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Abstract

Humans perceive and construct the surrounding world

as an arrangement of simple parametric models. In partic-

ular, man-made environments commonly consist of volumet-

ric primitives such as cuboids or cylinders. Inferring these

primitives is an important step to attain high-level, abstract

scene descriptions. Previous approaches directly estimate

shape parameters from a 2D or 3D input, and are only able

to reproduce simple objects, yet unable to accurately parse

more complex 3D scenes. In contrast, we propose a robust

estimator for primitive fitting, which can meaningfully ab-

stract real-world environments using cuboids. A RANSAC

estimator guided by a neural network fits these primitives

to 3D features, such as a depth map. We condition the net-

work on previously detected parts of the scene, thus parsing

it one-by-one. To obtain 3D features from a single RGB im-

age, we additionally optimise a feature extraction CNN in

an end-to-end manner. However, naively minimising point-

to-primitive distances leads to large or spurious cuboids

occluding parts of the scene behind. We thus propose an

occlusion-aware distance metric correctly handling opaque

scenes. The proposed algorithm does not require labour-

intensive labels, such as cuboid annotations, for training.

Results on the challenging NYU Depth v2 dataset demon-

strate that the proposed algorithm successfully abstracts

cluttered real-world 3D scene layouts.

1. Introduction

Humans tend to create using simple geometric forms.

For instance, a house is made from bricks and squared

timber, and a book is a cuboidal assembly of rectangles.

Consequently, it appears that humans also visually abstract

environments by decomposing them into arrangements of

cuboids, cylinders, ellipsoids and other simple volumetric

primitives [5]. Such an abstraction of the 3D world is also

very useful for machines with visual perception. Scene rep-

resentation based on geometric shape primitives has been

an active topic since the very beginning of Computer Vi-

sion. In 1963, Blocks World [50] from Larry Roberts was

one of the earliest approaches for qualitative 3D shape re-

covery from 2D images using generic shape primitives. In

(a) Input images

(b) Recovered superquadrics [45]

(c) Recovered cuboids (ours)

Figure 1: Primitive-based Scene Abstractions: We parse

images of real-world scenes (a) in order to generate abstrac-

tions of their 3D structure using cuboids (c). Our method is

capable of capturing scene structure more accurately than

previous work [45] based on superquadrics (b).

recent years, with rapid advances in the field of deep learn-

ing, high-quality 3D reconstruction from single images has

become feasible. Most approaches recover 3D informa-

tion such as depth [13] and meshes [56] from RGB im-

ages. Fewer works consider more parsimonious 3D shape

descriptions such as cuboids [54] or superquadrics [45, 44].

These 3D shape parsers work well for isolated objects, but

do not generalise to complex real-world scenes (cf. Fig. 1).

Robust model fitting algorithms such as RANSAC [14]

and its many derivatives [2, 9, 47] have been used to fit

13070



low-dimensional parametric models, such as plane homo-

graphies, fundamental matrices or geometric primitives, to

real-world noisy data. Trainable variants of RANSAC [6, 7,

28] use a neural network to predict sampling weights from

data. They require fewer samples and are more accurate.

Leveraging advances in the fields of single image 3D re-

construction and robust multi-model fitting, we present a

novel approach for robustly parsing real-world scenes using

3D shape primitives, such as cuboids. A trainable RANSAC

estimator fits these primitives to 3D features, such as a depth

map. We build upon the estimator proposed in [28], and ex-

tend it by predicting multiple sets of RANSAC sampling

weights concurrently. This enables our method to distin-

guish between different structures in a scene more easily.

We obtain 3D features from a single RGB image using a

CNN, and show how to optimise this CNN in an end-to-

end manner. Our training objective is based on geometrical

consistency with readily available 3D sensory data.

During primitive fitting, a naive maximisation of inlier

counts considering point-to-primitive distances causes the

algorithm to detect few but excessively large models. We

argue that this is due to parts of a primitive surface correctly

representing some parts of a scene, while other parts of the

same primitive wrongly occlude other parts of the scene.

Thus, points should not be assigned to primitive surfaces

which cannot be seen by the camera due to occlusion or

self-occlusion. We therefore propose an occlusion-aware

distance and a corresponding occlusion-aware inlier count.

As no closed-form solution exists to calculate cuboid pa-

rameters, we infer them by numerical optimisation. How-

ever, backpropagation through this optimisation is numeri-

cally unstable and computationally costly. We therefore an-

alytically derive the gradient of primitive parameters w.r.t.

the features used to compute them. Our gradient compu-

tation allows for end-to-end training without backpropaga-

tion through the minimal solver itself. We demonstrate the

efficacy of our method on the challenging real-world NYU

Depth v2 dataset [52].

In summary, our contributions1 are as follows:

• A 3D scene parser which can process more complex

real-word scenes than previous works on 3D scene ab-

straction.

• An occlusion-aware distance metric for opaque scenes.

• Analytical derivation of the gradient of cuboids w.r.t.

input features, in order to circumvent infeasible back-

propagation through our minimal solver, thus enabling

end-to-end training.

• Our method does not require labour-intensive labels,

such as cuboid or object annotations, and can be

trained on readily available sensory data instead.

1Source code is available at: https://github.com/fkluger/

cuboids_revisited

2. Related Work

Monocular Depth Estimation. Monocular depth estima-

tion has become feasible with advances in deep learning and

progressed steadily over recent years. Instead of fully super-

vised learning [13, 35, 30], later works approach the prob-

lem via semi-supervised learning [29], unsupervised learn-

ing [15, 38, 18, 58] or self-supervised learning [19, 36].

These methods predict dense 3D information instead of the

more parsimonious primitive based descriptions we are in-

terested in. However, we show how to leverage monocular

depth estimation to this end.

Single Image 3D Reconstruction. The authors of [33,

32] propose methods for piece-wise planar reconstruction

from single images. Older works [10] rely on geometric

image features, such as vanishing points [26] or horizon

lines [27]. Like depth estimation, however, these methods

can only describe the visible surfaces of a scene and do not

capture volumetric characteristics. Although some meth-

ods [43, 20, 56, 39] perform 3D mesh reconstruction, they

demonstrably only work on images of isolated single ob-

jects. The authors of [41, 59, 17] present mesh reconstruc-

tions for multiple objects in real-world scenarios. However,

the latter methods require ground-truth object meshes and

object class labels for training, which are both costly to ob-

tain. Our approach, on the other hand, requires neither.

3D Bounding Box Regression. For predefined object

classes, 3D bounding box regression is a well investigated

topic in 3D object detection for RGB images [49, 12, 24,

40], RGB-D images [48], and 3D point clouds [51, 53].

These works not only detect bounding boxes but also clas-

sify objects. During training, target 3D boxes as well as cat-

egory labels are needed. In contrast, our proposed method

does not require such annotations.

Robust Multi-Model Fitting. Robust fitting of paramet-

ric models, for instance using RANSAC [14], is a key prob-

lem in Computer Vision. Several approaches [3, 4, 46, 1] fit

multiple instances of a model simultaneously by optimising

an energy-based functional. Moreover, the algorithms in

[3, 4, 37] approach the multi-class problem, i.e. when mod-

els of multiple types may fit the data. Sampling efficiency

is improved in [6, 7, 28, 47]. In this work, we extend [28]

for robustly parsing real-world scenes using 3D shape prim-

itives. Unlike [28], we not just learn the parameters of the

sampling weight from data, but train it conjointly with a

depth estimation network in an end-to-end manner.

3D Primitive Fitting. Although an old topic in Com-

puter Vision (cf. Blocks World [50]), 3D shape recovery

from 2D images using volumetric primitives is still con-

sidered non-trivial [21]. The methods of [57] and [22,

31] localise cuboids in images and RGB-D data, respec-

tively. While [22, 31] use the challenging NYU Depth v2

dataset [52], all three works require ground truth cuboids.
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Figure 2: Overview: Given observations X (RGB image), we predict 3D features Y (depth map) using a neural network with

parameters v. Conditioned on a state s, a second neural network with parameters w predicts sampling weights p(y|s;w) ∈ Q
for each feature y ∈ Y . Using these weights, a RANSAC-based estimator samples minimal sets of features, and generates

primitive (cuboid) hypotheses H. It selects the best hypothesis ĥ ∈ H and appends it to the set of previously recovered

primitives M. We update the state s based on M and repeat the process in order to recover all primitives step-by-step.

The works most related to ours are [54, 45, 44]. In [54],

the authors propose a method for 3D shape abstraction us-

ing cuboids. It is based on a neural network, which directly

regresses cuboid parameters from either an RGB image or

a 3D input, and is trained in an unsupervised fashion. Sim-

ilarly, the authors of [45] decompose objects into sets of

superquadric surfaces. They extend this to hierarchical sets

of superquadrics in [44]. However, these approaches are

only evaluated on relatively simple shapes, such as those

in ShapeNet [8]. While they yield good results for such

objects, they are unable to predict reasonable primitive de-

compositions for complex real-world scenes (cf. Sec. 4).

3. Method

We formulate the problem of abstracting a target scene Z
by fitting a set of shape primitives M to features Y , which

may either be provided directly, or extracted from observa-

tions X . Here, Z represents the ground truth depth or its

corresponding point cloud, and X is an RGB image of the

scene aligned with Z . Features Y are either equal to Z , or

estimated via a function Y = fv(X ) if Z is unknown. We

implement function fv as a neural network with parameters

v. Each primitive h ∈ M is a cuboid with variable size and

pose. See Fig. 2 for an example of X , Y and M.

For primitive fitting, we build upon the robust multi-

model estimator of Kluger et al. [28]. This estimator pre-

dicts sampling weights p = fw(Y, s) from observations Y
and a state s via a neural network with parameters w, which

are learnt from data. It samples minimal sets of features

from Y according to p, and fits primitive hypotheses H via

a minimal solver fh. From these hypotheses, it selects the

best primitive ĥ ∈ H according to an inlier criterion, and

adds it to the current set of primitives M. Based on M, it

then updates the state s and predicts new sampling weights

p in order to sample and select the next primitive. This pro-

cess, as visualised in Fig. 2, is repeated until all primitives

have been found one by one. Unlike [28], we learn the pa-

rameters of the sampling weight predictor fw jointly with

the feature extractor fv in an end-to-end manner. We show

how to achieve this despite backpropagation through the

minimal solver fh being numerically unstable and computa-

tionally costly. In addition, we generalise fw so that it pre-

dicts multiple sets of sampling weights Q = {p1, . . . ,pQ}
concurrently, which enables it to distinguish between differ-

ent primitive instances more effectively.

The scenes we are dealing with in this work have been

captured with an RGB-D camera. We therefore do not have

full 3D shapes available as ground-truth for the scenes. In-

stead, we only have 2.5D information, i.e. 3D information

for visible parts of the scene, and no information about the

occluded parts. If not taken into account, this fact can lead

to spurious, oversized or ill-fitting primitives being selected,

as visualised in Fig. 3. For this reason we present occlusion-

aware distance and inlier metrics.

3.1. Feature Extraction

In order to fit 3D shapes such as cuboids to an RGB im-

age X , we have to extract 3D features Y from X . We em-

ploy a depth estimator fv which gives us the desired fea-

tures Y = fv(X ) in form of a pixel-wise depth map. The

depth estimator is realised as a convolutional neural net-

work with parameters v. We then convert Y into a point

cloud via backprojection using known camera intrinsics K.

3.2. Cuboid Parametrisation

A generic cuboid is described by its shape (ax, ay, az)
and pose (R, t). The shape corresponds to its width, height

and length in a cuboid-centric coordinate system, while its

pose translates the latter into a world coordinate system.

We represent the rotation R in angle-axis notation r = θu.

Each cuboid thus has nine degrees of freedom, and we re-

quire minimal sets of C = 9 points to estimate them.

3.2.1 Point-to-Cuboid Distance

When computing the distance between point y = (x, y, z)T

and cuboid h = (ax, ay, az,R, t), we first translate y into

the cuboid-centric coordinate frame: ŷ = R(y − t) . We

then compute its squared distance to the cuboid surface:

d(h,y)2 = max(min(ax − |x̂|, ay − |ŷ|, az − |ẑ|), 0)2+

max(|x̂| − ax, 0)
2+max(|ŷ| − ay, 0)

2+max(|ẑ| − az, 0)
2.
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Similarly, we can compute the distances to any of the six

individual sides of the cuboid. Defining, for example, the

plane orthogonal to the x-axis in its positive direction as the

first side, we define the distance of a point y to it as:

dP
1(h,y)

2 =(x̂− ax)
2+ (1)

max(|ŷ| − ay, 0)
2 +max(|ẑ| − az, 0)

2 .

Distances dP
2, . . . , d

P
6 to the other sides of the cuboid are cal-

culated accordingly.

3.2.2 Occlusion Handling

When dealing with 2.5D data which only represents visible

parts of the scene, simply using minimal point-to-cuboid

distances as in Sec. 3.2.1 is not adequate. Fig. 3 gives an

intuitive example: The mean distance of all points to their

closest surface of either cuboid A or B is the same. How-

ever, the visible surfaces of cuboid B occlude all points

while not representing any structure present in the scene.

Cuboid A, on the other hand, does not occlude any points,

and its visible surfaces fit very well to an existing struc-

ture. Although other parts of its surface do not represent

any structure either, they are self-occluded and thus of no

interest. So, cuboid A is a much better fit than cuboid B.

Figure 3: Occlusion: Given are a point cloud (✕), two

cuboids (A and B) and a camera observing the scene.

Cuboid A is a better fit since it does not occlude any points.

Occlusion Detection. In order to detect whether a cuboid

h occludes a point y from the perspective of a camera with

centre c, we must first translate c into the cuboid-centric

coordinate frame. We parametrise the line of sight for a

point y and determine its intersections with each of the six

cuboid planes. Via this procedure we define the following

indicator function:

χo(h,y, i) =

{

1 if i-th plane of h occludes y,

0 else , with i ∈ {1, . . . , 6} .
(2)

Occlusion-Aware Point-to-Cuboid Distance. In order to

correctly evaluate scenarios with occlusions, we propose an

occlusion-aware point-to-cuboid distance: Given a point

y and set of cuboids M = {h1, . . . ,h|M|}, we compute

its distance to the most distant occluding surface. In other

words, we need to know the minimal distance y would have

to travel in order to become visible:

do(M,y) = max
h∈M, i∈{1,...,6}

(

χo(h,y, i) · d
P
i (h,y)

)

.

Figure 4: Sampling Weights: For each image, we predict

multiple sets of sampling weights Q = {p1, . . . ,pQ} and

corresponding selection probabilities q = [q1, . . . , qQ]. In

this example, the first three sampling weight sets roughly

cover distinct parts of the scene. The fourth set p4 does not,

but also has the lowest selection probability.

If y is not occluded at all, this distance naturally becomes

zero. We hence define the occlusion-aware distance of a

point to a set of cuboids as:

doa(M,y) = max

(

min
h∈M

d(h,y), do(M,y)

)

. (3)

3.3. Robust Fitting

We seek to robustly fit a set of cuboids M =
{h1, . . . ,h|M|} to the possibly noisy 3D features y ∈ Y .

To this end, we build upon the robust multi-model fitting

approach of Kluger et al. [28]:

1. We predict sets of sampling weights p from data Y
using a neural network fw.

2. Using these sampling weights, a RANSAC-based [14]

estimator generates a cuboid instance h, which we ap-

pend to M.

3. Conditioned on M, we update the sampling weights p

via fw and generate the next cuboid instance.

We repeat these steps multiple times, until all cuboids have

been recovered one-by-one. Fig. 2 gives an overview of

the algorithm, while Fig. 5 depicts the sampling and fitting

stage in more detail.

3.3.1 Sampling

In [28], one set of sampling weights p(Y |M) is predicted

at each step. Optimally, these weights should highlight a

single coherent structure in Y and suppress the rest, in or-

der to maximise the likelihood of sampling an all-inlier set

of features. However, we often have multiple important

structures present in a scene. Which structure to empha-

sise and sample first may therefore be ambiguous, and the

approach proposed in [28] struggles with primitive fitting

for that reason. In order to deal with this, we allow the

network to instead predict several sets of sampling weights

Q = {p1, . . . ,pQ} and corresponding selection probabili-

ties q(Y |M) ∈ R
Q, as shown in Fig. 4. This results in a

two-step sampling procedure: First, we randomly select one

of the sampling weight sets p ∈ Q according to q. Then we

sample a minimal set of features according to the selected

sampling weights p in order to generate a cuboid hypoth-

esis. This allows the neural network (Q,q) = fw(Y|M)
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Figure 5: Sampling and Fitting: (1) We sample a min-

imal set of features S ⊂ Y using sampling weights Q
(Sec. 3.3.1). (2) Within minimal solver fh (Sec. 3.3.2), we

initialise cuboid parameters h0. (3) We optimise these pa-

rameters iteratively using Eq. 4, resulting in a hypothesis h.

(4) We compute multiple cuboid hypotheses concurrently,

resulting in a set of hypotheses H. (5) Using occlusion-

aware inlier counting (Sec. 3.3.3), we select the best hy-

pothesis ĥ and (6) add it to the set of recovered cuboids M.

to highlight multiple structures at once, without them inter-

fering with each other. Ideally, q contains non-zero values

for all sampling weight sets highlighting valid structures,

and zero values otherwise. At worst, it would degenerate to

q = ei, with i ∈ {1, . . . , Q}, effectively setting Q = 1. We

avoid this via regularisation during training (cf. Sec. 3.4).

3.3.2 Fitting

Given a minimal set of sampled features S =
{y1, . . . ,yC} ⊂ Y , we want to find parameters of a cuboid

h = fh(S) such that it fits these features optimally. We

define the minimal solver fh via this objective function:

F (y,h) = d(h,y)2 · (ax + ay + az) . (4)

As the size of the cuboid may be ambiguous when dealing

with 2.5D data, we add the regularisation term (ax+ay+az)
in order to favour smaller cuboids. Unfortunately, no closed

form solution for h ∈ argminh ‖F (S,h)‖1 exists. Start-

ing from an initial solution2 h0, we therefore approximate

it via an iterative numerical optimisation method such as

L-BFGS [34] or Adam [25].

3.3.3 Occlusion-Aware Inlier Counting

In order to select the cuboid hypothesis h ∈ H which fits

best to features Y , given a set of existing cuboids M, we

need to define an inlier function fI(y,h). We could naively

take fI(y,h) ∈ [0, 1], with fI(y,h) = 1 if feature y is well

represented by cuboid h, and fI(y,h) = 0 otherwise. How-

ever, as described in Sec. 3.2.2, we want to avoid cuboids

which create occlusions. Hence, we define an occlusion-

aware inlier function fOAI(y,M) ∈ [−1, 1] with the ad-

ditional property fOAI(y,M) = −1 if y is occluded by

2Please refer to the supplementary (Sec. A.5) for details.

cuboids in M, but only if it is occluded by cuboid sides to

which it is not also an inlier. We define:

fIO(y,h, i) = fI(y,h, i)− χo(y,h, i) · (1− fI(y,h, i)) ,

to determine whether y is an inlier to the i-th side of cuboid

h (fIO > 0), occluded by it (fIO < 0), or a regular outlier

(fIO = 0). If y is occluded by any cuboid side in M, it must

be marked as occluded. Otherwise it should be marked as

an inlier to its closest cuboid, or as an outlier:

fOAI(y,M) =







min
h,i

fIO(y,h, i) if (·) < 0 ,

max
h,i

fIO(y,h, i) else ,
(5)

with h ∈ M and i ∈ {1, . . . , 6}, i.e. minimising or max-

imising over all sides of all cuboids. This implies that fea-

tures which are occluded indeed reduce the inlier count Ic,

which we use to determine which cuboid hypothesis h shall

be added to our current set of cuboids M:

Ic(Y,M∪ {h}) =
∑

y∈Y

fOAI(y,M∪ {h}) . (6)

3.4. Training

As in [28], we want to optimise parameters w of the

sampling weight estimation network in order to increase the

likelihood of sampling all-inlier minimal sets of features. In

order to achieve this, we minimise the expectation of a task

loss ℓ(h,M) which measures how well the resulting cuboid

h and previously determined cuboids M fit to a scene:

L(w) = EH∼p(H|M;w)

[

ℓ(ĥ,M)
]

, (7)

with ĥ ∈ H being the cuboid hypothesis selected according

to the inlier criterion:

ĥ ∈ argmax
h∈H

Ic(Y,M∪ {h}) . (8)

However, as described by Brachmann et al. [6, 7], this dis-

crete hypothesis selection prohibits also learning parame-

ters v of the feature extraction network. We must therefore

turn hypothesis selection into a probabilistic action:

ĥ ∼ p(ĥ|H,M) =
exp Ic(Y,M∪ {ĥ})

∑

h∈H exp Ic(Y,M∪ {h})
. (9)

This allows us to compute the expected loss over cuboid

hypotheses H, which is differentiable:

L(v) = Eh∼p(h|H,M) [ℓ(h,M)] . (10)

Combining Eq. 7 and Eq. 10, we can train both networks

together end-to-end:

L(v,w) = EH∼p(H|M;w)Eh∼p(h|H,M) [ℓ(h,M)] . (11)

Computing the exact expectation in Eq. 7 is intractable, so

we approximate its gradient by drawing K samples of H:

∂L(v,w)

∂(v,w)
≈

1

K

K
∑

k=1

[

Eh [ℓ]
∂ log p(Hk;w)

∂(v,w)
+

∂Eh[ℓ]]

∂(v,w)

]

.

(12)
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Differentiable Solver. The above requires that the gradi-

ent for a particular 3D feature can be computed w.r.t. a re-

sulting cuboid. However, cuboid parameters are computed

via iterative numerical optimisation (cf. Sec. 3.3.2). Track-

ing the operations through this step results in inaccurate gra-

dients and prohibitively high computational costs. In the

following, we describe a solution which does not necessitate

tracking the computations. Instead, it relies on the implicit

function theorem to directly compute the desired gradients.

Given a set of features S = {y1, . . . ,yC} and an opti-

mally fit cuboid h, we seek to compute the partial deriva-

tives ∂h/∂S . From Eq. 4, we have F (S,h) = 0. Via the

implicit function theorem, we can therefore obtain:

∂h

∂S
= −

(

∂F

∂h
(S,h)

)−1

·
∂F

∂S
(S,h) . (13)

In practice, the partial derivatives by the size parameters

∂F/∂a{x,y,z} are mostly zero or close to zero. Inversion of

the Jacobian ∂F
∂h

(S,h) is not possible or numerically unsta-

ble in this case. We thus approximate it by masking out the

possibly zero derivatives and using the pseudo-inverse:

∂h

∂S
≈ −

(

∂F

∂(R, t)
(S,h)

)+

·
∂F

∂S
(S,h) . (14)

This allows us to perform end-to-end backpropagation even

without a differentiable minimal solver h = fh(S).

Task Loss. During training, we aim to maximise the ex-

pected inlier counts of the sampled cuboids, i.e. we min-

imise the following loss:

ℓ(h,M) = −Ic(Y,M∪ {h}) (15)

In order enable gradient computation according to Eq. 12, ℓ
must also be differentiable. Instead of a hard threshold, we

thus use a soft inlier measure derived from [28]:

fI(y,h, i) = 1− σ(β(
1

τ
dP
i (y,h)

2 − 1)) , (16)

with softness parameter β, inlier threshold τ , and σ(·) be-

ing the sigmoid function. This loss is based on geometrical

consistency only, and does not need any additional labels.

Regularisation. In order to prevent mode collapse of the

sampling weights Q (cf. Sec. 3.3.1), we apply a regularisa-

tion term during training. We minimise the correlation coef-

ficients between individual sets of sampling weights p ∈ Q:

ℓcorr(Q) =
∑

pi,pj∈Q,
i 6=j

cov(pi,pj)

σpi
, σpj

, (17)

with covariances cov(·, ·) and standard deviations σ. For

the same reason, we also maximise the entropy of selection

probabilities q, i.e. ℓentropy = −H(q).

4. Experiments

Dataset. We provide qualitative and quantitative results

on the NYU Depth v2 dataset [52]. It contains 1449 images

of indoor scenes with corresponding ground truth depth

recorded with a Kinect camera. We use the same dataset

split as [30]: 654 images for testing and 795 images for

training, of which we reserved 195 for validation.

Implementation Details. For experiments with RGB im-

age input, we use the BTS [30] depth estimator pre-trained

on NYU as our feature extraction network. BTS achieves

state-of-the-art results on NYU with a publicly available

implementation3, and is thus a sensible choice. We imple-

mented the sample weight estimator as a variant of the fully

convolutional neural network used in [7]. We pretrain the

sample weight estimation network with ground truth depth

as input for 20 epochs. This is also the network we use for

experiments with depth input. We then continue training

both networks end-to-end with RGB input for another 25
epochs. For cuboid fitting (cf. Sec. 3.3.2), we implement

the minimal solver by applying the Adam [25] optimiser to

perform gradient descent w.r.t. cuboid parameters for 50 it-

erations. We provide additional implementation details and

a listing of hyperparameters in the supplementary.

Baselines. While multiple works in the field of primi-

tive based 3D shape parsing have been published in recent

years, not all of them can be used for comparison. We

cannot use methods which require ground truth shape an-

notations [42, 60] or watertight meshes [16, 11] for train-

ing, as the data we are concerned with does not provide

these. Unfortunately, we also cannot compare against [44],

as they also evaluated on different data and have not yet

provided their source code. For the cuboid based approach

of [54], source code is available4. However, following the

instructions they provided, we were unable to obtain sen-

sible results on NYU. The neural network of [54] appears

to degenerate when trained on NYU, predicting similar un-

reasonable cuboid configuration for all scenes (cf. qualita-

tive results in the supplementary material). We therefore

did not include it in our evaluation. On the other hand, we

were able to train the superquadric-based approach of [45]

(SQ-Parsing) on NYU using their provided source code5.

Since SQ-Parsing is designed for meshes as input, we pre-

process the ground truth depth point clouds of NYU by ap-

plying Poisson surface reconstruction [23]. We also com-

pare against a variant of [45] which directly operates on

RGB images (SQ-Parsing RGB). We further compare our

method against a variant of Sequential RANSAC [55] from

depth input. Lastly, we evaluate the results of SQ-Parsing

when applied to the prediction of the same depth estimation

3https://github.com/cogaplex-bts/bts
4https://github.com/shubhtuls/volumetricPrimitives
5https://github.com/paschalidoud/superquadric parsing
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occlusion-aware L2-distance L2

AUC@50 cm AUC@20 cm AUC@10 cm AUC@5 cm mean (cm) mean (cm)

RGB input

Ours 57.0% ±0.20 33.1% ±0.17 18.9% ±0.09 10.0% ±0.06 34.5 ±0.24 30.1 ±0.34

SQ-Parsing [45] + BTS [30] 30.1% 11.6% 4.3% 1.1% 65.9 33.9
SQ-Parsing (RGB) [45] 19.4% 6.3% 1.9% 0.4% 87.4 42.4

depth input

Ours 77.2% ±0.08 62.7% ±0.07 49.1% ±0.12 34.3% ±0.14 20.8 ±0.51 17.9 ±0.50

Sequential RANSAC [55] 59.9% ±0.17 42.8% ±0.09 30.1% ±0.84 18.8% ±0.10 37.9 ±0.74 32.7 ±0.72

SQ-Parsing [45] 50.3% 22.4% 8.8% 2.5% 34.7 20.9

Table 1: Quantitative Results on NYU: We evaluate on NYU Depth v2 [52], for both RGB and depth inputs. We compare

our method against variants of SQ-Parsing [45] and Sequential RANSAC [55]. We present AUC values (higher is better) for

various upper bounds of the occlusion-aware (OA) L2 distance (cf. Sec. 3.2.2). We also report mean OA-L2 and regular L2

distances (lower is better). See Sec. 4 for details.

network (BTS [30]) which we employ for our method. We

used the same parameters as [45] for these experiments.

Metrics. Previous works [45, 44] evaluated their results

using Chamfer distance and volumetric IoU. These works,

however, deal with full 3D shapes of watertight objects,

while we fit 3D primitives to scenes where only a 2.5D

ground truth is available. As we explain in Sec. 3.2.2, we

therefore evaluate using the occlusion-aware distance met-

ric, OA-L2 for short, instead. We calculate the occlusion-

aware distances of all ground-truth points to the recovered

primitives per scene. Using these distances, we then com-

pute the relative area under the recall curve (AUC, in per-

cent) for multiple upper bounds: 50 cm, 20 cm, 10 cm,

5 cm. The AUC values are less influenced by outliers than

the mean distance, and gauge how many points are covered

by the primitives within the upper bound. In addition, we

also report mean OA-L2 as well as the mean of the regular

L2 distance. As our method is random sampling based, we

report the mean and variance over five runs for all metrics.

Qualitative Results. We present qualitative examples

from the NYU dataset comparing the results of [45] against

our method. In Fig. 6, rows 3-5, we show renderings of the

cuboids predicted by by our method (RGB input in row 1)

for scenes from the NYU test set. Row three is rendered

from the same perspective as the original image, while row

four and five show top and side views, respectively. As

these examples show, our method is able to recover cuboids

for key elements of the scene, such as walls, floors, cup-

boards, counters or tables. It often recovers cuboids cov-

ering larger parts of the image first. It does not always

succeed in capturing volumetric properties of all objects,

such as the fridge in column five, which is represented by

two almost planar cuboids instead. In addition, spurious,

usually very thin cuboids appear occasionally, such as the

cuboid intersecting the table in the last column. For com-

parison, we show renderings of superquadrics obtained with

SQ-Parsing + BTS – which is our best performing competi-

OA-L2

AUC@20 AUC@10 AUC@5 mean (cm)

Q = 1 40.2% 29.7% 19.8% 45.3
Q = 2 57.5% 43.6% 29.7% 22.3
Q = 4 62.7% 49.1% 34.3% 20.8

Table 2: Ablation Study: We evaluate our approach with

varying numbers Q of sampling weight sets with depth in-

put. We present AUC values for various upper bounds of

the OA-L2 distance and the mean OA-L2 distance.

tor for RGB input – in row 2. Unlike our cuboid represen-

tations, these superquadrics bear little resemblance to the

original scene. Our method is thus able to abstract the de-

picted indoor scenes in a much more sensible way than [45].

Quantitative Evaluation. Table 1 gives quantitative re-

sults on the NYU Depth v2 [52] test set for both RGB and

depth inputs. For depth input, our method achieves signif-

icantly higher AUC values than Sequential RANSAC [55],

with margins between 15.5 and 19.9 percentage points. Se-

quential RANSAC outperforms SQ-Parsing on AUC, yet is

inferior w.r.t. the means. Our method also achieves sig-

nificantly higher AUC values than SQ-Parsing [45] across

the whole range, with margins between 26.9 and 40.3 per-

centage points. We present lower mean L2 and occlusion-

aware L2 distances as well, with improvements of 3.0 cm
(14.3%) and 13.9 cm (40.0%) respectively. For RGB input,

Tab. 1 shows that SQ-Parsing + BTS, i.e. the combination

of [45] for depth input with the monocular depth estimator

from [30], performs better than the RGB variant of [45].

This implies that the image based encoder network of [45]

is not able to extract 3D information from images as well

as [30] can. Our approach, however, also outperforms SQ-

Parsing + BTS by large margins, with AUC improvements

of 8.9 to 26.9 percentage points. We improve mean L2 and

OA-L2 distances by 4.0 cm (11.8%) and 31.5 cm (47.8%)

respectively. In summary, our method outperforms [45] on

NYU in all settings on all metrics by significant margins,

presenting a new state-of-the-art for this challenging task.
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(a) Input images

(b) Recovered cuboids, original view

(c) Recovered cuboids, top view

(d) Visualisation of the occlusion-aware distance (legend on the right, in metres) between the cuboids and the ground-truth depth.

(e) Recovered superquadrics [45], original view

Figure 6: Qualitative Results. First row: Input RGB images. Second and third rows: Cuboids obtained with our proposed

method (same views as the original images and top views, respectively). Colours convey the order in which the cuboids have

been selected: red, blue, green, purple, cyan, orange. Cuboids covering large parts of the image are often selected early.

Fourth row: OA-L2 distance (Sec. 3.2.2) between the cuboids and the ground-truth depth. Very large distances are due to

missing or occluding cuboids. Last row: Superquadrics obtained using [45]. These abstractions are very cluttered and hardly

represent the original scenes. Our algorithm infers abstractions that represent the original scenes more closely.

Ablation Study. To demonstrate the efficacy of predicting

multiple sets of sampling weights at once (cf. Sec. 3.3.1),

we trained our approach with varying numbers Q of sam-

pling weight sets. We evaluated these variants with depth

input and present the results in Tab. 2. Predicting multiple

sampling weight sets (Q = 4) performs significantly bet-

ter than predicting just one (Q = 1) or two (Q = 2) sets.

Please refer to the supplementary for an ablation study w.r.t.

our proposed occlusion-aware inlier counting.

5. Conclusion
We present a 3D scene parser which abstracts com-

plex real-world scenes into ensembles of simpler volumetric

primitives. It builds upon a learning-based robust estima-

tor, which we extend in order to recover cuboids from RGB

images. To this end, we propose an occlusion-aware dis-

tance metric which enables us to correctly handle opaque

scenes. We facilitate end-to-end training by circumventing

backpropagation through our minimal solver and deriving

the gradient of primitive parameters w.r.t. the input features

analytically. Our algorithm neither requires known ground

truth primitive parameters nor any other costly annotations.

It can thus be straight-forwardly applied to other datasets

which lack this information. Results on the challenging

real-world NYU Depth v2 dataset demonstrate that the pro-

posed method successfully parses and abstracts complex

and cluttered 3D scenes. In future work, we plan to address

common failure cases, i.e. planar and spurious cuboids, by

replacing the depth estimation with more expressive 3D fea-

tures and using matching data for training.

Acknowledgements. This work was supported by the

BMBF grant LeibnizAILab (01DD20003), by the DFG

grant COVMAP (RO 2497/12-2), by the DFG Cluster of

Excellence PhoenixD (EXC 2122), and by the Center for

Digital Innovations (ZDIN).

13077



References

[1] Paul Amayo, Pedro Piniés, Lina M Paz, and Paul Newman.

Geometric Multi-Model Fitting with a Convex Relaxation

Algorithm. In CVPR, 2018. 2
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