
Joint Negative and Positive Learning for Noisy Labels

Youngdong Kim Juseung Yun Hyounguk Shon Junmo Kim

School of Electrical Engineering, KAIST, South Korea

{ydkim1293, juseung yun, hyounguk.shon, junmo.kim}@kaist.ac.kr

Abstract

Training of Convolutional Neural Networks (CNNs) with

data with noisy labels is known to be a challenge. Based on

the fact that directly providing the label to the data (Positive

Learning; PL) has a risk of allowing CNNs to memorize the

contaminated labels for the case of noisy data, the indirect

learning approach that uses complementary labels (Nega-

tive Learning for Noisy Labels; NLNL) has proven to be

highly effective in preventing overfitting to noisy data as it

reduces the risk of providing faulty target. NLNL further

employs a three-stage pipeline to improve convergence. As

a result, filtering noisy data through the NLNL pipeline is

cumbersome, increasing the training cost. In this study, we

propose a novel improvement of NLNL, named Joint Neg-

ative and Positive Learning (JNPL), that unifies the filter-

ing pipeline into a single stage. JNPL trains CNN via two

losses, NL+ and PL+, which are improved upon NL and

PL loss functions, respectively. We analyze the fundamental

issue of NL loss function and develop new NL+ loss func-

tion producing gradient that enhances the convergence of

noisy data. Furthermore, PL+ loss function is designed

to enable faster convergence to expected-to-be-clean data.

We show that the NL+ and PL+ train CNN simultaneously,

significantly simplifying the pipeline, allowing greater ease

of practical use compared to NLNL. With a simple semi-

supervised training technique, our method achieves state-

of-the-art accuracy for noisy data classification based on

the superior filtering ability.

1. Introduction

Convolutional Neural Networks (CNNs) have led to

great improvements in many supervised tasks. However,

CNNs’ performance relies heavily on the quality of labels,

and accurately labeling a huge amount of data is expen-

sive and time-consuming. Furthermore, accurate labeling

is done by hand, which can eventually lead to mismatched

labeling. Therefore, the robust training of CNNs with noisy

data is of great practical importance. There are many ap-

proaches regarding this issue. For example, there are meth-

ods that design noise-robust loss [4, 3, 29, 18], use two neu-

ral networks to select clean labels [6, 33, 30], and utilize

label correction [22, 31]. These existing approaches com-

monly use the given labels in a direct manner, i.e., “input

image belongs to this label” (Positive Learning; PL). This

behavior carries the risk of providing faulty information to

the CNNs when noisy labels are involved.

Motivated by this reason, Negative Learning for Noisy

Labels; NLNL [12], which is an indirect learning method

for training CNNs, has been proposed recently. Negative

Learning (NL) uses randomly chosen complementary la-

bels and trains the CNN that “input image does not belong

to this complementary label,” reducing the risk of providing

the wrong information because of the high chance of not

selecting a true label as a complementary label. Addition-

ally, NLNL proposed three-stage pipeline for filtering noisy

data from training data (Figure 1 (a)). Each stage is com-

posed of NL→ NL while discarding data of low confidence

(Selective NL; SelNL) → PL while only retaining data of

high confidence (Selective PL; SelPL), enabling more con-

vergence after NL. However, the fundamental problem that

NL loss function causes underfitting to the overall training

data still remains. This is the reason that NL requires an

additional sequential step, SelNL. Furthermore, the three-

stage pipeline for filtering noisy data is quite inefficient, ex-

tending the time for training CNNs.

In this study, we propose a novel version of NLNL: Joint

Negative Learning and Positive Learning; JNPL which has

a unified single-stage pipeline for filtering noisy data (Fig-

ure 1 (b)). JNPL is composed of two losses to train CNN,

NL+ and PL+ losses, dedicated to filtering noisy data from

training data. Each is developed from NL and PL loss func-

tions, respectively. Firstly, our paper focuses on analyzing

the NL loss function to understand the cause for underfit-

ting. Then we develop a new loss function NL+ that re-

solves the issue, which produces a gradient appropriate for

convergence on a noisy training dataset. Our study demon-

strates the effectiveness of NL+, showing improved conver-

gence across various label noise types and noise rates. Sec-

ondly, while we utilize PL to aid in training with noisy data,

PL+ loss function is also newly designed to enable faster
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Figure 1: Comparison between Negative Learning for Noisy Labels (NLNL) and Joint Negative and Positive Learning (JNPL)

for filtering noisy data from training data, demonstrated with histograms showing the distribution of noisy training data . (a):

NLNL is a 3-stage pipeline (NL→SelNL→SelPL). (b): JNPL is a single-stage pipeline, in which two loss functions (NL+

and PL+) train CNN simultaneously.

training with expected-to-be-clean data. Our paper shows

the effectiveness of the PL+ loss function compared to the

previous PL loss function. Finally, as both loss functions of

our method (NL+ and PL+) jointly train the model through

a single stage, it is simple and easier to use than NLNL. Our

experiments show that JNPL successfully filters noisy data

in a single stage, thereby providing significantly faster train-

ing of CNN as well as better filtering compared to NLNL.

After filtering noisy data from the training data we per-

form pseudo-labeling for noisy data classification. We

achieve state-of-the-art accuracy across various settings in

CIFAR10, CIFAR100 [13], and Clothing1M [31] datasets,

proving the superior filtering ability of JNPL.

The main contributions of this paper are as follows:

• We propose an improved version of NLNL, named “Joint

Negative and Positive Learning (JNPL),” featuring a

single-stage pipeline for filtering noisy data, therefore

enabling easier usage compared to NLNL.

• Two novel loss functions are newly designed, each named

NL+ loss and PL+ loss. NL+ solves the underfitting

problem of the NL loss, and provides better convergence

on various types and ratios of label noises in the training

data. Moreover, PL+ enables faster training compared to

the previous PL loss function.

• Our method filters noisy data, more robust across differ-

ent types and ratios of noise than NLNL. Our method

also achieves state-of-the-art noisy data classification re-

sults when used along with pseudo-labeling.

• Prior knowledge of the type or number of noisy data is

not required for our method. It does not require any

hyper-parameter tuning that depend on prior knowledge,

allowing our method to be applicable in practice.

The remainder of this paper is organized as follows. Sec-

tion 3 describes NLNL method in depth, which is targeted

throughout the whole paper, and discusses the cause of the

underfitting problem of the method. Section 4 describes

our proposed method, JNPL, and explains in detail on NL+

loss and PL+ loss terms. Section 5 demonstrates the overall

comparison between JNPL and NLNL, showing the distinct

advantages of JNPL over NLNL. Section 6 discusses the

evaluations of our method in comparison to baseline meth-

ods. Finally, we summarize and conclude in Section 7.

2. Related works

Several methods that aim to mitigate label noise have

been proposed. Here, we summarize some of the recent

approaches to noise-robust learning.

Designing noise-robust loss The commonly used cross-

entropy (CE) loss is known to be prone to overfitting when

there is noise in the labels. Therefore, a family of studies

aims to design novel loss functions that are tolerant of label

noise. Ghosh et al. [4, 3] showed that the mean absolute

error (MAE) loss is theoretically robust against label noise.

Zhang et al. [35] proposed Generalized Cross Entropy loss,

which is a generalized function that can interpolate between

the forms of CE and MAE, which enables it to adjust trade-

offs between robust loss and non-robust loss.

However, in many cases, such noise-robust losses carry

the problem of underfitting, which motivates the combina-

tion of a robust loss with a non-robust loss to improve con-

vergence. Wang et al. [29] proposed Symmetric Cross En-

tropy loss, which combines CE loss with Reverse Cross En-

tropy loss. Recently, Ma et al. [18] proposed a loss normal-

ization technique that transforms a non-robust loss function

into a robust loss function. They also showed that such nor-

malized loss used in combination with another robust loss

function improves convergence and coined the term Active

Passive Loss (APL).

Weighting samples In some researches, each sample in the

training set is weighted by the reliability of the label [10,

24, 15]. Moreover, other methods proposed meta-learning

algorithms that predicts the weights for each sample [10,

24]. However, these methods require a clean validation set,

which is often difficult to guarantee in practice.

Correction methods Some other researches used correc-

tion methods [21, 27, 9, 31, 28, 17]. They assume that
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prior knowledge like noise rate or noisy transition matrix

is known or that some clean data is accessible. How-

ever, in a practical case, prior knowledge and clean data

is usually hard to obtain. Some other works used CNN

with additional layer [25, 11, 5], and noise transition ma-

trix is approximated to correct loss. Many efforts gradu-

ally change the data label to the prediction value of the net-

work [23, 26, 19, 32]. Arazo et al. [1], fits a mixture of beta

distributions that models the loss of clean and noisy samples

during training.

Selecting clean labels Some attempted to identify clean la-

bels from a noisy dataset [6, 2, 20]. Ding et al. [2] pro-

posed a selection of clean examples based on predicted like-

lihoods. The labels of the remaining samples are discarded,

and the network is trained by semi-supervision. Some of

the successful approaches train two deep neural networks

simultaneously and let them teach each other [6, 33, 30].

Each network selects possibly clean data and trains the other

network with this data.

Use of complementary labels Kim et al. [12] proposed

a noise-robust learning method where instead of maxi-

mizing the log-likelihood on the target position, it mini-

mizes the log-likelihood on the complementary positions,

termed Negative Learning (NL). They employ a three-stage

pipeline based on NL that separates the clean data from the

noisy data. Finally, the network is trained using standard

CE loss with semi-supervision by treating the noisy set as

unlabeled.

Other approaches Li et al. [16] uses meta-learning to ob-

tain weights that can be easily fine-tuned to a given noisy

dataset. Zhang et al. [34] proposed to learn confidence

scores of each samples from the relationship between noisy

samples in the feature space, then use the confidence scores

to generate cleaner representations. Harutyunyan et al. [7]

proposed training algorithm based on mutual information

between weights and labels to regularize the memorization

of labels.

3. Negative Learning for Noisy Labels (NLNL)

Throughout this paper, we consider the problem of c-

class classification. Let x ∈ X be an input, y, y ∈ Y =
{1, ..., c} be its label and complementary label, respectively,

and y,y ∈ {0, 1}c be their one-hot vector. Suppose the

CNN f(x; θ) maps the input space to the c-dimensional

score space f : X → R
c, where θ is the set of network

parameters. If f passes through the softmax function, the

output can be interpreted as a probability vector p ∈ ∆c−1,

where ∆c−1 denotes the c-dimensional simplex.

NL [12] is an indirect learning method for training CNNs

with noisy data. Instead of using given labels, it chooses

random complementary label y and train CNNs as in “in-

put image does not belong to this complementary label.”

The loss function following this definition is as below, along

with the classic PL loss function for comparison:

LPL(f, y) = −

c
∑

k=1

yk log pk (1)

LNL(f, y) = −

c
∑

k=1

yk log(1− pk). (2)

To improve convergence after NL, SelNL is performed

as a subsequent step. SelNL trains the CNNs only with the

data having confidence over 1
c

(py > 1
c
). Since data in-

volved in training tend to be less noisy than before, CNNs

converge better after SelNL. Furthermore, PL is consid-

ered a faster and more accurate method than NL, only if

training data is assumed to be clean. After training with

NL and SelNL, SelPL train CNNs only with data that has

confidence above γ (= 0.5), assuming that such data are

clean. After filtering noisy data with these three steps

(NL→SelNL→SelPL), semi-supervised learning (pseudo-

labeling [14]) is performed utilizing labeled expected-to-be-

clean data and unlabeled noisy data.

As mentioned in Section 1, the fundamental problem of

underfitting of NL still remains. To analyze the root of this

phenomenon, we observe the gradient resulting from the NL

loss function (Eq 2) as follows:

∇LNL =
∂LNL(f, y)

∂fi
=

{

pi if i = y

−
py

1−py
pi if i 6= y.

(3)

Eq 3 states that at classes except for y receives gradient of

−
py

1−py
pi (∇LNL(i 6=y)). Figure 2 (a) shows 2D gradient

map of ∇LNL(i 6=y), and Figure 2 (b)-(d) shows the dis-

tribution of training data after NL in diverse noise ratio.

Each training data is distributed in gradient map with re-

spect to its py (when i = y) and pymax
. As the training

with NL progresses, clean data tend to have high py and

low py (lower-right region in Figure 2 (a)), while noisy data

tend to have low py and high py (upper-left region in Fig-

ure 2 (a)). However, considering noisy data, ground-truth

labels may be chosen as y. In this case, all classes, except

for ground truth label, receive high ∇LNL(i 6=y) because of

high py , resulting in underfitting of that data as the confi-

dence of classes other than the ground-truth label increases.

In Section 4.1, we describe the developed loss function of

NL (NL+) that resolves this underfitting issue.

4. Joint Negative and Positive Learning (JNPL)

The loss function of the proposed method, JNPL, is com-

posed of two loss functions:

LJNPL = LNL+ + λLPL+. (4)

9444



0.0 0.2 0.4 0.6 0.8 1.0

py

0.0

0.2

0.4

0.6

0.8

1.0

p
y

0.0

0.2

0.4

0.6

0.8

gr
ad

ie
nt

 |∇
f y
L|

0.0 0.2 0.4 0.6 0.8 1.0

py

0.0

0.2

0.4

0.6

0.8

1.0

p
y

clean samples
noisy samples

0.0

0.2

0.4

0.6

0.8

gr
ad

ie
nt

 |∇
f y
L|

0.0 0.2 0.4 0.6 0.8 1.0

py

0.0

0.2

0.4

0.6

0.8

1.0

p
y

clean samples
noisy samples

0.0

0.2

0.4

0.6

0.8

gr
ad

ie
nt

 |∇
f y
L|

0.0 0.2 0.4 0.6 0.8 1.0

py

0.0

0.2

0.4

0.6

0.8

1.0

p
y

clean samples
noisy samples

0.0

0.2

0.4

0.6

0.8

gr
ad

ie
nt

 |∇
f y
L|

(a) Plot of ∇LNL (b) η = 0.2 (c) η = 0.4 (d) η = 0.6
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(e) Plot of ∇LNL+ (f) η = 0.2 (g) η = 0.4 (h) η = 0.6

Figure 2: Comparison between NL and NL+ with CIFAR10 with symm noise. (a), (e): Gradient map of NL and NL+,

respectively. (b)-(d): Training data distribution with 20%, 40%, 60% noise after training with NL. (f)-(h): Training data

distribution with 20%, 40%, 60% noise after training with NL+

Each of which is dedicated to filtering noisy data from train-

ing data. LNL+ is the advanced version of NL, which re-

solves underfitting issue. LPL+ is other newly designed

loss for PL that trains on expected-to-be-clean data, empow-

ering training on data of higher confidence. λ is added to

scale the overall magnitude of PL+ so that it does not over-

whelm the magnitude of NL+. We set λ = 0.01 throughout

the whole paper. These two losses enable successful filter-

ing of noisy data. Finally, noisy data classification is done in

semi-supervised manner, utilizing these filtered noisy data

confidence as pseudo-label. In the following sections, we

further introduce each of the loss functions and describe the

concept and implementation respectively.

4.1. NL+

As discussed in Section 3, we argue that the cause of the

underfitting problem with NL is due to the nature of its gra-

dient ∇LNL(i 6=y) (Figure 2 (a)). This is more pronounced

as the noise rate increases, as shown in Figure 2 (b)-(d).

This problem occurs when noisy data receives high gradi-

ent to classes except for y when the confidence of y is high,

y being most likely to be ground truth label. To solve this

issue, we propose a modification to the NL loss function,

named NL+ loss, as follows:

LNL+(f, y) = −(1− py)

c
∑

k=1

yk log(1− pk). (5)

It should be noted that
(

1− py

)

acts as a constant weight-

ing factor. Intuitively, this factor has the effect of decreas-

ing the loss for noisy data when corresponding py is high, y
being most likely to be ground truth label. That way, it re-

duces the risk of pressing down on the confidence of ground

truth label for noisy data, reducing the risk of underfitting.

This is further analyzed by observing the gradient of NL+

(∇LNL+(i 6=y)), given by Eq 5:

∇LNL+(i 6=y) = (1− py)∇LNL(i 6=y) = −pypi. (6)

The gradient map of∇LNL+(i 6=y) is shown in Figure 2 (e).

Compared to Figure 2 (a), it shows gradient at upper-left re-

gion is reduced. This implies that as the training progresses

with NL+, noisy data is gathered at the upper-left region.

With NL+, gradient received for noisy data of high py is

reduced, allowing noisy data to maintain high py value,

where y is most likely to be ground truth label. Figure 2

(f)-(h) shows the distribution of training data mixed with di-

verse ratio of noise. It shows that compared to Figure 2 (b)-

(d), NL+ results in more convergence. Especially in noise

of high ratio (Figure 2 (d), (h)), NL+ successfully divides

noisy data from training data, sending noisy data to upper-

left region.

4.2. PL+

In this section, we introduce the second loss function

LPL+ in JNPL. As mentioned in Section 1, when train-

ing data is verified to have clean labels, PL is a faster and

more accurate method than NL. Following this fact, we ap-

ply PL+ to our method for faster convergence. But com-

pared to NLNL, this is not applied in a sequential step but
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Figure 3: (a), (b): Cases for selecting data for PL+. Data

is the candidate for PL+ if confidences at classes other than

label of maximum probability is under uniform distribution

(1/c). (c): Gradient of PL+ depending on N compared to

PL (cross-entropy loss). (d): Accuracy comparison between

PL+ with different N . This shows that the flatter version of

PL+ (N = 3) generates better training results.

rather as a unified step.

First of all, the criteria for selecting the training data for

PL+ is required. Previously, NLNL applied PL to data over

the threshold (py > 0.5). However, the criteria for select-

ing data for PL should be stricter. Even if a data satisfies

py > 0.5, a probability of other class may reach as much as

0.5, resulting in the risk of selecting noisy data as clean data.

Hence, PL+ considers the probabilities of classes other than

the given label. When probabilities of other classes except

for given label are under uniform distribution 1
c
, this data

is a candidate for PL+ (Figure 3 (a)). Additionally, among

the candidates for PL+, it is selected through Bernoulli sam-

pling with respect to py . The higher the py , the more fre-

quently the data would be trained with PL+. Furthermore,

PL+ selects data not only from expected-to-be-clean data

but also from noisy data. Meaning that, when the proba-

bilities of other classes except for the label of maximum

probability is under the uniform distribution, the data is also

a candidate for PL+ using the maximum probability class

label (= ŷ) (Figure 3 (b)). In this way, PL+ selects data

for training more strictly, but also, the candidate area is in-

creased. The pseudocode for PL+ process is shown in Al-

gorithm 1.

PL is usually done using cross-entropy (CE) loss (Eq 1).

However, while it may be tolerable when training clean

data, it may not be as tolerable as when training noisy data.

The reason for PL in our method is to train faster on more

confident data. However, when observing the gradient of

CE in Figure 3 (c), it states that a smaller gradient is pro-

Algorithm 1: PL+

Input: mini-batch D̄
Result: LPL+ over mini-batch D̄PL+

for (x, y) ∈ D̄ do
p← softmax (f(x))
ŷ ← argmaxi pi

if pi <
1
c

for ∀i ∈ {1, ..., c} \ {ŷ} then

Append (x, ŷ) to D̄PL+ with probability pŷ

else
Reject (x, y)

end

end

Calculate LPL+ (f(x), ŷ) for D̄PL+ by Eq. (7)

return 1
|D̄PL+|

∑

x∈D̄PL+
LPL+ (f(x), ŷ)

vided to more confident data, while a higher gradient is pro-

vided to less confident data. Since the goal is to train faster

on more confident data, not just training more on less confi-

dent data, we propose PL+ loss function to resolve this issue

as follows:

LPL+(f, ŷ) = −

N
∏

n=0

(1 + p
2n

ŷ )

c
∑

k=1

yk log pk, (7)

and the gradient of PL+ loss is as follows:

∇LPL+ =

N
∏

n=0

(1 + p
2n

ŷ )∇LPL

= −

N
∏

n=0

(1 + p
2n

ŷ )(1− pŷ) = −(1− p
2N+1

ŷ ).

(8)

Similar to NL+,
∏N

n=0(1+p
2n

ŷ ) acts as a constant weighting

factor. By applying this weight factor, the gradient of PL+

loss function is modified as shown in Eq 8 and visualized

in Figure 3 (c). It can be seen that higher gradient is being

provided to data of high py as N increases. Figure 3 (d)

proves faster convergence as N increases. We set N = 3
throughout the whole paper.

5. Analysis

Since our method is the advanced version of NLNL,

which is targeted throughout our whole paper, this section

further demonstrates the distinct advantage of our method

JNPL over NLNL.

First of all, our method JNPL is a unified step pipeline

for filtering noisy data, compared to 3-step pipeline of

NLNL. JNPL is trained with two loss functions simulta-

neously, increasing the efficiency of training CNN. Fig-

ure 4 shows the performance comparison between NLNL
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Figure 4: Accuracy graph of NLNL, NL+, and JNPL (NL+

& PL+) with CIFAR10 mixed with 60% symm noise.

(NL→SelNL→SelPL), NL+, and JNPL (NL+&PL+) when

training with CIFAR10 mixed with 60% symm noise. Fig-

ure 4 clearly indicates that NL+ solely reaches the accu-

racy of NL→SelNL, proving better convergence of NL+

compared to NL. Furthermore, when PL+ is done simul-

taneously along with NL+, it results in faster training with-

out the need for additional subsequent step. It also shows

overall accuracy of NL+ and JNPL overpasses the accu-

racy reached by NLNL while preventing overfitting to noisy

data, proving the superiority of our method over NLNL.

Secondly, NL+ is more capable of handling more diverse

noise types compared to NL→SelNL owing to the nature of

gradient followed by LNL+. Although NL applies SelNL

to compensate for underfitting problem, we show that this

is not an optimal solution for all types of noise. Consider

when training data is CIFAR10 mixed with asymm noise,

especially when class “dog” is mixed with “cat” in bidirec-

tional manner (DOG ↔ CAT). Overall probability values

across all classes are shared between class “dog” and “cat,”

resulting in distribution of training data as shown in Figure 6

(a), (d). In this case, SelNL shows almost no effect as the

noisy data is not under the uniform distribution (Figure 6

(b), (e)). Whereas for NL+, due to the fact that gradient for

region (py < 0.5 & py > 0.5) is reduced in a smooth man-

ner compared to NL, it eventually enables both classes to be

separated, showing distinct advantage of NL+ over SelNL

(Figure 6 (c), (f)).

Finally, we show that our method JNPL successfully fil-

ters noisy data from training data than NLNL. Figure 5

shows overall filtering ability between NLNL and JNPL

with average precision (AP). It is compared in diverse en-

vironment: CIFAR10/CIFAR100 mixed with different ratio

of symm and asymm noise. It shows that our method outper-

forms NLNL in filtering noisy data on overall cases. Fur-

thermore, it can be observed that gap of AP between NLNL

and JNPL increases as the noise ratio increases. This im-

plies that JNPL is more robust to the amount of noise mixed
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Figure 5: Average Precision (AP) for CIFAR10 / CIFAR100

on symm / asymm noises. (a), (b): AP for CIFAR10 on

symm / asymm noises, respectively. (c), (d): AP for CI-

FAR100 on symm / asymm noises, respectively.

in training data. Also, JNPL being more robust to asymm

noise than NLNL also proves the point made above. This

phenomenon is more clearly shown in more difficult data

CIFAR100. AP of NLNL drastically decreases as the noise

rate gets higher. However, JNPL shows robustness in types

and ratios of noise, similar to when training with CIFAR10.

Figure 5 demonstrates our method JNPL is capable of being

generalized to type and ratio of noise, and even number of

classes in the dataset.

6. Experiments

In this section, we describe the experiments performed to

evaluate our method. Pseudo-labeling is done on a training

dataset filtered by JNPL for noisy data classification and

resulting accuracies are compared to those of other existing

methods. We verify our method by comparing with other

recent baseline methods, varying experimental settings in

terms of dataset and type and ratio of noise in the training

data.

6.1. Experiment settings

Baseline methods We compare our method against CE,

along with recent state-of-the-art approaches including Co-

teaching [6], JoCoR [30], APL [18], and NLNL [12].

Dataset We conduct the experiments on CIFAR10, CI-

FAR100 [13] mixed with two types noises (symm, asymm),

and Clothing1M [31] dataset. Clothing1M is a large-scale

real-world dataset with noisy labels, containing 1 million

images of clothing obtained from several online shopping
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Figure 6: Comparison between NL and NL+ for asymm 40% noise CIFAR10 “cat” class. (a), (d): Gradient map and

histogram of NL, respectively. (b), (e): Gradient map and histogram of NL→SelNL, respectively. (c), (f): Gradient map and

histogram of NL+, respectively. Blue indicates clean data whereas orange indicates noisy data in histograms.

websites. It is reported that the overall accuracy of noisy

labels in this dataset is 61.54%, and some pairs of classes

are often confused with each other (e.g., Knitwear and

Sweater). For preprocessing, we performed mean sub-

traction, horizontal flip, and random crops for CIFAR10

and CIFAR100. For Clothing1M, we resize the image to

256×256, crop 224×224 at the center and perform mean

subtraction and horizontal flip.

Label noise types We generated noisy CIFAR10 and CI-

FAR100 datasets according to the following procedures.

In symmetric (symm) noise experiments, we flipped a por-

tion of the labels by re-sampling each label uniformly from

the remaining classes, excluding the ground-truth class. In

asymmetric (asymm) noise experiments, we followed the

same label transition rule used by Patrini et al. [22]. For

CIFAR10, we mapped TRUCK→ AUTOMOBILE, BIRD

→ PLANE, DEER→ HORSE, and CAT↔ DOG. For CI-

FAR100, the noise flipped each class into the next, circu-

larly within super-classes.

For each noise type, we compared the methods under the

symmetric noise rates of ηsymm ∈ {0.2, 0.4, 0.6, 0.8} and

asymmetric noise rates of ηasymm ∈ {0.1, 0.2, 0.3, 0.4}.

Models For CIFAR10 and CIFAR100 experiments, we used

ResNet34. For Clothing1M, we used ResNet50 [8], pre-

trained on ImageNet.

Hyperparameters We used stochastic gradient descent

(SGD) with momentum of 0.9, weight decay of 10−4. For

experiments with CIFAR10 and CIFAR100, batch size is set

to 128. Moreover, JNPL trains CNN for 1000 epochs with

initial learning rate of 10−2, and decay by a factor of 10 at

800 epochs. For pseudo labeling, initial learning rate is 0.1,

decayed by a factor of 10 at 192, 288 epochs (480 epochs

total). For experiments with Clothing1M, batch size is set to

64, and JNPL trains CNN for 40 epochs with initial learning

rate of 10−3, and decay by a factor of 10 at 30 epochs. For

pseudo labeling, initial learning rate is 10−3, decayed by a

factor of 10 at 10 epochs (15 epochs total).

For CIFAR100, we adopt the technique NLNL proposed

for generalization to the number of classes in training data:

providing multi y to each data. We provide 110 y to each

data in order to match the training speed to when training

with CIFAR10 [12].

6.2. Results

Table 1 shows the results of our method and other base-

line methods in various noise environment and two datasets.

Our proposed method outperformed all other comparable

baseline methods in overall noise types and ratios. The re-

sult shows other baseline methods achieve comparable re-

sults in the less-noisy environment, but the performance

decreases drastically as the noise ratio increases, which is

even more visible at CIFAR100, which is the harder case

for noisy data classification. Our method shows a distinct

improvement in this situation compared to all other meth-

ods. It was shown in Section 5 our method is robust to

the amount of noise mixed in training data, regardless of

the type of noises. Table 1 shows a similar result that our

method achieves more distinct best accuracy as the noise

rate gets higher. This phenomenon is more emphasized for

CIFAR100. Our method outperforms as much as 6 to 7%

at both symm and asymm noises in this dataset. It is note-

worthy that our method achieved 7% higher state-of-the-art
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Datasets Model Methods
Symm Asymm

20 40 60 80 10 20 30 40

CIFAR10 ResNet34

CE 83.95 67.58 43.55 17.32 91.39 87.67 82.73 76.37

Co-teaching [6] 91.08 88.08 80.96 21.13 94.20 93.24 90.67 70.20

JoCoR [30] 91.84 88.15 59.20 20.72 93.13 91.19 89.01 83.61

NFL+RCE [18] 90.50 85.16 70.77 19.67 92.35 89.66 84.92 78.30

NCE+RCE [18] 90.36 84.57 74.09 26.71 91.89 90.13 85.80 78.49

NLNL [12] 94.23 92.43 88.32 - 94.57 93.35 91.80 89.86

Ours 93.53 91.89 88.45 35.65 94.22 93.45 92.47 90.72

CIFAR100 ResNet34

CE 57.32 45.64 24.30 8.06 65.12 62.12 52.77 44.55

Co-teaching [6] 69.56 62.81 51.12 10.25 72.52 67.46 61.50 52.86

JoCoR [30] 71.75 63.96 37.84 7.32 72.01 65.05 56.63 45.14

NFL+RCE [18] 58.70 42.76 24.77 10.57 63.70 56.45 46.96 37.52

NCE+RCE [18] 57.41 43.75 25.87 9.94 64.24 56.48 47.17 36.40

NLNL [12] 71.52 66.39 56.51 - 70.35 63.12 54.87 45.70

Ours 70.94 68.11 61.26 17.55 72.03 69.95 68.12 59.51

Table 1: Comparison with other baseline methods on CIFAR10, CIFAR100 mixed with various types and ratios of noise.

Best 2 accuracies are bold faced.

Method Test Accuracy

CE 69.21

Forward [21] 69.84

M-correction [1] 71.00

LIMIT [7] 71.39

Joint-Optim [26] 72.16

MetaCleaner [34] 72.5

MLNT [16] 73.47

PENCIL [32] 73.49

Ours 74.15

Table 2: Comparison on Clothing1M with other baseline

methods.

accuracy in the most difficult setting in Table 1, which is

100 class dataset mixed with 40% asymm noise. It is widely

known training in general is challenging as the number of

classes in the dataset increases. Furthermore, compared to

symm noise, asymm noise is the replica of noise that we can

actually make in real-life. Achieving such a high accuracy

in this setting implies that our method is more capable of

generalizing to training data and various types and ratios of

noise mixed within compared to other baseline methods.

It is shown that Co-teaching and JoCoR method [6, 30]

exceeds the performance compared to our method for some

cases. However, it should be noted that they assume prior

knowledge on important statistics about the dataset such as

the amount of noise. In reality, this assumption often leaves

the method impractical because the ratio of noise mixed in

training data is likely to be unknown. On the other hand,

our method does not assume any such prior knowledge

and therefore does not require extensive tuning of hyper-

parameters.

To demonstrate the generalization of our method JNPL

to real-world noisy data, we compose an experiment on

Clothing1M dataset (Table 2). We brought recent base-

line methods which conducted experiment on Clothing1M

for comparison. It shows our method achieves comparable

performance, outperforming other recent baseline methods.

This result clearly proves that JNPL can generalize to train-

ing data mixed with various types and ratios of noise, show-

ing the novelty of our method.

7. Conclusion

We propose Joint Negative and Positive Learning, the

next version of NLNL which is the novel single-step

pipeline for filtering noisy training data. Compared to 3-

step pipeline of NLNL, our method trains CNN with two-

loss functions (LNL+ + LPL+) in one step. They are de-

veloped from previous NL and PL loss functions to en-

hance convergence and training speed, resulting in better

filtering performance than NLNL. We demonstrated that

JNPL is stable and robust in various types and ratios of

noise mixed in training data. Our method achieves state-

of-the-art performance in noisy data classification utilizing

pseudo-labeling to our filtered training data, proving our

method’s excellent filtering ability without referring to any

prior knowledge.
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