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Abstract

Automated diagnosis using deep neural networks in

chest radiography can help radiologists detect life-

threatening diseases. However, existing methods only pro-

vide predictions without accurate explanations, undermin-

ing the trustworthiness of the diagnostic methods. Here, we

present XProtoNet, a globally and locally interpretable di-

agnosis framework for chest radiography. XProtoNet learns

representative patterns of each disease from X-ray images,

which are prototypes, and makes a diagnosis on a given X-

ray image based on the patterns. It predicts the area where

a sign of the disease is likely to appear and compares the

features in the predicted area with the prototypes. It can

provide a global explanation, the prototype, and a local

explanation, how the prototype contributes to the prediction

of a single image. Despite the constraint for interpretability,

XProtoNet achieves state-of-the-art classification perfor-

mance on the public NIH chest X-ray dataset.

1. Introduction

Chest radiography is the most widely used imaging
examination for diagnosing heart and other chest dis-
eases [13]. Detecting a disease through chest radiography is
a challenging task that requires professional knowledge and
careful observation. Various automated diagnostic methods
have been proposed to reduce the burden placed on radiol-
ogists and the likelihood of mistakes; methods using deep
neural networks (DNNs) have achieved especially high lev-
els of performance in recent decades [10, 12, 17, 23, 32].
However, the black-box characteristics of DNNs discourage
users from trusting DNN predictions [4, 22]. Since medical
decisions may have life-or-death consequences, medical-
diagnosis applications require not only high performance
but also a strong rationale for judgment. Although many
automated diagnostic methods have presented localization
as an explanation for prediction [12, 20, 23, 31, 32], this
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Figure 1. Our proposed framework, XProtoNet, learns prototypes
that are used to identify each disease. Given an input image,
XProtoNet compares the feature in the occurrence area of the input
image with the prototypes and thereby diagnoses diseases. Yellow
contours denote the learned prototypes.

provides only the region on which the network is focusing
within a given image, not the manner by which the network
makes a decision [26].

Interpretable models, unlike conventional neural net-
works, are designed to operate in a human-understandable
manner [26]. Case-based models learn discriminative fea-
tures of each class, which are referred to as prototypes,
and classify an input image by comparing its features with
the prototypes [3, 8, 16]. Such models provide two types
of interpretation: global and local explanations. A global
explanation is a class-representative feature that is shared
by multiple data points belonging to the same class [14,25].
A local explanation, by contrast, shows how the prediction
of a single input image is made. In other words, the global

15719



explanation finds the common characteristic by which the
model defines each class, while the local explanation finds
the reason that the model sorts a given input image into
a certain class. The global explanation can be likened to
the manner in which radiologists explain common signs of
diseases in X-ray images, whereas the local explanation can
be likened to the manner in which they diagnose individual
cases by examining the part of a given X-ray image that pro-
vides information about a certain disease. This suggests that
case-based models are suitable for building an interpretable
automated diagnosis system.

ProtoPNet [3], which motivates our work, defines a pro-
totype as a feature within a patch of a predefined size
obtained from training images, and compares a local area
in a given input image with the prototypes for classifica-
tion. Despite such constraint for interpretability, it achieves
performance comparable to that of conventional uninter-
pretable neural networks in fine-grained classification tasks.
However, with a patch of a predefined size, it is difficult
to reflect features that appear in a dynamic area, such as a
sign of disease in medical images. For example, to identify
cardiomegaly (enlargement of the heart), it is necessary to
look at the whole heart [24]; to identify nodule, it is nec-
essary to find an abnormal spot whose diameter is smaller
than a threshold [7]. Depending on the fixed size of the
patch, the prototypes may not sufficiently present the class-
representative feature or may even present a class-irrelevant
feature, leading to diagnostic failure. To address this prob-
lem, we introduce a method of training the prototypes to
present class-representative features within a dynamic area
(see the prototypes of each disease in Figure 1).

In this paper, we propose an interpretable automated
diagnosis framework, XProtoNet, that predicts an occur-
rence area where a sign of a given disease is likely to
appear and learns the disease-representative features of the
occurrence area as prototypes. The occurrence area is adap-
tively predicted for each disease, enabling the prototypes
to present discriminative features for diagnosis within the
adaptive area for the disease. Given a chest X-ray image,
XProtoNet diagnoses disease by comparing the features of
the image with the learned prototypes. As shown in Fig-
ure 1, it can provide both global explanations—the discrim-
inative features allowing the network to screen for a certain
disease—and local ones—e.g., a rationale for classifying a
single chest X-ray image. We evaluate our method on the
public NIH chest X-ray dataset [32], which provides 14
chest-disease labels and a limited number of bounding box
annotations. We also conduct further analysis of XProtoNet
with a prior condition to have specific features as proto-
types using the bounding box annotations. Despite strong
constraints to make the network interpretable, XProtoNet
achieves state-of-the-art diagnostic performance.

The main contributions of this paper can be summarized

as follows:

• We present, to the best of our knowledge, the first
interpretable model for diagnosis in chest radiography
that can provide both global and local explanations.

• We propose a novel method of learning disease-
representative features within a dynamic area, improv-
ing both interpretability and diagnostic performance.

• We demonstrate that our proposed framework outper-
forms other state-of-the-art methods on the public NIH
chest X-ray dataset.

2. Related Work

2.1. Automatic Chest Xray Analysis

A number of researchers have attempted to identify dis-
eases via chest radiography using DNNs. Wang et al. [32]
and Rajpurkar et al. [23] proposed the use of a conventional
convolutional neural network to localize disease through a
class activation map [34]. Taghanaki et al. [31] utilized a
variational online mask on a negligible region within the
image and predicted disease using the unmasked region.
Guan et al. [6] proposed a class-specific attention method
and Ma et al. [20] used cross-attention with two conven-
tional convolutional neural networks. Hermoza et al. [10]
used a feature pyramid network [18] and an additional de-
tection module to detect disease. Li et al. [17] proposed
a framework to simultaneously perform disease identifica-
tion and localization, exploiting a limited amount of addi-
tional supervision. Liu et al. [19], also utilizing additional
supervision, proposed a method to align chest X-ray im-
ages and learn discriminative features by contrasting posi-
tive and negative samples. Some of these approaches local-
ize the disease along with classification but cannot explain
the predictive process of how this localized part contributes
to model prediction. Herein, we aim to build a diagnostic
framework to explain the predictive process rather than sim-
ply localize the disease.

2.2. Interpretable Models

There have been various post-hoc attempts to explain
already-trained models [2, 15, 27, 28, 30], but some of them
provide inaccurate explanations [1, 29]. Additionally, they
only show the region where the network is looking within a
given image [26]. To address this problem, several models
have been proposed with structurally built-in interpretabil-
ity [3,8,16,21]. Since their prediction process itself is inter-
pretable, they require no additional effort to obtain interpre-
tation after training. A self-explaining neural network [21]
obtains both concepts that are crucial in classification and
the relevance of each concept separately through regulariza-
tion, then combines them to make a prediction. Case-based
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Figure 2. Overall architecture of XProtoNet. XProtoNet diagnoses diseases by comparing the features of an input image to the prototypes
of each disease.

interpretable models, mostly inspiring us, learn prototypes
that present the properties of the corresponding class and
identify the similarity of the features of a given input im-
age to the learned prototypes [3, 8, 16]. Li et al. [16] used
an encoder-decoder framework to extract features and vi-
sualize prototypes. Chen et al. [3] defined prototypes as
a local feature of the image and visualized the prototypes
by replacing them with the most similar patches of train-
ing data. Hase et al. [8] proposed training prototypes in a
hierarchical structure. These works targeted classification
tasks in general images, and there was no attempt to make
an interpretable automated diagnosis framework for chest
radiography. To this end, we propose an interpretable di-
agnosis model for chest radiography that learns disease-
representative features within a dynamic area.

3. XProtoNet

Figure 2 shows the overall architecture of our pro-
posed framework, XProtoNet: the feature extractor, proto-
type layer, and classification layer. We describe the diag-
nostic process of XProtoNet in Section 3.1, and explain in
Section 3.2 how to extract features within a dynamic area.
In Section 3.3, we describe the overall training scheme.

3.1. Diagnosis Process

XProtoNet compares a given input image to learned
disease-representative features to diagnose a disease. It has
a set of K learned prototypes Pc = {pc

k}
K
k=1

for each dis-
ease c, where the prototype p

c
k presents a discriminative

feature of disease c. Given an input image x, the feature ex-
tractor extracts the feature vector fpc

k
(x) for each prototype

p
c
k, and the prototype layer calculates a similarity score s

between fpc

k
(x) and p

c
k, which are D-dimensional vectors.

Similarity score s is calculated using cosine similarity as

s(x,pc
k) =

fpc

k
(x) · pc

k

‖fpc

k
(x)‖‖pc

k‖
. (1)

Diagnosis from chest radiography is a multi-label clas-
sification, which is a binary classification of each class. We
thus derive the prediction score of target disease c by con-
sidering only the prototypes of c, not the prototypes of the
non-target diseases, in the classification layer. The predic-
tion score is calculated from

p(yc|x) = σ





∑

p
c

k
∈Pc

wp
c

k
s (x,pc

k)



 , (2)

where wp
c

k
denotes the weight of pc

k and σ represents a sig-
moid activation function. Similarity score s indicates how
similar the feature of the input image is to each prototype,
and weight wp

c

k
indicates how important each prototype is

for the diagnosis. By this process, XProtoNet can diagnose
the disease based on the similarity between the correspond-
ing prototypes and the features of the input X-ray image.
After the training, prototype p

c
k is replaced with the most

similar feature vector fpc

k
from the training images. This en-

ables the prototypes to be visualized as human-interpretable
training images, without an additional network for decoding
the learned prototype vectors.

3.2. Extraction of Feature with Occurrence Map

When extracting feature vectors fpc

k
, XProtoNet consid-

ers two separate aspects of the input image: the patterns
within the image and the area on which to focus to iden-
tify a certain disease. Therefore, the feature extractor of
XProtoNet contains a feature module and an occurrence
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module for each one of the above-mentioned aspects. The
feature module extracts the feature map F (x) ∈ R

H×W×D,
the latent representations of the input image x, where H,
W, and D are the height, width, and dimension, respec-
tively. The occurrence module predicts the occurrence map
Mp

c

k
(x) ∈ R

H×W for each prototype p
c
k, which presents

where the corresponding prototype is likely to appear, that
is, the focus area. Both modules consist of 1 × 1 convolu-
tional layers. Using occurrence map Mp

c

k
(x), feature vector

fpc

k
(x) to be compared with prototype pc

k is obtained as fol-
lows:

fpc

k
(x) =

∑

u

Mp
c

k
,u(x)Fu(x), (3)

where u ∈ [0,H × W) denotes the spatial location of
Mp

c

k
(x) and F (x) (Figure 3(b)). The values of occurrence

map, which are in the range [0, 1], are used as the weights
when pooling the feature map F (x) so that the feature vec-
tor fpc

k
(x) represents a feature in the highly activated area

in the occurrence map.
By pooling the feature map with the occurrence map, a

class-representative feature is presented as a vector of a sin-
gle size, regardless of the size or shape of the area in which
the feature appears. During training, the occurrence area
is optimized to cover the area where disease-representative
features for each disease appear, and the prototypes become
disease-representative features in an adaptive area size. As
mentioned in Section 3.1, prototype p

c
k is replaced with the

most similar feature vector fpc

k
after training the feature ex-

tractor, thus the prototype can be visualized as the occur-
rence area of the images that the prototype vectors are re-
placed with.

Comparison with ProtoPNet. XProtoNet differs from
ProtoPNet [3] by being able to learn features within a dy-
namic area. In ProtoPNet, the prototypes are compared with
fixed-size feature patches from an input image (Figure 3(a)).
The spatial size of the prototype is r × r, which is smaller
than the feature map. At all spatial locations in feature map
F (x), a patch from F (x) of the same size as prototype p

c
k

is compared to the prototype; the maximum value of the
resulting similarity map becomes the final similarity score.
Since a fixed-size patch in the feature map is compared with
the prototypes, the prototypes can only learn representative
patterns within that patch. Thus, the size of the patch greatly
affects the classification performance. The prototypes may
learn an insufficient portion of the class-representative pat-
tern if the patch is not large enough, and class-irrelevant
features may be presented in the prototypes if the patch is
too large. The disease-representative pattern can appear in a
wide range of areas, so comparing it with a fixed-size patch
may limit the performance. By contrast, the feature vector in
XProtoNet represents the feature throughout the wide range
of area predicted by the network, and is not limited to a
fixed-size region (Figure 3(b)).
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Occurrence map
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score

MAX
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Figure 3. Comparison of how XProtoNet and ProtoPNet [3] ob-
tain the similarity of the features of an image with prototype p

c

k.
Whereas (a) ProtoPNet compares the feature patch from all spa-
tial locations of the feature map with the prototype and outputs the
maximum value as the similarity score, (b) XProtoNet makes one
feature vector fpc

k
with the occurrence map and compares it with

the prototype.

3.3. Training Scheme

There are four losses in training XProtoNet: classifica-
tion loss Lcls, cluster loss Lclst, separation loss Lsep, and oc-
currence loss Loccur.

Classification. To address the imbalance in the dataset,
a weighted balance loss is used for Lcls as in [20]:

Lc
cls =−

∑

i

1

|N c
pos|

(1− pci )
γyci log(p

c
i )

−
∑

i

1

|N c
neg|

(pci )
γ(1− yci )log(1− pci ),

(4)

where pci = p(yc|xi), the prediction score of the i-th sam-
ple xi, and γ is a parameter for balance. |N c

neg| and |N c
pos|

denote the number of negative (0) and positive (1) labels
on disease c, respectively. Further, yci ∈ {0, 1} denotes the
target label of xi on disease c.

Regularization for Interpretability. To allow p
c
k to

present the characteristics of disease c, the similarity be-
tween x and p

c
k should be large for a positive sample and

small for a negative sample. Similar to [3], we define clus-
ter loss Lclst to maximize the similarity for positive samples
and separation loss Lsep to minimize the similarity for neg-
ative samples:

Lc
clst = −yc max

p
c

k
∈Pc

s(x,pc
k),

Lc
sep = (1− yc) max

p
c

k
∈Pc

s(x,pc
k).

(5)
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As in Eq. 4, Lc
clst and Lc

sep are weighted with the number of
negative and positive samples when they are summed over
all diseases and samples.

Regularization for Occurrence Map. To obtain predic-
tion results with good interpretability, it is important to pre-
dict an appropriate occurrence map. Thus, we add two reg-
ularization terms to the training of the occurrence module.
As in general object localization [33], since an affine trans-
formation of an image does not change the relative location
of a sign of the disease, it should not affect the occurrence
map, either. We thus define the transformation loss Lc

trans for
disease c as

Lc
trans =

∑

p
c

k
∈Pc

‖A(Mp
c

k
(x))−Mp

c

k
(A(x))‖1, (6)

where A(·) denotes an affine transformation. We also add
L1 loss on the occurrence map to achieve locality of the
occurrence area. It makes the occurrence area as small as
possible to avoid covering more regions than necessary. The
occurrence loss Lc

occur is thus expressed as

Lc
occur = Lc

trans +
∑

p
c

k
∈Pc

‖Mp
c

k
(x)‖1. (7)

Overall Cost Function. All components of the loss are
summed over all diseases, so the total loss is expressed as

Ltotal = Lcls + λclstLclst + λsepLsep + λoccurLoccur, (8)

where λclst, λsep, and λoccur are hyperparameters for balanc-
ing the losses.

4. Experiments

4.1. Experimental Setup

Dataset. The public NIH chest X-ray dataset [32] con-
sists of 112,120 frontal-view X-ray images with 14 disease
labels from 30,805 unique patients. Experiments are con-
ducted with two kinds of data splitting. In most of the ex-
periments, we use an official split that sets aside 20% of the
total images for the test set. We use 70% for training and
10% for validation from the remaining images. In compar-
ison with recent methods using additional supervision (Ta-
ble 3) and analysis with a prior condition to have specific
prototypes (Section 4.5), we conduct a five-fold cross vali-
dation, similar to that in [17,19]. In the official test set, there
are 880 images with 984 labeled bounding boxes, provided
for only eight types of diseases. We separate the total data
into box-annotated and box-unannotated sets and conduct a
cross-validation, where each fold has 70% of each set for
training, 10% for validating, and 20% for testing. Note that
we do not use the bounding box annotation during training,
except for analysis with the prior condition. Patient over-
lap does not occur between the splits. We resize images to

512×512 and normalize them with ImageNet [5] mean and
standard deviation. We use data augmentation, by which im-
ages are rotated up to 10◦ and scaled up or down by 20% of
the image size, similar to that in [10].

Evaluation. We evaluate the diagnostic performance of
XProtoNet using the area under the receiver operating char-
acteristic curve (AUC) scores.

Experimental Details. We use ImageNet [5] pre-
trained conventional neural networks as a backbone (e.g.,
ResNet-50 [9] and DenseNet-121 [11]). The feature extrac-
tor consists of convolutional layers from the backbone net-
work, feature module, and occurrence module. The feature
and occurrence modules each consist of two 1× 1 convolu-
tional layers with ReLU activation between them. The oc-
currence module has an additional sigmoid activation func-
tion to rescale the occurrence value to [0, 1]. The weights of
the classification layer are initially set to 1 so that high simi-
larity scores with the prototypes would result in a high score
for the disease. K and D are set to 3 and 128, respectively.
The batch size is set to 32. We set λclst, λsep, and λoccur to
0.5. Balance parameter γ for Lclst is set to 2. We use random
resizing with ratios 0.75 and 0.875 as affine transformations
for Ltrans in Eq. 6.

We follow the training scheme of ProtoPNet [3]: 1) train-
ing the model, except for the convolutional layers from
the pretrained network and the classification layer, for five
epochs; 2) training the feature extractor and the prototype
layer until the mean AUC score of the validation set does
not improve for three consecutive epochs; 3) replacing the
prototypes with the nearest feature vector from the train-
ing data; and 4) training the classification layer. The train-
ing steps, except for the first step, are repeated until con-
vergence. To retain only supporting prototypes for each dis-
ease, prototypes with negative weights are pruned. More de-
tails are explained in the supplementary material.

Visualization. The occurrence maps are upsampled to
the input image size and normalized with the maximum
value for visualization. The prototypes are marked with
contours, which depict regions in which the occurrence val-
ues are greater than a factor of 0.3 of the maximum value in
the occurrence map.

4.2. Comparison with Baselines

Table 1 shows the comparison of the diagnostic per-
formance of XProtoNet with various baselines that use
different methods of comparison with the prototypes.
ResNet-50 [9] is used as the backbone. Baseline Patchr×r

refers to the method that follows ProtoPNet [3] with pro-
totypes of spatial size r × r, as in Figure 3(a); baseline
GAP refers to the method where the feature vector fpc

k
(x)

is obtained by global average pooling (GAP) of the feature
map F (x) without an occurrence map. The different per-
formances of the baselines Patchr×r show that the perfor-
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Table 1. AUC scores of XProtoNet and various baselines on chest X-ray dataset. The 14 diseases are Atelectasis, Cardiomegaly, Effusion,
Infiltration, Mass, Nodule, Pneumonia, Pneumothorax, Consolidation, Edema, Emphysema, Fibrosis, Pleural Thickening, and Hernia,
respectively. The name of each disease is shortened to the first four characters (e.g. Atelectasis to Atel). Pne1, Pne2, and P.T. denote
Pneumonia, Pneumothorax, and Pleural Thickening, respectively. The term “w/o Ltrans” denotes XProtoNet trained without Ltrans.

Methods Atel Card Effu Infi Mass Nodu Pne1 Pne2 Cons Edem Emph Fibr P.T. Hern Mean

Baseline Patch1×1 0.766 0.857 0.823 0.705 0.813 0.779 0.706 0.851 0.738 0.825 0.925 0.779 0.771 0.663 0.786
Baseline Patch3×3 0.767 0.853 0.826 0.706 0.813 0.786 0.705 0.861 0.737 0.827 0.927 0.782 0.776 0.714 0.792
Baseline Patch5×5 0.752 0.863 0.822 0.695 0.814 0.751 0.702 0.834 0.734 0.827 0.906 0.793 0.772 0.543 0.772
Baseline GAP 0.764 0.847 0.815 0.703 0.817 0.782 0.719 0.856 0.723 0.823 0.928 0.782 0.776 0.704 0.789
XProtoNet (Ours) 0.782 0.881 0.836 0.715 0.834 0.799 0.730 0.874 0.747 0.834 0.936 0.815 0.798 0.896 0.820

w/o Ltrans 0.777 0.875 0.833 0.703 0.828 0.795 0.726 0.871 0.747 0.832 0.934 0.806 0.796 0.892 0.815
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Figure 4. Comparison of the predictions between XProtoNet and the baseline Patch3×3 for (a) cardiomegaly and (b) nodule diagnoses. The
heatmaps are upsampled to the size of the input image. Yellow boxes and contours show the prototypes. Green boxes show the ground-truth
bounding boxes from the dataset. There is no bounding box in (a) because it is a negative sample.

mance varies greatly depending on the size of the patch. In
addition, the performance of baseline GAP is similar and
at times lower than that of baseline Patchr×r. By contrast,
because XProtoNet predicts the adaptive area to compare,
it achieves higher performance in all classes than the base-
lines: the mean AUC score of 0.820 is 3.5% higher than
the highest baseline Patchr×r mean AUC score, which is
0.792. Especially, the improvement in hernia is significant
(> 25%). This confirms that our proposed method of learn-
ing disease-representative features within a dynamic area is
effective for diagnosis of medical images. Moreover, Ltrans

is also helpful in improving the performance.

Figure 4 shows the comparison of the predictions be-
tween XProtoNet and the baseline Patch3×3 which shows
the best diagnostic performance among the baselines
Patchr×r. The cardiomegaly prototype of the baseline
presents only a portion of the heart, resulting in a high sim-
ilarity score (0.775) with the negative sample (Figure 4(a)).
By contrast, the prototype of XProtoNet presents almost the
whole area of the heart; this is more interpretable than the
baseline, and the similarity score between the two occur-
rence areas is low (-0.369). Note that the similarity score
takes a value in the range [−1, 1]. Given the positive sample
of nodule (Figure 4(b)), XProtoNet successfully detects the
small nodule with a high similarity score (0.936) to the pro-
totype, while the baseline fails. In addition, the occurrence
area corresponding to the nodule prototype of XProtoNet is

consistent with the ground-truth bounding box. This con-
firms that our proposed method shows more interpretable
visualizations of the prototypes and more accurate predic-
tions than the baseline.

4.3. Explanation with Prototypes

Figure 5 shows some examples of the global and lo-
cal explanations of XProtoNet. The global explanation of
XProtoNet in the diagnosis of mass can be interpreted as
follows: the prototypes of mass present an abnormal spot
as a major property of mass for XProtoNet; this agrees
with the actual sign of lung mass [7]. In terms of the lo-
cal explanation of the X-ray image (top left in Figure 5),
XProtoNet predicts that the prototypes of mass are likely to
appear in the large left areas of the image, which are con-
sistent with the ground-truth bounding box. XProtoNet out-
puts high similarity scores between these parts and the cor-
responding prototypes (0.996 and 0.993), resulting in a high
prediction score (0.957) for the mass. For the diagnosis on
the bottom left of Figure 5, XProtoNet identifies a small re-
gion on the right within the image as the occurrence area,
which is different from the first example but consistent with
the actual sign. This shows that XProtoNet can dynamically
predict the appropriate occurrence area.

To see whether the learned prototypes align with actual
signs of diseases, we find the image that is the most similar
to the prototype among the images annotated with bound-
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Figure 5. Examples of global and local explanations of chest X-rays by XProtoNet. The explanations on one or two input X-ray images are
shown with one or two prototypes that have the largest weight on each disease. Yellow contours denote the learned prototypes and green
boxes denote the ground truth bounding boxes from the dataset.

ing boxes. Note that those annotations are not used during
training. Figure 6 shows that the occurrence area in the im-
age is consistent with the locus of the actual sign of each
disease (green boxes). This shows that the prototypes have
been well-trained to present proper disease-representative
features.

4.4. Diagnostic Performance

We compare the diagnostic performance of XProtoNet
with recent automated diagnosis methods [6,10,20,32]. Ta-
ble 2 shows that XProtoNet achieves state-of-the-art perfor-
mance on both ResNet-50 [9] and DenseNet-121 [11] back-
bones while ensuring interpretability. In comparison with
recent methods implemented on ResNet-50, XProtoNet
achieves the best performance for 10 out of 14 diseases.
Note that Ma et al. [20] use two DenseNet-121 and
Hermoza et al. [10] use a feature pyramid network [18]
and DenseNet-121 as the backbone: these provide better
representation than a single DenseNet-121. Compared with
Guan et al. [6], who use a single DenseNet-121, the mean
AUC score is improved from 0.816 to 0.822.

We also compare the diagnostic performance of
XProtoNet to that of two recent automated diagnosis meth-
ods [17, 19] using bounding box supervision, which use
ResNet-50 [9] as the backbone. Table 3 shows the perfor-
mances based on a five-fold cross-validation. Despite hav-
ing no additional supervision, XProtoNet achieves the best

Atelectasis Cardiomegaly Effusion Infiltration

Mass Nodule Pneumonia Pneumothorax

Figure 6. X-ray images and occurrence maps that are the most
similar to the learned prototypes of each disease. The green boxes
are the ground-truth bounding boxes from the dataset.

performance for most diseases.

4.5. XProtoNet with Prior Condition

As XProtoNet provides predictions based on prototypes
that are exposed explicitly, we can instruct it to diagnose
using specific signs of diseases by forcing the prototypes
to present those signs. We conduct analysis with the prior
condition that the prototypes of XProtoNet should present
the features within the bounding box annotations.

XProtoNet is trained with both box-annotated and box-
unannotated data. We set both λclst and λsep to 1.5 for
the box-annotated data and both to 0.5 for the box-
unannotated data. To utilize the bounding box annotations
during training, we extract the feature vectors from the
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Table 2. AUC scores of XProtoNet and other methods on chest X-ray dataset. The * signifies that an additional conventional network is
used as a backbone.
Methods Atel Card Effu Infi Mass Nodu Pne1 Pne2 Cons Edem Emph Fibr P.T. Hern Mean

Backbone: ResNet-50
Wang et al. [32] 0.700 0.810 0.759 0.661 0.693 0.669 0.658 0.799 0.703 0.805 0.833 0.786 0.684 0.872 0.745
Guan et al. [6] 0.779 0.879 0.824 0.694 0.831 0.766 0.726 0.858 0.758 0.850 0.909 0.832 0.778 0.906 0.814
XProtoNet (Ours) 0.782 0.881 0.836 0.715 0.834 0.799 0.730 0.874 0.747 0.834 0.936 0.815 0.798 0.896 0.820

Backbone: DenseNet-121 / DenseNet-121+α*
Guan et al. [6] 0.781 0.883 0.831 0.697 0.830 0.764 0.725 0.866 0.758 0.853 0.911 0.826 0.780 0.918 0.816
Ma et al. [20]* 0.777 0.894 0.829 0.696 0.838 0.771 0.722 0.862 0.750 0.846 0.908 0.827 0.779 0.934 0.817
Hermoza et al. [10]* 0.775 0.881 0.831 0.695 0.826 0.789 0.741 0.879 0.747 0.846 0.936 0.833 0.793 0.917 0.821
XProtoNet (Ours) 0.780 0.887 0.835 0.710 0.831 0.804 0.734 0.871 0.747 0.840 0.941 0.815 0.799 0.909 0.822

Table 3. Comparison with methods that utilize additional bounding box annotations. AUC scores with a five-fold cross-validation performed
on the chest X-ray dataset are reported. Following the previous works, the results are rounded to two decimal digits. The BBox column
indicates whether bounding box annotation is used. Note that XProtoNet uses no additional supervision.

Methods BBox Atel Card Effu Infi Mass Nodu Pne1 Pne2 Cons Edem Emph Fibr P.T. Hern Mean

Li et al. [17] X 0.80 0.87 0.87 0.70 0.83 0.75 0.67 0.87 0.80 0.88 0.91 0.78 0.79 0.77 0.81
Liu et al. [19] X 0.79 0.87 0.88 0.69 0.81 0.73 0.75 0.89 0.79 0.91 0.93 0.80 0.80 0.92 0.83
XProtoNet (Ours) 0.83 0.91 0.89 0.72 0.87 0.82 0.76 0.90 0.80 0.90 0.94 0.82 0.82 0.92 0.85

feature maps within the bounding boxes as fbbox
p

c

k

(x) =
∑

u∈bbox Mp
c

k
,u(x)Fu(x), where bbox denotes the spa-

tial location inside the bounding box. We also change L1

loss on the occurrence map for the box-annotated data
to

∑

p
c

k
∈Pc

∑

u 6∈bbox Mp
c

k
,u(x) to suppress the area out-

side the bounding box from being activated in the occur-
rence map. To enable the prototypes to present the features
within the bounding boxes, the prototype vectors are re-
placed with their most similar feature vectors fbbox

p
c

k

from the
box-annotated data, instead of the feature vectors fpc

k
from

the box-unannotated data.
Figure 7 shows the learned prototypes of XProtoNet

trained with and without the prior condition. Owing to
the constraint, the prototypes of XProtoNet trained with
the prior condition present disease-representative features
within the bounding box annotations. Although this can be a
strong constraint for the model, there is no significant differ-
ence in the diagnostic performance: the mean AUC scores
over 14 diseases of XProtoNet trained with and without the
prior condition are 0.850 and 0.849, respectively. Therefore,
using the prior condition, we enable XProtoNet diagnoses
based on the specific features, thus rendering the system
more trustworthy.

5. Conclusion

XProtoNet is an automated diagnostic framework for
chest radiography that ensures human interpretability as
well as high performance. XProtoNet can provide not only
a local explanation for a given X-ray image but also a global
explanation for each disease, which is not provided by
other diagnostic methods. Despite the constraints imposed
by the interpretability requirement, it achieves state-of-the-
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Pneumonia PneumothoraxAtelectasis

Figure 7. Examples of the learned prototypes of XProtoNet trained
with and without the prior condition. Yellow contours denote the
learned prototypes and green boxes denote the ground truth bound-
ing boxes from the dataset.

art diagnostic performance by predicting the dynamic areas
where disease-representative features may be found.

With a post-hoc explanation such as localization, it is
difficult to understand how a model classifies an input im-
age. XProtoNet is one of only a very few attempts to design
an explicitly interpretable model. Further research on inter-
pretable systems using DNNs will therefore encourage the
trustworthiness of the automated diagnosis system.
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