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Abstract

Deep convolutional neural networks (CNNs) leverage

large-scale training dataset to produce remarkable perfor-

mance on various image classification tasks. It, however,

is difficult to effectively train the CNNs on some realis-

tic learning situations such as regarding class imbalance,

small-scale and label noises. Regularizing CNNs works

well on learning with such deteriorated training datasets

by mitigating overfitting issues. In this work, we propose a

method to effectively impose regularization on feature rep-

resentation learning. By focusing on the angle between a

feature and a classifier which is embedded in cosine similar-

ity at the classification layer, we formulate a novel similarity

beyond the cosine based on von Mises-Fisher distribution

of directional statistics. In contrast to the cosine similar-

ity, our similarity is compact while having heavy tail, which

contributes to regularizing intra-class feature distribution

to improve generalization performance. Through the exper-

iments on some realistic learning situations such as of im-

balance, small-scale and noisy labels, we demonstrate the

effectiveness of the proposed method for training CNNs, in

comparison to the other regularization methods. Codes are

available at https://github.com/tk1980/tvMF.

1. Introduction

Deep convolutional neural networks (CNNs) are fun-

damental methods to produce promising performance on

various computer vision tasks including visual recogni-

tion [16, 27]. A large amount of parameters in CNNs

are effectively optimized in an end-to-end manner on a

large-scale dataset which contains plenty of image samples

with detailed annotation; in other words, high-performance

CNNs demand such a healthy dataset of large-scale and

clean-labeled samples. For example, ImageNet [10], a stan-

dard benchmark dataset for image classification, is com-

posed of a large number of training samples, each of which

is assigned one of 1000 class labels, and those samples

are uniformly distributed across classes without severe bias
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Figure 1. t-vMF similarity (7) compared to cosine similarity cos θ.

The proposed t-vMF produces compact-support similarity func-

tion around the classifier weight w with the parameter κ to control

the compactness. It orients features x toward w as a implicit reg-

ularization to enhance compact intra-class distribution. Colored

line indicates similarity values in [−1,+1] over the angle θ.

toward specific class categories. Such a data-hunger na-

ture hinders CNNs from being applied to various real-world

tasks. Due to the laborious procedure of collecting and an-

notating data, real-world tasks are frequently equipped with

rather deteriorated training datasets which are subject to

such as class imbalance, small-scale and label noises. The

CNNs trained on those poor datasets degrade performance,

e.g., due to overfitting.

The bottleneck of CNNs could be alleviated by re-

ducing their parameter size from the architectural view-

point [19, 51] and data-augmentation techniques would

contribute to virtually enlarge the training data by means

of injecting perturbation into real image samples [12, 50].

On the other hand, as a rather general approach, some reg-

ularizations can be effectively introduced to CNNs for im-

proving generalization performance [40, 46, 20, 31, 11].

A crucial feature representation is found in the neuron

activations produced by the penultimate layer which are fed

into the final classifier. Thus, regularization on those fea-

tures contributes to enhancing feature representation learn-

ing even on the deteriorated datasets where training sam-

ples are too poorly collected to well model the intrinsic fea-

ture distribution. In the literature of deep learning, there

are some regularization techniques for feature representa-

tion such as center loss [46] to reduce within-class vari-

ance and DropOut [40, 29] to inject stochastic perturba-

tion. It is also possible to regularize features at a classifi-

6616

https://github.com/tk1980/tvMF


cation layer through end-to-end learning. A representative

approach would be large-margin loss [31, 30, 45, 11] by em-

bedding large-margin criterion into a softmax cross-entropy

loss. The large-margin criterion renders the classifier of

high generalization performance [43] as well as favorable

feature representation through the end-to-end learning. The

large-margin methods modify logits of ground-truth class

based on a cosine similarity between an input feature vector

and the classifier weight at the classification.

In this work, we focus on the cosine similarity, a funda-

mental metric in the classifier, to impose regularization on

features for improving performance especially on deterio-

rated training datasets. The cosine similarity is built on the

angle between two vectors which is geometrically depicted

on a unit hyper-sphere, and thus we leverage von Mises-

Fisher (vMF) distribution [35], one of directional statisti-

cal models, to propose a novel similarity beyond the cosine

similarity. The proposed similarity is a compact-support

function over angles which enables us to implicitly regu-

larize intra-class feature distribution (Fig. 1). While the

method can be related to the regularization loss [46] and

the large-margin methods [31, 11] which touch cosine sim-

ilarity, the proposed method exhibits clear difference from

those prior works in the following points: (1) the proposed

similarity regulates features without introducing additional

regularization loss, and (2) it is equally applied to all the

classes without paying special attention to the ground-truth

class. (3) It is also noteworthy that the proposed similarity

can simply substitute the cosine similarity in a computation-

ally efficient form implemented by only one-line code.

1.1. Related works

Regularization. We briefly review the regularization meth-

ods according to the simple neuron model, z = w
⊤
x where

the output z is computed by the inner product of the input

feature x and (filter) weight w.

CNN filter weights are usually subject to L2-norm regu-

larization, called weight decay [28]. This regularization is

extended into Weight-Normalization [38] which leads to co-

sine similarity in conjunction with normalizing features [1].

DropOut [40] is a representative method to introduce

stochastic perturbation into input features for regularizing

CNNs; the effect of DropOut at the last classification layer

is analyzed in [29]. Perturbation is also injected even to in-

put images in the framework of data augmentation [12, 50]

for classification and in denoising auto-encoder [44]. Fea-

ture distributions are regularized more directly by adding

regularization loss such as center loss [46] and classifier

loss [20] for improving within-class variance. The proposed

method also works on improving intra-class distribution and

it embeds regularization into logits (outputs) without modi-

fying loss nor adding the regularization loss term.

Regularization on the output is mainly found in large-

margin methods [31, 30, 45, 11] at the last classification

layer leading to loss. The classification output z is charac-

terized by cosine similarity between the input feature x and

the classifier weight w, and then the output for the ground-

truth class is degraded based on the cosine similarity for in-

ducing larger margin in classification. While the proposed

method also modifies the cosine similarity, there is clear dif-

ference between them. The proposed method fairly treats all

the classes without any bias toward the ground-truth class

and simply replaces cosine similarity without annotation

(label) information. Thereby, our method addresses regu-

larization for intra-class distribution, while the large-margin

methods focus on discrimination among classes; thus, the

two approaches would be complementary.

Cosine Similarity. The cosine similarity has been applied

in the framework of pair-wise matching such as for image

retrieval [3] and the metric learning that learns lower di-

mensional feature representation [47]; a pair of images is

generally processed through Siamese network to compute

cosine similarity as a matching score [5]. The cosine sim-

ilarity is also found in the classification of normalized fea-

tures which contributes to favorable feature representation

learning [30, 45, 11, 36, 18, 52, 15]. The proposed method

is formulated to replace the similarity so that it could be ap-

plicable to various models. In the other research lines, the

cosine similarity is embedded into CNNs such as for loss

function [4] instead of (softmax) cross-entropy loss and for

normalization [34] to replace Batch-/Layer-Norm [24, 1].

von Mises-Fisher Distribution. By regarding the cosine

similarity as a metric on a unit hyper-sphere, we can nat-

urally derive von Mises-Fisher (vMF) distribution [35] to

statistically model samples of unit norm. The vMF is ap-

plied in machine learning community [39], such as text min-

ing [2], user-behavior analysis [37] and clustering [14]. It is

also employed in the literature of deep learning such as in

semantic segmentation [21] and losses [52, 15]. The meth-

ods [52, 15] leverage the vMF model to formulate a loss

based on cosine similarity. In contrast, we consider the vMF

model in the process of producing logits to which the cosine

similarity has so far been applied; we simply apply the clas-

sification loss of the normalized classifier [36, 18] which is

almost the same as the vMF-based losses [52, 15].

2. vMF-based Similarity Beyond Cosine

The linear classifier in CNNs is formulated as an inner

product between a classifier weight w and a feature vector

x produced by the penultimate layer, as follows1:

zc = w
⊤
c x = ‖wc‖‖x‖ cos θ = sc(x) cos θ, (1)

where zc is a logit for the c-th class and the norms of wc and

x are reduced into a scaling factor sc(x) which could be a

1We can simply remove a bias term while keeping performance.
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Figure 2. Proposed vMF-based similarities.

trainable parameter as discussed in Sec. 2.4. From a geo-

metrical viewpoint, the classifier (1) is fundamentally char-

acterized by the angle θ and it applies cosine function cos to

measure a similarity based on θ; in this paper, it is referred

to as a (similarity) measuring function. The cosine mea-

suring function, however, has broad support region, which

accordingly permits features to be distributed with larger

within-class variance; as shown in Figs. 1a&2b, samples of

θ ∈ (−π
2 ,+

π
2 ) exhibit positive similarity.

The features of larger within-class variance are known

to degrade generalization performance as classically men-

tioned in discriminant analysis [13]. Empirically, the larger

and imbalanced variances are observed in the learning on

the deteriorated dataset to lower performance [26, 49]. On

the other hand, small variance indicates that CNN produces

effective feature representation consistent within a class.

Compact intra-class feature distribution is equivalent to ex-

tracting class-intrinsic features shared among within-class

samples; it thereby enhances generalization performance by

mitigating overfitting. Thus, we formulate a method to in-

duce compact intra-class distribution through improving the

support region of cosine measuring function (Fig. 1). To

this end, we employ the directional statistical model, von

Mises-Fisher distribution [35], to deal with the angle θ.

2.1. Similarity by von Mises­Fisher Model

The angle θ between wc and x in (1) is a core met-

ric on a unit hyper-sphere. Samples on the sphere can be

statistically modeled by von Mises-Fisher (vMF) distribu-

tion [35, 2] which is formulated as

p(x̃; w̃, κ) = Cκ exp(κw̃
⊤
x̃) = Cκ exp(κ cos θ), (2)

where x̃ is a d-dimensional unit vector (‖x̃‖ = 1), w̃ is

a unit vector orienting the center of the distribution, κ is a

parameter to control the concentration of the distribution to

the vector w̃, and Cκ is a normalization constant.

The vMF model (2) renders similarity between x̃ and

w̃ in a probabilistic sense, and the form (2) is rewritten by

using a profile function fe(d;κ) = exp(− 1
2κd

2) into

p(x̃; w̃, κ) = Cκ exp(κ−
1

2
κ‖x̃−w̃‖2) = C ′

κfe(‖x̃−w̃‖;κ).

(3)

The vMF similarity is essentially characterized by fe(‖x̃−
w̃‖;κ) and thus we formally define the vMF similarity to

substitute for cos θ by

φe(cos θ;κ) = 2
fe(‖x̃− w̃‖;κ)− fe(2;κ)

fe(0;κ)− fe(2;κ)
− 1 (4)

= 2
exp(κ cos θ)− exp(−κ)

exp(κ)− exp(−κ)
− 1 ∈ [−1, 1], (5)

where we rescale fe(‖x̃−w̃‖;κ) on ‖x̃−w̃‖ ∈ [0, 2] so that

it is compatible with cos θ ∈ [−1,+1]. While the parameter

κ controls concentration in the original vMF model (2) by

κ > 0, the vMF measuring function (5) accepts various κ

even including negative values; κ ∈ (−∞, 0) ∪ (0,+∞).

As shown in Fig. 2a, by controlling the parameter κ, the

vMF similarity (5) exhibits distinctive properties in compar-

ison to the cosine similarity as follows. (1) Larger κ > 0
induces compact similarity function, sensitively measuring

similarity around θ = 0. (2) κ → 0 reconstructs the original

cosine similarity, cos θ. (3) Smaller κ < 0 enlarges the sup-

port region of the measuring function beyond cosine. From

the classification perspective, the first property is effective

for improving intra-class compactness as a regularization.

Namely, the vMF similarity φe with κ > 0 would reduce

the within-class variance by orienting features x toward the

classifier wc to gain substantial similarity. It is noteworthy

that the similarity fairly works on all classes without special

treatment for the ground-truth class in contrast to the large-

margin methods [31, 30, 45, 11] and is directly embedded

in logits without additional regularization loss [46, 20]. We

will discuss the case of κ < 0 in Secs. 2.5&3.4.

2.2. t­vMF Similarity

Though the vMF measuring function (5) renders com-

pact similarity, the function contrarily has light tail where

the similarity score is rapidly approaching -1 even by a

bit larger angle θ as shown in Fig. 2bc. Such a too com-

pact measuring function might hamper training CNNs since

samples on the light tail hardly enjoy back-propagation

due to vanishing gradient (Fig. 2c). This bottleneck is

derived from the exponential profile function fe(d;κ) =
exp(− 1

2κd
2). Similar discussion can be found in the other

literature of t-SNE [42] which considers to match point-

wise probability distributions for embedding samples in the

lower-dimensional space. In that framework, the shape

of probabilistic density function is required to be compact

while having a heavy tail for well capturing the discrimina-

tive metrics in the original feature space, which is connected

with our situation to design similarities.

Thus, we follow the approach of t-SNE [42] that extends

SNE [17] by introducing heavy-tailed student-t distribution

as an alternative to Gaussian. Considering that the vMF

similarity (5) is built upon the exponential profile function

fe, it can be modified by replacing fe with the student-t
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profile ft(d;κ) =
1

1+ 1

2
κd2

to formulate t-vMF similarity by

φt(cos θ;κ) = 2
ft(‖x̃− w̃‖;κ)− ft(2;κ)

ft(0;κ)− ft(2;κ)
− 1 (6)

= 2

1
1+κ(1−cos θ) −

1
1+2κ

1− 1
1+2κ

−1 =
1 + cos θ

1 + κ(1− cos θ)
−1, (7)

where κ ∈ (− 1
2 ,+∞) since 1

2κd
2 > −1 in ft on 0 ≤ d2 =

(2 − 2 cos θ) ≤ 4. As shown in Fig. 2b, while the t-vMF

similarity (7) is close to the vMF one (5) around θ = 0, it

additionally exhibits the following favorable properties. (1)

The t-vMF measuring function is heavy-tailed in compari-

son to vMF (Fig. 2c) so that training CNNs stably proceeds

even by larger κ. (2) The similarity (7) can be computed

only by simple operation (one-line code) as shown in Al-

gorithm 1 unlike the vMF (5) which depends on an expo-

nential function. (3) κ = 0 exactly reconstructs the original

cosine similarity, φt(θ;κ = 0) = cos θ without any careful

treatment about practical computation.

Algorithm 1 Pseudocode of t-vMF similarity

# w: classifier weight vector

# x: input feature vector

# k: kappa parameter

def tvMFsimilarity(w, x, k):

# Cosine similarity

# linear: compute inner product

# normalize: normalize by L2-norm

cosine = linear(normalize(x),normalize(w))

# One-line code for t-vMF (7)

phi = (1+cosine)/(1+k*(1-cosine))-1

return phi

2.3. q­vMF Similarity

These two similarities (5,7) can be viewed in a unified

way by means of q-exponential function [41], fq(d;κ) =

[1− (1− q) 12κd
2]

1

1−q . The q-exponential function contains

the exponential and student-t functions by q → 1 and q = 2,

respectively. Thus, we can define the q-vMF similarity as

φq(cos θ;κ) = 2
fq(‖x̃− w̃‖;κ)− fq(2;κ)

fq(0;κ)− fq(2;κ)
− 1 (8)

=2
[1−(1−q)κ(1−cos θ)]

1

1−q − [1−2(1−q)κ]
1

1−q

1− [1− 2(1− q)κ]
1

1−q

−1, (9)

where κ ∈ (− 1
2(q−1) ,+∞). In particular, due to the above-

mentioned property of the q-exponential function, q → 1
leads to φq → φe (5) and q = 2 produces t-vMF φe = φt

(7). Though the computation (9) is more complicated than

t-vMF (7), the measuring function is further flexibly con-

trolled by q in addition to κ; the q-vMF of larger q con-

structs the heavier-tailed similarity beyond t-vMF (Fig. 2b).

2.4. Classifier

The vMF-based similarity is embedded into the follow-

ing pseudo inner-product in stead of the cosine similarity:

〈x,w〉φ = ‖x‖‖w‖φ
(

w
⊤
x

‖x‖‖w‖
;κ

)

, (10)

where φ(·;κ) indicates one of the vMF-based similarities

(5,7,9) parameterized by κ (and q for q-vMF).

In the experiments (Sec. 3), we employ a normalized

classification via L2-normalization of feature vectors and

classifier weights to formulate the cross-entropy loss of

l(x, y) = − log
exp

(

s
〈

x

‖x‖ ,
wy

‖wy‖

〉

φ

)

∑C

c=1 exp
(

s
〈

x

‖x‖ ,
wc

‖wc‖

〉

φ

)
(11)

= − log
exp

{

sφ
(

w
⊤

y x

‖wy‖‖x‖
;κ

)}

∑C

c=1 exp
{

sφ
(

w
⊤
c x

‖wc‖‖x‖
;κ

)}

, (12)

where x and y are a feature vector produced by the penul-

timate layer and its ground-truth class label, respectively,

and we introduce the trainable scaling factor s2 for soft-

max [36, 18]; s is optimized in an end-to-end manner. The

scaling parameter s compensates the norms of wc and x via

s ≈ ‖wc‖‖x‖ in (1) on the assumption that the classifier

weights wc and the sample features x have consistent norm

magnitudes across classes and samples, respectively. Those

norm magnitudes are vulnerable to deterioration of the

training dataset, such as regarding class imbalance, and thus

normalized representation in (12) would be effective for

learning on the deteriorated datasets [26, 49]. The normal-

ized classifier (12) also renders favorable feature represen-

tation and is applied to various tasks [45, 11, 36, 18, 52, 15].

In the case of κ = 0, (12) is reduced to the softmax loss

based on cosine similarity which is also referred to as vMF

loss in [52, 15]; from this viewpoinnt, the proposed vMF

similarities (5,7,9) to produce logits in (12) are clearly dif-

ferent from the vMF-based losses [52, 15].

2.5. Discussion

In the end-to-end learning framework, the vMF-based

measuring functions (5,7,9) produce compact support sim-

ilarities (Fig. 2) to reduce within-class variance for effec-

tive feature representation; feature x is forced to be within

the compact support around the classifier wy for providing

sufficient logit value to minimize the loss (12). It is note-

worthy that such regularization is implicitly embedded in

the proposed similarity without introducing a regularization

term [46, 20] into a loss function. The regularization of the

proposed similarities contributes to extracting class-specific

2We further re-parameterize it by s = log(1 + exp(s′))+1 > 1 with

s′ ∈ R especially for stable training in large-margin methods.
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Table 1. Datasets used in the experiments. Imbalance is defined by Nc/minc′ [Nc′ ] where Nc is the number of sample at the c-th class.

ImageNet-LT [32] iNat2018 [22] iNat2019 [23] ImageNet-S/N ImageNet-SS

# of class 1000 8142 1010 1000 1000

# of samples 115846 437513 265213 115000 50000

Max. Imbalance 256 500 31.25 1 1
Minority
class

Majority
class

Im
b
a
la
n
c
e

ImageNet-LT

iNaturalist2018

iNaturalist2019

features shared among intra-class samples for improving

generalization performance. The regularization would be

effective for training on some poor datasets where the stan-

dard approach fails to learn effective features.

The above-mentioned compactness of measuring func-

tion is endowed by positive parameter value of κ > 0 in

the three types of vMF-based similarities which are distin-

guished in terms of heaviness at tails (Fig. 2b). The vMF

similarity (5) contains light tail on which samples would

be less effectively optimized (Fig. 2c). The t-vMF (7) im-

proves it by incorporating the student-t form in a manner

similar to t-SNE [42] toward heavy-tail similarity. Those

two models are unified by means of the q-exponential into

the q-vMF (9) and it can provide further heavier-tailed simi-

larity through tuning the additional parameter q. These sim-

ilarities are empirically evaluated in Sec. 3.1.1.

We have discussed the effect of κ > 0 to improve intra-

class feature distribution. On the other hand, the model

with κ < 0 have diffrent impact on training CNNs. As

shown in Fig. 2a, κ < 0 enlarges the support angle region

in contrast to κ > 0. Through the competitive learning

among classes {w̃c}
C
c=1 in the softmax loss (12), the sim-

ilarity of large support leads to enhancing inter-class dis-

crimination due to the heavy overlap among similarities of

different classes. In other words, κ < 0 reduces the clas-

sifier margins to enhance discriminativity in a similar way

to large-margin approach (Fig. 4). Thus, the vMF-based

similarities of κ < 0 would work on large-scale balanced

datasets which prefer the inter-class discriminativity for im-

proving performance than the regularization of intra-class

compactness, since intra-class characteristics could be well

modeled by plenty of samples even without regularization.

Such effect can be empirically validated in Sec. 3.4.

The t-vMF similarity is slightly connected to the (gen-

eralized) student-t kernel [48]. The proposed t-vMF (7),

however, results in a clearly different form than the kernel

function of student-t and it is favorably parameterized by κ

that is interpretable from the viewpoint of similarity com-

pactness; it naturally unifies the cosine similarity as a spe-

cial case of κ = 0. As to a kernel function, the Arc-kernel

is also proposed in [8] based on the angle θ. It, however, is

formulated in a computationally inefficient form while be-

ing inferior to ours in terms of compactness and tail.

3. Experimental Results

We apply the proposed method to training CNNs on

three types of deteriorated training datasets regarding im-

balanced classes, small-scale and noisy labels. It is gener-

ally difficult to effectively train deep CNNs in an end-to-end

manner on those datasets. The proposed vMF-based sim-

ilarities naturally impose regularization on the intra-class

feature distribution through the softmax cross-entropy loss

(12) for improving generalization performance.

Training procedure. We follow the training proto-

col of [25] by applying SGD optimizer with momentum

0.9, weight decay 10−4, mini-batch size 256 and cosine-

learning rate scheduling [33] (initial rate 0.2) over 90 train-

ing epochs; during training, the standard data augmenta-

tion [16] is applied to input images. The classification per-

formance is measured by top-1 and top-5 error rates (%)

through single center-crop evaluation protocol [27].

3.1. Learning on Imbalanced Dataset

While the standard benchmark datasets, such as Ima-

geNet [10], are well balanced in terms of training samples

per class category, real-world categories are occasionally

distributed by long-tailed distribution, producing imbal-

anced numbers of training samples across classes, as shown

in Tab. 1. The CNNs trained on such an imbalanced dataset

are accordingly biased toward majority classes while paying

less attention to the minorities.

In [25], simple two-stage learning is proposed for the

imbalanced learning; a CNN is first trained in the standard

way via uniformly sampling training images (mini-batches)

and then only the classifier is further finetuned by balanced

sampling across classes while freezing the feature extractor

of the CNN. We follow this simple approach by applying

the proposed similarities to the loss (12) of the first stage

to optimize feature representation. For fair comparison, at

the second stage of finetuning, the simple cosine similarity

(κ = 0) is used in the softmax loss (12) for all the meth-

ods that we used in this experiment; at the second stage,

the classifier is trained over 30 epochs while keeping the

other optimization parameters shown above. Thus, we can

evaluate how robust feature representation a method learns

against imbalanced datasets by introducing regularization.

3.1.1 Ablation study

We first analyze the proposed methods by training ResNet-

10 [16] on ImageNet-LT dataset [32] (Tab. 1).

Types of vMF. In Sec. 2, we proposed three types of vMF-

based measuring functions (5,7,9) which are distinguished

in terms of tail heaviness (Fig. 2b). To fairly compare the

6620



Table 2. Performance comparison among vMF-based similarities with various κ on ImageNet-LT. We report top-1 error rate (%) with top-5.

κ 0 (cos) 2 4 8 16 32 64 128 256

vMF (5) 61.32 38.44 60.25 37.05 59.16 35.90 58.11 34.30 75.84 53.58 96.85 90.79 96.95 90.94 100.0 100.0 100.0 100.0

t-vMF (7) 61.32 38.44 60.40 37.01 59.17 35.98 58.18 34.47 57.30 32.92 56.49 31.97 56.31 31.78 57.22 32.03 58.66 33.32

q-vMF (9) 61.32 38.44 60.61 37.45 59.96 36.53 59.15 35.65 59.05 35.17 58.35 34.29 58.46 34.28 58.12 33.74 58.01 33.57

Table 3. Comparison to the other measuring function derived from the large-margin and kernel methods [31, 11, 8] on ImageNet-LT.

cos(kθ) [31] cos(θ +m) [11] Arc-kernel [8]

param. k = 2 4 8 m = π/8 π/4 π/2 n = 1 n = 2

Err. 59.67 36.05 61.02 38.00 61.54 38.45 60.93 37.67 60.81 37.45 57.83 34.14 61.63 38.32 60.80 37.75

+1

0

-1

cos(2   ) [31]

cos(   )

cos(   +   ) [11]

arc-kernel (n=2) [8]

Table 4. Trainable κ in t-vMF (7) on ImageNet-LT.

(a) Two-types of parameterization

single κ class-wise {κc}
C
c=1

Err. 61.23 38.21 60.39 37.02

κ 0.37 1.58±0.19

(b) Plot of {κc}1000c=1

number of samples per class

tr
a

in
e

d

trained

m
e
a
n
 a

n
g
le

 (
d
e
g
re

e
)

number of samples per class
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Figure 3. Statistics of learned features.

tail, we control the parameter κ for respective models so that

they exhibit similar compactness around θ = 0; the same κ

is applied to both vMF (5) and t-vMF (7), while q-vMF (9)

applies half of κ and larger q to provide heavier tail; details

are described in the supplementary material.

Performance results are shown in Tab. 2 and we can find

the following. (1) Performance is improved by (moderately)

larger κ which produces compact shape around θ = 0. (2)

The vMF similarity (5) works only with κ < 16 while de-

grading performance by κ ≥ 16. The larger κ induces the

lighter tail of the measuring function φe, thereby making it

hard to proceed back-propagation on the samples outside of

the support of the function (Fig. 2c) as discussed in Sec. 2.2.

(3) On the other hand, q-vMF (9) that provides heavier tail

contributes to stable learning, though being inferior to t-

vMF (7). The heavier tail slightly harms compactness of

the measuring function around θ = 0 which is a key char-

acteristic to regularize feature representation. Thus, we can

conjecture that the t-vMF similarity (7) is favorable in terms

of compactness and heavy tail, stably producing better per-

formance at the larger κ without deteriorating the training

of CNN even at very large κ = 256.

Cosine-based measuring function. The form of cosine

similarity has been also discussed mainly in the framework

of large-margin methods [31, 30, 45, 11]; the cosine sim-

ilarity of the ground-truth class is degraded by modifying

the form of the similarity. So modified cosine similarity

is also applicable to φ in (12) for comparison to the pro-

posed t-vMF similarity (7) in our framework toward com-

pact intra-class representation. It should be noted that in this

case the cosine similarities are fairly modified on all classes

without taking special care of the ground-truth class; the

large-margin methods themselves are tested in Sec. 3.1.2.

Tab. 3 shows the performance results by the arc-

kernel [8] and the two forms of modified cosine similarities;

multiplicative [31, 30] and additive [11] ones. As in Tab. 2,

performance is improved by the measuring functions which

exhibit compactness around θ = 0. They, however, are less

compact in comparison to t-vMF. Arc-kernel [8] has similar

shape to ours but it is less compact and light-tailed similar-

ity compared to t-vMF. Therefore, they are inferior to ours.

It is also noteworthy that the t-vMF is more computationally

efficient (Algorithm 1) than those comparison methods. The

comparison result to these methods highlights effectiveness

of the proposed t-vMF model for regularization.

Trainable κ. The parameter κ in the t-vMF similarity (7)

is pre-fixed as shown in Tab. 2. According to the end-to-end

learning principle, it is also possible to optimize κ as in the

other CNN parameters. There are two conceivable ways of

parameterization for κ. One is to introduce single trainable

κ shared across all the classes, while the other way is to

assign κc to respective classes and optimize {κc}
C
c=1. The

parameter κ in t-vMF (7) is optimized over κ ∈ [0,+∞)
based on the discussion in Sec. 2.5 by applying SGD in the

same way as the other CNN parameters.

The performance results and the optimized κ values are

also shown in Tab. 4a. Training single κ might be im-

peded by the high imbalance across the majority and mi-

nority classes, and thereby κ results in close to 0, push-

ing the t-vMF similarity toward the ordinary cosine simi-

larity. On the other hand, the class-wise parameterization

mitigates the imbalance in training κc, which is seperately

assigned to each class c, to slightly improves performance.

Nonetheless, the performances of the trainable t-vMF mod-

els are inferior to that of pre-fixed larger κ (Tab. 2). Train-
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Table 5. Performance comparison (error rates %) on various datasets.

(a) Imbalanced (b) Small-scale (c) Noisy

Dataset ImageNet-LT [32] iNat2018 [22] iNat2019 [23] ImageNet-S ImageNet-SS ImageNet-N

CNN ResNet-10 ResNet-50 ResNet-50 ResNet-10 ResNet-10 ResNet-10

Softmax 61.32 38.44 35.95 17.28 27.23 7.95 55.53 31.58 70.52 48.47 82.34 67.61

L-Softmax [31] 60.27 37.13 35.32 16.77 26.70 7.89 53.41 29.60 65.83 41.74 77.42 58.87

ArcFace [11] 59.46 35.29 33.56 14.73 26.83 8.28 53.95 29.68 65.18 40.69 73.17 48.40

Center Loss [46] 60.82 37.79 35.17 16.94 27.53 7.82 55.11 31.24 70.03 47.72 81.80 66.17

Classifier Loss [20] 60.96 37.81 35.49 16.85 26.93 7.89 55.36 31.55 70.21 48.05 82.19 66.59

Virtual Softmax [7] 61.72 35.23 43.83 20.17 30.36 8.78 60.85 33.30 70.90 43.93 72.40 47.72

DropOut [40] 59.17 35.68 32.20 14.53 26.34 7.46 52.69 28.21 66.41 42.78 75.72 55.56

t-vMF (7) (κ= 4) 59.17 35.98 31.57 13.56 25.22 6.70 53.58 29.36 67.32 43.82 77.28 58.53

t-vMF (7) (κ=16) 57.30 32.92 28.92 11.75 25.64 6.53 52.06 27.54 64.77 40.67 71.46 49.19

t-vMF (7) (κ=64) 56.31 31.78 29.69 11.90 25.08 7.10 52.51 28.09 65.73 40.86 69.19 45.66

Table 6. Detailed performance on imbalanced learning. We follow

[25] to split classes into Many, Medium and Few categories.

ImageNet-LT iNaturalist2018

Many Medium Few Many Medium Few

Softmax 47.16 66.10 84.29 28.15 34.67 39.59

L-Softmax 46.23 64.85 83.66 28.82 33.70 39.06

ArcFace 46.06 63.96 81.28 27.51 32.25 36.78

CenterLoss 46.85 65.28 84.41 28.46 33.47 39.05

ClassifierLoss 47.40 65.02 84.76 28.35 34.00 39.23

VirtualSoftmax 50.25 65.58 80.35 35.11 43.34 46.71

DropOut 45.90 63.20 82.22 25.06 30.74 35.92

t-vMF (κ = 4) 45.23 63.41 83.43 25.53 30.20 34.85

t-vMF (κ = 16) 43.92 61.20 81.16 25.85 27.93 31.08

t-vMF (κ = 64) 44.83 59.36 77.74 28.35 29.33 30.46

ing κ proceeds in cooperation with feature representation

learning, and thus the trained κ reflects the characteristics

of feature distribution derived from imbalanced data distri-

bution; actually, we can see in Tab. 4b a slight trend that

the minor classes receives larger κ while the majority ones

are assigned smaller κ, which reflects the small variance

in the minority classes and the large variance in the ma-

jority classes (Fig. 3). From the regularization viewpoint,

however, κ should be assigned in a resistant manner against

the imbalanced distribution. Thus, to remove the statistics

derived from the imbalanced data, the parameter κ is pre-

fiexed by larger value.

Feature distribution. Fig. 3 shows the statistics of learned

features in comparison to those by cosine similarity. In

Fig. 3a, the mean angle θ̄c = Ei|yi=c[arccos(w̃
⊤
c x̃i)] be-

tween the classifier weight wc and features x is shown for

respective classes which are characterized by the number of

samples per class. The standard cosine similarity provides

larger angles due to the large support of measuring function

(Fig. 2); actually, they are 70 ∼ 80 degrees. On the other

hand, the t-vMF of κ = 64 contributes to orienting the fea-

tures toward the classifier in virtue of the compact support

measuring function φt (7). Accordingly, the within-class

variance is reduced as shown in Fig. 3b which depicts the

within-class standard deviation across classes.

3.1.2 Comparison to other methods

The proposed method is then compared with the other meth-

ods; we apply the regularization methods which are cate-

gorized into three groups, large-margin methods [31, 11],

additional regularization losses [46, 20] and the others in-

cluding DropOut [40] and virtual softmax loss [7]. These

comparison methods are incorporated into the two-stage

learning scheme [25] as in ours by modifying the loss

(12) based on cosine similarity (κ = 0); the large-margin

losses [31, 11] and virtual softmax [7] substitute for the

softmax loss, the regularization loss [46, 20] is added to

the softmax loss, and the DropOut is applied to feature x.

The hyper-parameters in those methods are determined so

as to produce the best performance, for fair comparison;

the set of hyper-parameters in those methods are detailed

in the supplementary material. These methods are evalu-

ated on ImageNet-LT [32], iNaturalist2018 [22] and iNatu-

ralist2019 [23] (Tab. 1).

Performance results in Tab. 5a demonstrate that by in-

troducing regularization into the feature representation, the

performance on imbalanced classification is favorably im-

proved. In particular, the comparison to classifier loss [20]

highlits the effectiveness of our method. The classifier

loss [20] is proposed to reduce the deviation around the clas-

sifier wc in the framework of center loss [46] as

lclsloss(x, y) = l(x, y) + λ‖x̃− w̃y‖
2
2, (13)

where x̃ and w̃y are normalized feature and classifier

weight, respectively, and λ is a regularization parameter.

The method is closely related to ours which also reduces

such a deviation by compact measuring function φt (7) with

κ > 0. As shown in Tab. 5, the proposed t-vMF is superior

to the other regularization methods including the classifier

loss [20]. This result validates our approach to implicitly

embed the regularization into the similarity, especially com-

pared to the additional regularization loss [20]. The perfor-

mance by t-vMF is competitive to the reported ones; for
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Table 7. Performance results of t-vMF on ImageNet dataset [10] by ResNet-50 [16].

κ -0.45 -0.3 -0.15 0 (cos) 2 4 8 16 32 ArcFace [11]

Err. 22.73 6.49 22.62 6.46 22.81 6.67 23.05 6.58 22.90 6.57 22.99 6.76 23.56 6.80 23.64 6.95 23.78 7.12 23.28 7.33

t-vMF

cos

  0.3

class class

margin

Figure 4. t-vMF of κ<0.

ImageNet-LT, 64.4 [32], 58.4 [26], 58.2 [25], and for iNat-

uralist2018, 38.88 [9], 32.00 [6], 34.1 (30.5 by 200-epoch

training) [25]; t-vMF also produces 28.46 by 200 epochs.

The t-vMF similarity of larger κ highly regularizes fea-

tures and thus effectively contributes to performance im-

provement in severely imbalanced learning of ImageNet-LT

and iNaturalist2018; the detailed performance comparison

is shown in Tab. 6. On the other hand, the rather smaller κ

which imposes weak regularization also works for iNatural-

ist2019 of marginal imbalance (Tab. 1). Thus, the proposed

method copes with various degrees of imbalance through κ.

3.2. Learning on Small­Scale Dataset

We then evaluate the proposed method on small-scale

training dataset. Two small-scale datasets are constructed

by sampling sub-set of ImageNet [10]; ImageNet-S is

built so as to be the same-scale as ImageNet-LT [32], and

ImageNet-SS is defined as smaller-scale by further halving

ImageNet-S, as shown in Tab. 1.

The small-scale issue could also be tackled such as by

data augmentation techniques [12, 50]. In this experiment,

we address the issue by regularizing the feature represen-

tation to improve generalization performance in the same

way as Sec. 3.1. Those two approaches are complementary

to each other and thus their combination could work; our

future work includes to explore the practical combination.

The performance results are shown in Tab. 5b. Simi-

larly to the imbalanced learning in Tab. 5a, the regulariza-

tion methods also improve performance on the small-scale

learning; especially, the t-vMF of κ = 16 performs well in

comparison to the others.

3.3. Learning on Noisy Annotation

The proposed method is tested on the deteriorated sit-

uation where annotations of samples are less correct, i.e.,

noisy labels. Annotating image samples in detail is such

a laborious process that wrong labels could be frequently

injected into the training samples in real-world situations.

Detecting the wrong label is the classification process itself

and thus it is hard to eliminate those label noise in advance.

Incorrectly labeled samples confuse CNNs thereby disturb-

ing the training. We here evaluate how much robustly the

regularization methods learn CNNs against the noisy labels;

note that image (content) quality is not degraded. For that

purpose, we inject label noise into ImageNet-S (Tab. 1) to

construct ImageNet-N by randomly switching the labels of

samples other than ImageNet-SS into wrong ones; only the

samples in the set of ImageNet-SS have correct labels.

The performance results are shown in Tab. 5c. By mix-

ing the noisy samples with clean ones, the performance is

degraded in comparison to those of ImageNet-SS in Tab. 5b

which contains the same number of correct training samples

as ImageNet-N. The proposed method enhances the con-

sistency among intra-class samples through regularization

imposed by larger κ to favorably improve performance; t-

vMF of κ = 64 produces superior performance being only 3

point reduction from ImageNet-SS, in contrast to the others

most of which degrade performance by about 10 points.

3.4. Learning on Healthy Dataset

We have so far discussed and analyzed the proposed

method with κ > 0 on the deteriorated training datasets.

Conversely, the method is here evaluated on healthy dataset

with κ < 0. Tab. 7 shows the performance results on Ima-

geNet dataset [10]. One can see that the normalized classi-

fier in (12) effectively improves performance in comparison

to the standard linear classifier (23.85 (top-1)/ 7.13 (top-5) re-

ported in [16]). In contrast to the deteriorated situation, the

larger κ > 0 slightly degrades performance since the regu-

larization on intra-class would be less effective for plenty

of samples which well model the intra-class structure. On

the other hand, the t-vMF of smaller κ < 0 improves the

performance of the original cosine similarity (κ = 0). As

shown in Fig. 4 and Sec. 2.5, the smaller κ<0 contributes to

enhance inter-class discrimination among large number of

samples; it is superior even to the large-margin method [11].

These results demonstrate the flexibility of the t-vMF

similarity (7) such that it can cope with various types of

training datasets from deteriorated to healthy one through

the parameter κ. Our thorough analysis about the effect of κ

would help to tune κ qualitatively based on the target learn-

ing situation or quantitatively such as via cross-validation.

4. Conclusion

We have proposed a novel similarity for improving intra-

class feature representation. In contrast to the standard co-

sine similarity which has broad support region, the proposed

method built on vMF model is formulated in a compact

similarity function parameterized by κ. By further incor-

porating the student-t model, the method is equipped with

compact support as well as heavy tail for effectively regu-

larizing intra-class feature distribution. In the experiments

on image classification using deteriorated training datasets,

the proposed method improves performance of CNNs, be-

ing superior to the other regularization methods.
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