, the effect of shifting the activation function

is also symmetric and we can observe that the accuracy is

improved when the threshold is shifted away from zero in

either direction.

3.2.2 Effect of other conditions

In this section, we investigate the effect of threshold shift-

ing with various (1) datasets, (2) models, (3) initialization

methods, and (4) optimizers to show that the proposed tech-

nique is not limited to the specific condition or benchmark.

Dataset. We first changed the dataset to MNIST. To solely

investigate the dependency on dataset, we used the same

vgg-small model which we used for CIFAR-10 in Sec. 3.2.

For MNIST dataset, we trained each model with 30 different

random seeds and average results are presented. As shown

in Fig. 5a, the accuracy of the vgg-small model can also be

improved by shifting the threshold when trained on MNIST

dataset. We also evaluate the ImageNet dataset and the re-

sults will be described in the Sec. 3.3.2.

Model architecture. We also evaluated two additional

model architectures (2-layer MLP and LeNet-5) to verify

the effect of threshold shifting. Fig. 5b and c show the re-

sult of MLP and LeNet-5, respectively. Although the accu-

racy improvement with threshold shifting is relatively small

(∼0.2%), a clear trend is observed in the test accuracy as

the activation functions are shifted along the x-axis in both

models. Note that the trend in the MLP model is symmetric

because the model do not have the Max Pooling layer in it.

We also conducted experiments on much larger and com-

plex models (AlexNet and ResNet), and the results will be

described in the Sec. 3.3.2.

Initialization method. In all the previous experiments, we

trained the models from scratch using Xavier normal ini-

tialization [13]. In recent literature [25, 26], pretrained full-

precision models are often used to initialize BNN models.

We also demonstrate that the proposed technique is effective

with such an initialization method. As shown in Sec. 3.1,

the accuracy of a model with hardtanh function can also

be improved by shifting the activation function to the right

along the x-axis. Since pretrained full-precision models

typically use hardtanh function instead of ReLU function

to minimize the mismatch with the sign activation function

in the initialization stage, we shifted the hardtanh function

in the full-precision model and used the results as the ini-

tialization points. Fig. 5d shows the training results of vgg-

small model with full-precision weight and activation. We

initialized the BNN version of vgg-small model with the

pretrained model in which the hardtanh function is shifted

by 1. While using the same shift amount for binary ac-

7866



47

55 20

4

49

51

53

8

12

16

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6

To
p 

1 
va

lid
at

io
n 

ac
cu

ra
cy

 [%
]

Top 1 train accuracy [%
]Validation accuracy at last epoch

Train accuracy at first epoch

shift amount

Figure 6. Top-1 train accuracy at the first epoch and Top-1 vali-

dation accuracy at the end of training with various threshold shift

amount. The two graphs show similar trends.

tivation and hardtanh function seems natural, there might

be a better shift amount for the binary activation other than

the shift amount for the pretrained model. Therefore, we

searched for the optimal shift amounts for the pretrained

model and BNN model separately. Fig. 5e shows the trend

of test accuracy versus the threshold shifting amount. While

the pretrained model used 1.0 as the shift amount, the best

shift amount for the BNN model was 0.6 so using differ-

ent amounts of shift for the pretrained model and the BNN

produces higher accuracy.

Optimizer. Although most previous BNN training meth-

ods used Adam optimizer [21], we also tested SGD with

momentum to see the sensitivity to the optimizer. Fig. 5f

shows that a similar trend is maintained with SGD while the

accuracy is slightly degraded compared to the Adam case.

3.3. Experiments on ImageNet

In this section, we apply the threshold shifting technique

to various previous BNN models on ImageNet dataset and

show that the technique can be added to existing BNN train-

ing techniques without requiring any modification other

than the simple threshold shift. We also introduce a sim-

ple method to find the appropriate shifting amount for each

model to avoid time-consuming search for optimal thresh-

old shift for large neural networks.

3.3.1 Finding shift amount

As shown in previous results, the best shift amount dif-

fers across models and datasets. To find the optimal shift

amount, we propose to use the training accuracy in ear-

lier training steps. For example, we choose the best shift

amount based on the train accuracy at the end of the first

epoch for ImageNet dataset. This approach is valid because

the trend in the train accuracy at the first epoch and that in

the validation accuracy after training is finished are similar

enough. Fig. 6 shows the two trends when training XNOR-

Net (ResNet-18) [29] on ImageNet dataset. The shapes of

the two trends resemble each other, and both trends show

the peak performance when their shift amounts are around

2.0. Using the proposed method, we can find the opti-

mal value for the threshold shift easily without training the

model to the end for every shift amount.

3.3.2 Results on ImageNet

Using the proposed method to find optimal threshold shift,

we trained several previous BNN models for ImageNet

dataset with the threshold shifting technique. Table 1 shows

how much accuracy improvement can be achieved by the

proposed threshold shifting technique on different BNN

models. We first reproduced the baseline accuracy of previ-

ous works with less than 0.3% accuracy difference. With

the same hyper-parameter setting, we only changed the

threshold of binary activation functions in each model. The

shift amount for each model is shown in the Table 1. The

results indicate that the proposed threshold shifting tech-

nique also works well for large models on ImageNet dataset.

In addition, the proposed threshold shifting technique can

be easily combined with other BNN training methods (i.e.

weight scaling factor and double skip connection).

3.4. Effect of training threshold

In several recent works, it has been proposed to train

the interval and range of quantization functions via back-

propagation [7, 11, 19, 36]. Training the threshold of bi-

nary activation function in BNNs has been also proposed re-

cently [24, 33]. The threshold training approaches are based

on the belief that the best threshold value for each binary

activation function can be found using back-propagation.

However, here we show that training the threshold has a

limited effect on the performance of BNNs.

3.4.1 Batch normalization bias

The most important reason why the threshold training is not

effective is that the role of trainable threshold is already cov-

ered by the bias values in the BN layer which comes right

before the binary activation layer. The compute process of

a BN layer and the following binary activation layer can be

represented as

Y =

{

−1 if γX−µ

σ
+ β ≤ th

+1 if γX−µ

σ
+ β > th

. (1)

Here, X and Y are inputs to the BN layer and output from

the binary activation layer, respectively. μ, σ, γ, and β are

mean, standard deviation, weight, and bias of the BN layer,

and th is the trainable threshold. As shown in the Eq. 1, the

bias term in BN serves exactly the same role as the train-

able threshold. Both of them are initialized to zero in the

beginning and their gradients are values of the same magni-

tude and the opposite sign. We trained the vgg-small model

7867



Table 1. Accuracy of previous BNN models trained on ImageNet dataset with and without the threshold shifting technique. †For Bi-Real-

Net, the shift amounts for the pretrained model and the BNN model are shown together.

Model
Baseline accuracy [%]

Shift amount
Accuracy w/ shift [%] Accuracy gain [%]

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

BNN (AlexNet) 41.5 66.1 0.6 42.1 66.6 0.6 0.5

XNOR-Net (AlexNet) 44.4 68.6 0.8 45.6 69.6 1.2 1.0

XNOR-Net (ResNet-18) 51.2 74.9 2.0 54.2 77.6 3.0 2.7

Bi-Real-Net (ResNet-18) 56.1 79.1 (2.0, 1.6)† 57.2 80.2 1.1 1.1

Bi-Real-Net (ResNet-34) 61.9 83.9 (2.0, 1.8)† 62.8 84.5 0.9 0.6

0.0

1.0

2.0

-1.0

-2.0

va
lu

e

Channel index

BN bias
threshold

Figure 7. Comparison of the BN bias values in the second BN

layer and the threshold values in the following activation layer of

the vgg-small model. The thresholds are trained following the ap-

proach suggested in [24].

86.5

85.5

-2 0 2

Shift amount

Te
st

 a
cc

ur
ac

y 
[%

]

(a) Vgg-small with trainable th

84.5

83.5

Initialized to: -2

-1

0

1

2

20-2

value

(b) Distribution of thresholds

Figure 8. (a) Test accuracy of vgg-small model with trainable

thresholds with various initial threshold values. (b) Distribution

of effective thresholds (th − β) of the second binary activation

layer after training is finished. Each distribution from top to bot-

tom represents the case when the thresholds are initialized to -2,

-1, 0, 1, and 2, respectively.

with trainable thresholds following [24] and observed the

bias values of the second BN layer and the threshold values

of the following binary activation layer. Fig. 7 shows the

values of BN biases and the trained thresholds in the vgg-

small model. For each channel, the BN bias and the thresh-

old have the same values with an opposite sign. Therefore,

training the thresholds of binary activation functions means

nothing more than doubling the learning rate of BN biases.

Please refer to section S2 in the supplementary material for

more discussion.

3.4.2 Limited learning capability

While the shifted threshold values in the proposed method

can also be absorbed by the bias values in BN after a train-

ing is finished, it differs from the trainable threshold method

in that the fixed shift amount of the binary activation func-

tion serves as an initialization point as well. If the BN bias

and the threshold can be trained to an optimal point via

back-propagation from an arbitrary initial point, the thresh-

old shifting technique might not be as effective. We, how-

ever, found that the final BN bias and the trainable thresh-

old values heavily depend on the initial values, and hence

initializing them with the proposed threshold shifting tech-

nique strongly affects the training performance. Fig. 8a

shows the training result of vgg-small model with trainable

threshold. To see the effect of initialization values, we var-

ied the amount of the threshold shift and applied the train-

able threshold methods. Similar to the result with a fixed

threshold, the test accuracy strongly depends on the initial-

ization point (or threshold shifting amount). We further an-

alyzed the distribution of effective threshold (th − β) af-

ter training is finished for five different initialization values.

As shown in Fig. 8b, the final distribution of the effective

threshold strongly depends on the initial values and do not

change much from the initial points. For example, the first

case (top) in Fig. 8b is when the threshold of the binary ac-

tivation function is set to -2 and the BN bias is initialized to

0. Even though the thresholds of the binary activation func-

tions, which are initially -2, are trainable, back-propagation

does not train them to the optimal value which is close to 1.

3.5. Effect of additional activation function

Recently, several works proposed to use additional ac-

tivation function (i.e. PReLU) after convolution layer in

BNNs [2, 4, 24, 26, 28, 32]. While the performance im-

provement by the additional activation function was signifi-

cant, the reason for the accuracy improvement is not clearly

understood yet. Previous works have described that BNNs

usually lack nonlinearity in the model due to the simple acti-

vation functions and the additional activation functions give

more nonlinearity to the model [2, 29]. In addition to the

increased nonlinearity, we observed that the accuracy im-

provement by additional activation function is also related

to the unbalanced activation distribution. We first evaluate

the effect of additional PReLU layers after binary convolu-

tion layers in the ResNet-20 model. For experiments, we

7868



84.0

0 1 3

Shift amount

Te
st

 a
cc

ur
ac

y 
[%

]

(b) ResNet-20 w/o PReLU

84.4

85.0

2

85.0

0 1 2

Shift amount

Te
st

 a
cc

ur
ac

y 
[%

]

(c) ResNet-20 w/ PReLU

86.0

87.0

BN Sign Conv PReLUBN Sign Conv

Conv BN ReLU Residual block (16)

BN ReLU FC

Residual block (16) Residual block (32)

Residual block (64)Residual block (64)Residual block (32)

(a) ResNet-20 architecture w/ double skip connection

Residual block Residual block w/ PReLU

Figure 9. (a) Model description of ResNet-20 with double skip

connection. ResNet-20 with PReLU model has an additional

PReLU layer at the end of every residual block. Test accuracy

of ResNet-20 (b) without and (c) with an additional PReLU layer

after every binary convolution layer.

used ResNet-20 model with double skip connections [25]

as shown in Fig. 9a. The model consists of the first convo-

lution layer, 18 residual blocks, and the last fully-connected

layer. In the ResNet-20 model with additional PReLU lay-

ers, a PReLU layer is inserted at the end of every residual

block as shown in Fig. 9a. The effect of threshold shift-

ing on ResNet-20 model with and without the additional

PReLU layers is shown in Fig. 9b and c, respectively. While

the accuracy is improved by shifting the threshold of bi-

nary activation function in the ResNet-20 model, the thresh-

old shifting degrades the accuracy when additional PReLU

layers are used jointly. The additional PReLU layers al-

ready play a role in distorting the activation distribution,

and hence further shifting the threshold of binary activa-

tion function is excessive. To validate the claim, we slightly

modified the additional activation function and analyzed the

effect of threshold shifting technique. We replaced the ad-

ditional PReLU layers with LeakyReLU layers and varied

the slope of the negative range of the LeakyReLU layers

from 0 to 1. Note that when the slope is 1, the LeakyReLU

layer becomes an identity function and therefore the model

becomes the same as the ResNet-20 model without PReLU

layers. Fig. 10 shows the training results of ResNet-20 with

LeakyReLU layers with different slopes. As the slope of the

negative range of LeakyReLU decreases, the distortion of

the activation distribution becomes more severe. When the

slope is close to 1, the LeakyReLU layer does not skew the

distribution of pre-activation much. Hence, the distribution

of pre-activation values is very close to a Gaussian distribu-

tion with zero mean. As a result, the accuracy improvement

by shifting the threshold of binary activation function was

clearly observed as in the ResNet-20 model without PReLU

layers. However, as the slope decreases, the LeakyReLU

layer makes the activation distribution unbalanced as shown

90.0

85.0

75.0

0 1 3

Te
st

 a
cc

ur
ac

y 
[%

]

(a) slope = 0.0

80.0

2

88.0

86.0

82.0

0 1 3

Te
st

 a
cc

ur
ac

y 
[%

]

(b) slope = 0.1

84.0

2

shift amount shift amount
86.5

85.5

83.5

0 1 3

Te
st

 a
cc

ur
ac

y 
[%

]

(c) slope = 0.25

84.5

2

86.0

85.0

83.0

0 1 3

Te
st

 a
cc

ur
ac

y 
[%

]

(d) slope = 0.5

84.0

2

shift amount shift amount
86.0

85.0

83.0

0 1 3

Te
st

 a
cc

ur
ac

y 
[%

]

(e) slope = 0.75

84.0

2

85.5

84.5

82.5

0 1 3

Te
st

 a
cc

ur
ac

y 
[%

]

(f) slope = 0.9

83.5

2

shift amount shift amount

Figure 10. Effect of the slope of the negative range of LeakyReLU

layers on the dependence of the test accuracy on the threshold shift

amount. The slope of the negative range of LeakyReLU is (a) 0.0,

(b) 0.1, (c) 0.25, (d) 0.5, (e) 0.75, and (f) 0.9. Inset: distribution of

pre-activation when shift amount is 0 in each case.

in Fig. 10. Note that LeakyReLU layer scales down the neg-

ative values only so that the mean value of the distribution

increases while the median value of the distribution does

not change. Therefore, it has a similar effect to shifting the

threshold of binary activation function in that the activation

distribution becomes unbalanced.

4. Conclusion

In this paper, we analyzed the impact of activation dis-

tribution on the accuracy of BNN models. While previ-

ous BNNs used sign function as binary activation func-

tion which balances the distribution of binary activation, we

claim that the accuracy of BNN models can be improved

when the distribution of binary activation is unbalanced. By

simply shifting the thresholds of binary activation functions,

we demonstrated that the accuracy of previous BNN mod-

els could be further improved. We also identified that the

unbalanced activation distribution partly accounts for the

improved accuracy of BNN models which used additional

activation functions.

Acknowledgement: This work was in part supported by the

National Research Foundation of Korea (NRF) grant funded by

the Korea government (MSIT) (NRF-2020R1A2C2004329), Sam-

sung Research Funding Center under Project Number SRFC-

TC1603-51, and Institute of Information & communications Tech-

nology Planning & Evaluation (IITP) grant funded by the Ko-

rea government (MSIT) (No.2019-0-01906, Artificial Intelligence

Graduate School Program(POSTECH)).

7869



References

[1] Yoshua Bengio, Nicholas Léonard, and Aaron Courville.

Estimating or propagating gradients through stochastic

neurons for conditional computation. arXiv preprint

arXiv:1308.3432, 2013.

[2] Adrian Bulat and Georgios Tzimiropoulos. Binarized convo-

lutional landmark localizers for human pose estimation and

face alignment with limited resources. In Proceedings of the

IEEE International Conference on Computer Vision, pages

3706–3714, 2017.

[3] Adrian Bulat and Georgios Tzimiropoulos. Xnor-net++: Im-

proved binary neural networks. In In British Machine Vision

Conference, 2019.

[4] Adrian Bulat, Georgios Tzimiropoulos, Jean Kossaifi, and

Maja Pantic. Improved training of binary networks for hu-

man pose estimation and image recognition. arXiv preprint

arXiv:1904.05868, 2019.

[5] Zhaowei Cai, Xiaodong He, Jian Sun, and Nuno Vasconce-

los. Deep learning with low precision by half-wave gaus-

sian quantization. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 5918–5926,

2017.

[6] Jungwook Choi, Swagath Venkataramani, Vijayalak-

shmi Viji Srinivasan, Kailash Gopalakrishnan, Zhuo Wang,

and Pierce Chuang. Accurate and efficient 2-bit quantized

neural networks. Proceedings of Machine Learning and

Systems, 1:348–359, 2019.

[7] Jungwook Choi, Zhuo Wang, Swagath Venkataramani,

Pierce I-Jen Chuang, Vijayalakshmi Srinivasan, and Kailash

Gopalakrishnan. Pact: Parameterized clipping activa-

tion for quantized neural networks. arXiv preprint

arXiv:1805.06085, 2018.

[8] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre

David. Binaryconnect: Training deep neural networks with

binary weights during propagations. In Advances in neural

information processing systems, pages 3123–3131, 2015.

[9] Sajad Darabi, Mouloud Belbahri, Matthieu Courbariaux, and

Vahid Partovi Nia. Bnn+: Improved binary network training.

arXiv preprint arXiv:1812.11800, 2018.

[10] Ruizhou Ding, Ting-Wu Chin, Zeye Liu, and Diana Mar-

culescu. Regularizing activation distribution for training bi-

narized deep networks. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

11408–11417, 2019.

[11] Steven K Esser, Jeffrey L McKinstry, Deepika Bablani,

Rathinakumar Appuswamy, and Dharmendra S Modha.

Learned step size quantization. In International Conference

on Learning Representations, 2019.

[12] Julian Faraone, Nicholas Fraser, Michaela Blott, and

Philip HW Leong. Syq: Learning symmetric quantization

for efficient deep neural networks. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 4300–4309, 2018.

[13] Xavier Glorot and Yoshua Bengio. Understanding the diffi-

culty of training deep feedforward neural networks. In Pro-

ceedings of the thirteenth international conference on artifi-

cial intelligence and statistics, pages 249–256, 2010.

[14] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep

sparse rectifier neural networks. In Proceedings of the four-

teenth international conference on artificial intelligence and

statistics, pages 315–323, 2011.

[15] Song Han, Huizi Mao, and William J Dally. Deep com-

pression: Compressing deep neural networks with pruning,

trained quantization and huffman coding. arXiv preprint

arXiv:1510.00149, 2015.

[16] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry

Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-

dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-

tional neural networks for mobile vision applications. arXiv

preprint arXiv:1704.04861, 2017.

[17] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-

Yaniv, and Yoshua Bengio. Binarized neural networks. In

Advances in neural information processing systems, pages

4107–4115, 2016.

[18] Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal co-

variate shift. arXiv preprint arXiv:1502.03167, 2015.

[19] Sangil Jung, Changyong Son, Seohyung Lee, Jinwoo Son,

Jae-Joon Han, Youngjun Kwak, Sung Ju Hwang, and

Changkyu Choi. Learning to quantize deep networks by op-

timizing quantization intervals with task loss. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 4350–4359, 2019.

[20] Hyungjun Kim, Kyungsu Kim, Jinseok Kim, and Jae-Joon

Kim. Binaryduo: Reducing gradient mismatch in binary ac-

tivation network by coupling binary activations. In Interna-

tional Conference on Learning Representations, 2019.

[21] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014.

[22] Alex Krizhevsky and Geoff Hinton. Convolutional deep be-

lief networks on cifar-10. technical report, 2010.

[23] Xiaofan Lin, Cong Zhao, and Wei Pan. Towards accurate

binary convolutional neural network. In Advances in Neural

Information Processing Systems, pages 345–353, 2017.

[24] Zechun Liu, Zhiqiang Shen, Marios Savvides, and Kwang-

Ting Cheng. Reactnet: Towards precise binary neural net-

work with generalized activation functions. In European

Conference on Computer Vision (ECCV), 2020.

[25] Zechun Liu, Baoyuan Wu, Wenhan Luo, Xin Yang, Wei Liu,

and Kwang-Ting Cheng. Bi-real net: Enhancing the per-

formance of 1-bit cnns with improved representational ca-

pability and advanced training algorithm. In Proceedings of

the European conference on computer vision (ECCV), pages

722–737, 2018.

[26] Brais Martinez, Jing Yang, Adrian Bulat, and Georgios Tz-

imiropoulos. Training binary neural networks with real-to-

binary convolutions. In International Conference on Learn-

ing Representations, 2019.

[27] Asit Mishra, Eriko Nurvitadhi, Jeffrey J Cook, and Debbie

Marr. Wrpn: Wide reduced-precision networks. In Interna-

tional Conference on Learning Representations, 2018.

[28] Hadi Pouransari, Zhucheng Tu, and Oncel Tuzel. Least

squares binary quantization of neural networks. In Proceed-

7870



ings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition Workshops, pages 698–699, 2020.

[29] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon,

and Ali Farhadi. Xnor-net: Imagenet classification using bi-

nary convolutional neural networks. In European conference

on computer vision, pages 525–542. Springer, 2016.

[30] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556, 2014.

[31] Mingxing Tan and Quoc V Le. Efficientnet: Rethinking

model scaling for convolutional neural networks. arXiv

preprint arXiv:1905.11946, 2019.

[32] Wei Tang, Gang Hua, and Liang Wang. How to train a com-

pact binary neural network with high accuracy? In Pro-

ceedings of the Thirty-First AAAI Conference on Artificial

Intelligence, pages 2625–2631, 2017.

[33] Peisong Wang, Xiangyu He, Gang Li, Tianli Zhao, and Jian

Cheng. Sparsity-inducing binarized neural networks. In

AAAI, pages 12192–12199, 2020.

[34] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and

Hai Li. Learning structured sparsity in deep neural networks.

In Advances in neural information processing systems, pages

2074–2082, 2016.

[35] Bichen Wu, Alvin Wan, Xiangyu Yue, Peter Jin, Sicheng

Zhao, Noah Golmant, Amir Gholaminejad, Joseph Gonza-

lez, and Kurt Keutzer. Shift: A zero flop, zero parameter

alternative to spatial convolutions. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recog-

nition, pages 9127–9135, 2018.

[36] Dongqing Zhang, Jiaolong Yang, Dongqiangzi Ye, and Gang

Hua. Lq-nets: Learned quantization for highly accurate and

compact deep neural networks. In Proceedings of the Euro-

pean Conference on Computer Vision (ECCV), pages 365–

382, 2018.

[37] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen,

and Yuheng Zou. Dorefa-net: Training low bitwidth convo-

lutional neural networks with low bitwidth gradients. arXiv

preprint arXiv:1606.06160, 2016.

7871


