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Abstract

A major challenge for physically unconstrained gaze es-

timation is acquiring training data with 3D gaze annota-

tions for in-the-wild and outdoor scenarios. In contrast,

videos of human interactions in unconstrained environ-

ments are abundantly available and can be much more eas-

ily annotated with frame-level activity labels. In this work,

we tackle the previously unexplored problem of weakly-

supervised gaze estimation from videos of human interac-

tions. We leverage the insight that strong gaze-related ge-

ometric constraints exist when people perform the activity

of “looking at each other” (LAEO). To acquire viable 3D

gaze supervision from LAEO labels, we propose a training

algorithm along with several novel loss functions especially

designed for the task. With weak supervision from two large

scale CMU-Panoptic and AVA-LAEO activity datasets, we

show significant improvements in (a) the accuracy of semi-

supervised gaze estimation and (b) cross-domain gener-

alization on the state-of-the-art physically unconstrained

in-the-wild Gaze360 gaze estimation benchmark. We

open source our code at https://github.com/NVlabs/weakly-

supervised-gaze.

1. Introduction

Much progress has been made recently in the task of

remote 3D gaze estimation from monocular images, but

most of these methods are constrained to largely frontal

subjects viewed by cameras located within a meter of

them [46, 20]. To go beyond frontal faces, a few recent

works explore the more challenging problem of so-called

“physically unconstrained gaze estimation”, where larger

camera-to-subject distances and higher variations in head

pose and eye gaze angles are present [17, 44, 8]. A signif-

icant challenge there is in acquiring training data with 3D

gaze labels, generally and more so outdoors. Fortunately,

several 3D gaze datasets with large camera-to-subject dis-
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Figure 1. Overview of our weakly-supervised gaze estimation ap-

proach. We employ large collections of videos of people “looking

at each other” (LAEO) curated from the Internet without any ex-

plicit 3D gaze labels, either by themselves or in a semi-supervised

manner to learn 3D gaze in physically unconstrained settings.

tances and variability in head pose have been collected re-

cently in indoor laboratory environments using specialized

multi-cameras setups [43, 8, 44, 28]. In contrast, the re-

cent Gaze360 dataset [17] was collected both indoors and

outdoors, at greater distances to subjects. While the ap-

proach of Gaze360 advances the field significantly, it never-

theless requires expensive hardware and many co-operative

subjects and hence can be difficult to scale.

Recently “weakly-supervised” approaches have been

demonstrated on various human perception tasks, such as

body pose estimation via multi-view constraints [35, 14],

hand pose estimation via bio-mechanical constraints [37],

and face reconstruction via differentiable rendering [6].

Nevertheless, little attention has been paid to exploring

methods with weak supervision for frontal face gaze esti-

mation [42] and none at all for physically unconstrained

gaze estimation. Eye gaze is a natural and strong non-

verbal form of human communication [27]. For instance,

babies detect and follow a caregiver’s gaze from as early

as four months of age [38]. Consequently, videos of hu-
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man interactions involving eye gaze are commonplace and

are abundantly available on the Internet [10]. Thus we pose

the question: “Can machines learn to estimate 3D gaze by

observing videos of humans interacting with each other?”.

In this work, we tackle the previously unexplored prob-

lem of weakly supervising 3D gaze learning from videos

of human interactions curated from the Internet (Fig. 1).

We target the most challenging problem within this domain

of physically unconstrained gaze estimation. Specifically,

to learn 3D gaze we leverage the insight that strong gaze-

related geometric constraints exist when people perform

the commonplace interaction of “looking at each other”

(LAEO), i.e., the 3D gaze vectors of the two people interact-

ing are oriented in opposite directions to each other. Videos

of the LAEO activity can be easily curated from the Inter-

net and annotated with frame-level labels for the presence

of the LAEO activity and with 2D locations of the persons

performing it [26, 25]. However, estimating 3D gaze from

just 2D LAEO annotations is challenging and ill-posed be-

cause of the depth ambiguity of the subjects in the scene.

Furthermore, naively enforcing the geometric constraint of

opposing gaze vector predictions for the two subjects per-

forming LAEO is, by itself, insufficient supervision to avoid

degenerate solutions while learning 3D gaze.

To solve these challenges and to extract viable 3D gaze

supervision from weak LAEO labels, we propose a train-

ing algorithm that is especially designed for the task. We

enforce several scene-level geometric 3D and 2D LAEO

constraints between pairs of faces, which significantly aid

in accurately learning 3D gaze information. While train-

ing, we also employ a self-training procedure and compute

stronger pseudo 3D gaze labels from weak noisy estimates

for pairs of faces in LAEO in an uncertainty-aware man-

ner. Lastly, we employ an aleatoric gaze uncertainty loss

and a symmetry loss to supervise learning. Our algorithm

operates both in a purely weakly-supervised manner with

LAEO data only or in a semi-supervised manner along with

limited 3D gaze-labeled data.

We evaluate the real-world efficacy of our approach on

the large physically unconstrained Gaze360 [17] bench-

mark. We conduct various within- and cross-dataset ex-

periments and obtain LAEO labels from two large-scale

datasets: (a) the CMU Panoptic [16] with known 3D

scene geometry and (b) the in-the-wild AVA-LAEO activity

dataset [25] containing Internet videos. We show that our

proposed approach can successfully learn 3D gaze infor-

mation from weak LAEO labels. Furthermore, when com-

bined with limited (in terms of the variability of subjects,

head poses or environmental conditions) 3D gaze-labeled

data in a semi-supervised setting, our approach can signifi-

cantly help to improve accuracy and cross-domain general-

ization. Hence, our approach not only reduces the burden of

acquiring data and labels for the task of physically uncon-

strained gaze estimation, but also helps to generalize better

for diverse/naturalistic environments.

To summarize, our key contributions are:

• We propose a novel weakly-supervised framework for

learning 3D gaze from in-the-wild videos of people

performing the activity of “looking at each other”. To

our understanding, we are the first to employ videos of

humans interacting to supervise 3D gaze learning.

• To effectively derive 3D gaze supervision from weak

LAEO labels, we introduce several novel training ob-

jectives. We learn to predict aleatoric uncertainty, use

it to derive strong pseudo-3D gaze labels, and further

propose geometric LAEO 3D and 2D constraints to

learn gaze from LAEO labels.

• Our experiments on the Gaze360 benchmark show that

LAEO data can effectively augment data with strong

3D gaze labels both within and across datasets.

2. Related Work

3D Gaze Estimation Recent developments in remote

gaze estimation increasingly benefit from large-scale

datasets with gaze direction [46, 9, 36, 8] or target [20, 13]

labels. While earlier methods study the effect of different

input facial regions [20, 47, 8, 45], later methods attempt to

introduce domain-specific insights into their solutions. For

example by encoding the eye-shape into the learning pro-

cedure [30, 31, 42, 39], or by considering the dependency

between head orientation and gaze direction [48, 32, 40], or

modelling uncertainty or random effects [41, 2, 17]. Other

works propose few-shot adaptation approaches for improv-

ing performance for end-users [29, 22, 12, 1, 23]. However,

most such approaches restrict their evaluations to screen-

based settings (with mostly frontal faces and subjects lo-

cated within 1m of the camera) due to limitations in the

diversity of available training datasets.

Recently proposed datasets such as RT-GENE [8],

HUMBI [43], and ETH-XGaze [44] attempt to allow for

gaze estimation in more physically unconstrained settings

such as from profile faces of subjects located further from

the camera. As complex multi-view imaging setups are re-

quired, these datasets are inevitably collected in controlled

laboratory conditions. A notable exception is Gaze360 [17],

which uses a panoramic camera for collecting data from

multiple participants at once, both outdoors and indoors.

Yet, such collection methods are still difficult to scale com-

pared to data sourced from the web, or via crowd-sourced

participation such as done for the GazeCapture dataset [20].

In terms of learning a generalized gaze estimator using

only small amounts of labeled data (without supervised pre-

training), Yu et al. [42] are the only prior art. However, their

method is restricted to mostly frontal faces and assumes lit-

tle to no movement of the head between pairs of samples
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from a given participant – an assumption that does not hold

in less constrained settings.

Gaze Following and Social Interaction Labels Given an

image with a human, gaze following concerns the predic-

tion of the human’s gaze target position. Performing this

task with deep neural networks was initially explored by

Recasens et al. [33], with extensions to time sequence data

and multiple camera views in [34]. Chong et al. [3] im-

prove performance on the static gaze following task further

by jointly training to predict 3D gaze direction using the

EYEDIAP dataset [9], and by explicitly predicting whether

the target is in frame. This work is also extended to video

data in [4]. Much like the task of physically unconstrained

gaze estimation, gaze following also involves viewing hu-

man subjects in all head poses, in diverse environments, and

from larger distances. However, gaze following datasets are

complex to annotate, and do not lend themselves well to the

task of learning to predict 3D gaze due to the lack of scene

and object geometry information.

Alternatively, weak annotations for gaze-based interac-

tion exist in the form of social interaction labels. One such

condition is the commonplace “looking at each other” con-

dition, also known as LAEO [26], where a binary label is

assigned to pairs of human heads for when they are gazing

at each other. This is a simpler quantity to annotate com-

pared to mutual attention or visual focus of attention. The

recently published AVA-LAEO dataset [25] is an extension

of the AVA dataset [10] and demonstrates the ease of acquir-

ing such annotations for existing videos. To the best of our

knowledge, we are the first to show that social interaction

labels such as LAEO can be used for weakly-supervised

gaze estimation. Furthermore, adding LAEO-based con-

straints and objectives consistently improves performance

in cross-dataset and semi-supervised gaze estimation, fur-

ther validating the real-world efficacy of our approach.

3. Weakly-supervised Gaze Learning

3.1. Problem Definition and Motivation

Our goal is to supervise 3D gaze learning with weak su-

pervision from in-the-wild videos of humans “looking at

each other”. Such scenes contain the LAEO constraint, i.e.,

the 3D gazes of the two subjects are oriented along the same

line, but in opposite directions to each other. We specifi-

cally target the challenging task of physically unconstrained

gaze estimation where large subject-to-camera distances,

and variations in head poses and environments are present.

We assume that we have a large collection of videos con-

taining LAEO activities available to us which can be ac-

quired, for example, by searching the web with appropri-

ate textual queries. We further assume that, by whatever

means, the specific frames of a longer video sequence con-

taining the LAEO activity have been located and that the 2D

bounding boxes of the pair of faces in the LAEO condition

are also available. We refer to these labels collectively as

the “LAEO labels”.

Acquiring LAEO data is a relatively quick and cost ef-

fective way to curate lots of diverse training data. Neverthe-

less, Internet videos with LAEO labels cannot provide pre-

cise 3D gaze supervision. This is because, for such videos

neither the scene’s precise geometry, nor the camera’s in-

trinsic parameters are known a priori. Moreover, trivially

enforcing the simple LAEO constraint of requiring the pre-

dicted gaze estimates of the two individuals to be opposite

to each other is not sufficient for learning gaze. It quickly

leads to degenerate solutions.

To address these various challenges, we design a novel

weakly-supervised learning framework for 3D gaze estima-

tion from LAEO data. Specifically, we propose a num-

ber of novel geometric scene-level LAEO losses, including

a 3D and a 2D one, that are applied to pairs of faces in

LAEO. For individual face inputs we also use an aleatoric

gaze loss [18], which computes gaze uncertainty, along with

a self-supervised symmetry loss. We further propose an

uncertainty-aware self-training procedure to generate 3D

gaze pseudo ground truth labels from pairs of faces exhibit-

ing LAEO. Our training framework operates in two config-

urations: (a) a purely weakly-supervised one with LAEO

data only and (b) a semi-supervised one, where LAEO data

is combined with 3D gaze-labeled data.

3.2. Solution Overview

Our overall framework for weakly-supervised 3D gaze

learning from LAEO data is shown in Fig. 2. We wish

to train the function F(I, θ) with weights θ to estimate

gaze by providing video sequences of pairs of people ex-

hibiting LAEO. Inspired by [17], our gaze estimation net-

work F(I, θ) consists of a ResNet-18 backbone followed by

two bi-directional LSTM layers and a fully-connected (FC)

layer, which estimates a gaze value ĝ = {ĝθ, ĝφ} along with

an uncertainty value σ̂ corresponding to the central image in

a sequence of 7 consecutive input frames. Here ĝθ and ĝφ
indicate the estimates for the gaze pitch and yaw angles,

respectively. In addition to this temporal version of our net-

work, we also explore a static variant, which takes a single

image as input and bypasses the LSTM layers to directly

connect the output of the backbone CNN to the FC layer.

For LAEO data, the input to our network is a pair of

head crops of size 224×224×3 each containing one of the

two faces that exhibit LAEO along with the original scene

image. No 3D gaze labels are available during training with

LAEO data. If data containing explicit 3D gaze labels is ad-

ditionally available for semi-supervised training, we extract

single head crops from the scene images and input them

along with their known ground truth 3D gaze labels into the

network for training.
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Figure 2. An overview of our weakly-supervised approach to learning 3D gaze from the “looking at each other” human activity videos.

From left to right, we show (a) the inputs to our gaze estimation network, i.e., pairs of head crops in LAEO with their scene images

for weakly-supervised training and optionally single head crops with gaze labels for semi-supervised training (if available); (b) our gaze

estimation network, which predicts gaze ĝ and its uncertainty σ̂; (c) the various weakly-supervised and fully-supervised losses used for

training; (d) estimation of scene geometry for in-the-wild LAEO videos acquired from the web including that of the 2D and 3D positions of

the cyclopean eyes of the subject pairs in LAEO used to compute the LAEO losses; and (e) details of our proposed LAEO losses including

the geometric 2D LAEO loss (L2D
geom), geometric 3D LAEO loss (L3D

geom) and the pseudo gaze loss (L
pseudo
G ).

3.3. Loss Functions

We employ several end-to-end differentiable geometric

loss functions, which are derived from the LAEO constraint

to supervised 3D gaze learning. These include two scene-

level geometric 2D and 3D LAEO losses. We start by de-

scribing our technique for scene geometry estimation and

3D gaze origin determination for in-the-wild videos and

then describe our geometric LAEO losses. We then describe

our uncertainty-aware 3D gaze pseudo labeling procedure,

followed by two additional losses – the aleatoric gaze and

symmetry losses that are applied to individual face inputs.

Scene Geometry Estimation The geometric LAEO loss

functions can only be computed in a coordinate system

common to both subjects, i.e., the camera coordinate sys-

tem. For Internet videos, we cannot reliably recover camera

parameters or the subjects’ 3D poses. So we instead derive

approximate values for them. We approximate the camera

focal parameter f to be the size of the larger image dimen-

sion in pixels. The principal point is assumed to be at the

center of the image. We detect the 2D facial landmarks of

a subject using AlphaPose [7] and refer to the midpoint of

their left and right eye pixel locations as their “2D cyclo-

pean eye” P 2D = (x, y). We assume it to be the point from

where gaze originates for a subject on the 2D image plane.

To find its 3D counterpart, i.e., the 3D cyclopean eye P 3D,

we also estimate depth z per subject and back-project P 2D

to 3D as (zx/f, zy/f, z). This procedure ensures that P 2D

and P 3D lie on the same projection line originating from

the camera’s center.

To recover depth z of each subject, we first estimate their

2D-3D correspondences using DensePose [11]. We use the

predicted 2D facial key-points [7] and an average gender

neutral 3D SMPL head model [24] to compute the 3D trans-

formation required to fit the 3D head model to a particular

subject using PnP [21]. This allows for an estimation of

the 3D head model’s location and orientation in the camera

coordinate system, which in turn provides us with depth es-

timates in meters (see Fig. 2) for each subject. Specifically,

we utilize the depth z value of the mid points of the left and

right eyes of the fitted 3D head model to recover depth of

each subject. The end result is a shared 3D coordinate sys-

tem for both subjects under LAEO (see Fig. 2). In Sec. D.3

of the supplementary we further discuss the effect of our

various approximations employed to compute the scene ge-

ometry on the reliability of 3D gaze estimates derived from

LAEO data.

Geometric 2D LAEO Loss For two subjects A and B
in LAEO, the projections of their predicted 3D gaze vec-

tors onto the scene image plane, should lie along the line

joining their 2D cyclopean eyes P 2D
A and P 2D

A (see Fig. 2).

This intuition forms the basis of our geometric 2D LAEO

loss L2D
geom. To compute this loss, we estimate the gaze an-

gles ĝA for subject A in LAEO by forward propagating their

head crop image IA through F(I, θ). We then transform it

to a 3D unit gaze vector ĝ3DA originating from subject A’s

3D cyclopean eye P 3D
A in the camera coordinate system.

Next, we forward project ĝ3DA onto the observed scene im-

age as the 2D gaze vector ĝ2DA (see Fig. 2). To compute

L2D
geom, we compute the angular cosine distance between

two 2D unit vectors in the image plane: one along ĝ2DA and
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another one along the line joining P 2D
A and P 2D

B . We repeat

this process for subject B and average both losses to obtain

the final loss L2D
geom.

Note, however, that L2D
geom on its own cannot fully re-

solve the depth ambiguity present in videos obtained from

the Internet and hence is not sufficient to learn 3D gaze (see

Table 1), but when combined with the other LAEO losses

it helps to improve overall gaze estimation accuracy (see

Sec. B.4 in supplementary). Thus, we additionally propose

a geometric 3D LAEO loss which helps to resolve depth

ambiguities and aids in learning 3D gaze more accurately.

We describe it next.

Geometric 3D LAEO Loss The geometric 3D LAEO

loss, L3D
geom, explicitly provides 3D directional information

to supervise gaze learning. We formulate it to enforce that

the estimated 3D gaze vector originating from the cyclopean

eye P 3D
B of subject B in LAEO, must intersect the viewed

subject A’s 3D cyclopean eye P 3D
A (see Fig. 2). To achieve

this, we first estimate the 3D facial plane ΠA of the viewed

subject A, and place it at their 3D cyclopean eye location

P 3D
A perpendicular to their heading vector. We define the

heading vector as the line joining the 3D midpoint of a sub-

ject’s outer most 3D ear points, and 3D nose tip obtained

from the fitted SMPL head model. Then the geometric 3D

LAEO constraint for subject B is given by ||P̂ 3D
A - P 3D

A ||,
where P 3D

A is subject A’s 3D cyclopean eye position and

P̂ 3D
A is the intersection of subject B’s 3D gaze vector ĝ3DB

with subject A’s face plane ΠA (see Fig. 2). Here ||.|| de-

notes Euclidean distance. We repeat this process for subject

A and average the losses computed for both subjects to ob-

tain the final loss L3D
geom. Empirically we find that our for-

mulation for L3D
geom performs better than an alternate cosine

angle-based version (see Sec. B.3 in supplementary).

Pseudo Gaze LAEO Loss The LAEO activity also pro-

vides us with the self-supervised constraint that the ground

truth 3D gaze vectors of two individuals A and B in LAEO,

are oriented along the same 3D line, but in opposite direc-

tions to each other, i.e., g3DA = −g3DB . Hence, we lever-

age it in a self-training procedure and compute gaze pseudo

ground truth labels for a pair of LAEO subjects continually

while training. We observe that the LAEO activity often re-

sults in a clear frontal view of one subject while the other

subject is turned away (see examples in Fig. 1 and Fig. 2).

Moreover, gaze estimation errors generally increase with

extreme head poses where features such as the eyes are less

visible (see Fig. 2 in the supplementary for a plot of gaze

error versus gaze yaw). For example, in the extreme case of

looking from behind a subject, facial features become com-

pletely occluded.

We find that the uncertainty measure estimated by our

network is well correlated with gaze error (with a Spear-

man’s rank correlation coefficient of value of 0.46). So

to derive the gaze pseudo ground truth for a pair of faces

in LAEO, we use the uncertainty measure to weigh more

heavily the more reliable (less uncertain) of the two gaze

estimates for a LAEO pair. Specifically, let {ĝ3DA , σ̂A} and

{ĝ3DB , σ̂B} be the predicted 3D gaze vectors and their angu-

lar uncertainty values (in a common 3D coordinate system)

for a pair of input face crops in LAEO, IA and IB, respec-

tively. We compute the pseudo 3D gaze ground truth label

g3Dpseudo for faces A and B as a weighted combination of

their estimated 3D gaze vectors as:

g3Dpseudo = wAĝ
3D
A +wB(−ĝ3DB ), (1)

where we compute wA and wB from the angular uncertainty

values σ̂A and σ̂B as wA = σ̂B/σ̂A+σ̂B and wB = σ̂A/σ̂A+σ̂B

predicted by the gaze network. We further compute co-

sine distances between each LAEO subjects’ predicted gaze

vectors ĝ3D and their respective pseudo ground truth val-

ues g3Dpseudo and −g3Dpseudo. We average the cosine distances

computed for both subjects to obtain the final Lpseudo
G loss.

We find that this formulation of Lpseudo
G is superior to other

variants of it (see Sec. B.2 in supplementary).

Aleatoric Gaze Loss We use an aleatoric loss function

LG to supervise gaze estimation of individual face inputs,

which regresses both the predicted gaze value and its uncer-

tainty. This gaze uncertainty is helpful in deriving pseudo

ground truths for pairs of faces in LAEO as described in the

previous section. Aleatoric uncertainty models the distribu-

tion of the estimated gaze angles as a parametric Laplacian

function and hence our gaze network F(I, θ) predicts their

estimated mean {ĝθ, ĝφ} and absolute deviation σ̂ values.

We supervise the network by minimizing the negative log-

likelihood of observing the ground truth gaze value {gθ, gφ}
w.r.t. to this predicted Laplacian distribution as:

Lθ
G = log(σ̂) +

1

σ̂
|ĝθ − gθ|

Lφ
G = log(σ̂) +

1

σ̂
|ĝφ − gφ| (2)

LG = Lφ + Lθ.

In practice, we predict the logarithm of the absolute devi-

ation log(σ̂) from our network. This formulation has been

shown to be numerically stable and avoids a potential divi-

sion by zero [18]. Note that previously, in [17], the authors

similarly employed a pinball loss to estimate the uncertainty

of gaze predictions. We find that, in comparison to the pin-

ball loss, the aleatoric loss improves the baseline accuracy

of gaze estimation (see Sec. B.1 in supplementary).

Symmetry Loss We also exploit the left-right symmetry

inherent to the gaze estimation task to enforce another self-

supervised gaze symmetry loss Lsym. Specifically, we esti-

mate gaze angles for an input face image I as ĝ = {ĝθ, ĝφ},

reverse the sign of its predicted gaze yaw angle to produce
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the altered prediction ĝ∗ = {ĝθ,−ĝφ} and use this altered

gaze estimate as the ground truth to supervise the predicted

gaze, using the aleatoric loss, for a horizontally flipped (mir-

rored) version I
∗ of the input face image as:

Lsym = LG(F(I∗, θ), ĝ∗). (3)

We repeat this process for the horizontally flipped image

and average the two resultant losses. Note that here the gaze

angles are assumed to be in a normalized eye coordinate

system as described in [17], whose z axis passes through

each subject’s 3D cyclopean eye position P 3D. This loss

prevents network over-fitting while improving accuracy of

gaze estimation (see Sec. B.1 in supplementary).

3.4. Training

We adopt two training paradigms: purely weakly-

supervised training with LAEO data only or semi-

supervised training where LAEO data augments data con-

taining explicit 3D gaze labels. In both conditions, we ini-

tialize the ResNet-18 backbone of our model with weights

pre-trained using ImageNet [5]. We initialize the LSTM

module and FC weights using a normal distribution. For

semi-supervised training, we first train our model to conver-

gence with images containing explicit 3D gaze labels only

and then add weakly-supervised images with LAEO labels

and continue training jointly to convergence. We fix the pa-

rameters of the batch normalization layers during initializa-

tion to those found in the ImageNet pre-trained weights. We

optimize the model using the following objective function:

L = LG + αLsym + βLLAEO,

LLAEO = (L3D
geom + L2D

geom + Lpseudo
G ).

(4)

Here, α and β are scalar weights, which slowly ramp up

the contribution of the symmetry and LAEO losses, respec-

tively. The ramp operation is formulated as (⌈i/T ⌉1) where

i is the smallest iterative step to update our model while T
is a threshold. We set Tα as 3000 and Tβ as 2400. In exper-

iments, which do not involve any gaze supervision, β is al-

ways fixed at 1 and LG is not included. We use a batch-size

of 80 frames/sequences to train our static/temporal gaze es-

timation network. We use a fixed learning rate of 10−4 with

the ADAM optimizer [19].

4. Experiments

Here we evaluate the real-world performance of our

method in the fully weakly-supervised or semi-supervised

settings for the task of physically unconstrained gaze esti-

mation [17]. We perform extensive experiments within and

across datasets. Besides gaze estimation, in Sec. A of the

supplementary, we also show the utility of adding LAEO

labels to the task of in-the-wild visual target attention pre-

diction [4] in a semi-supervised setting.

LAEO Datasets We employ two LAEO datasets – CMU

Panoptic [16] and AVA [10, 25]. CMU Panoptic [15] is col-

lected with a multiple-camera system installed in a large

indoor dome, wherein subjects perform various activities.

It does not contain LAEO annotations but contains the sub-

jects’ 3D body-joint locations and camera calibration infor-

mation, which we directly use in our experiments. From

video sequences containing the haggling activity, we extract

clips with the LAEO activity present via a semi-automatic

procedure (described Sec. D.1 of supplementary). This re-

sults in over 800k pairs of faces extracted from 485 unique

subjects. For our experiments, we only utilize images from

cameras that are parallel to the ground plane.

To acquire LAEO data from in-the-wild Internet videos,

we leverage the large scale AVA human activity dataset [10]

with LAEO annotations [25] provided by Marin-Jimenez et

al. (called “AVA-LAEO”). It consists of annotated head

bounding box pairs under LAEO in select frames across

multiple video sequences, resulting in a wide variety of

faces, backgrounds and lighting conditions. Unlike CMU

Panoptic, AVA-LAEO does not provide access to accurate

camera parameters or 3D human poses. We estimate the

subjects’ 3D poses using DensePose [11] and AlphaPose [7]

(described in Sec. 3.3 and Sec. D.2 in supplementary). In

all, this dataset contains 13,787 sequences of pairs of faces

in LAEO.

Gaze Datasets We validate the efficacy of our weakly-

supervised approach on the large-scale physically uncon-

strained in-the-wild Gaze360 [17] dataset. It contains ex-

plicit 3D gaze labels and large variations in subject head

poses and gaze angles, and lighting conditions and back-

grounds. Its images are acquired in both indoor and out-

door environments using a Ladybug multi-camera system.

It contain 127K training sequences from 365 subjects. For

semi-supervised training, we additionally use two large-

scale gaze datasets with known 3D gaze ground-truth –

GazeCapture [20] and ETH-XGaze [44]. GazeCapture con-

tains nearly 2M frontal face images of 1474 subjects ac-

quired in unconstrained environmental conditions. ETH-

XGaze, on the other hand, was acquired indoors with con-

trolled lighting on a standard green background with a

multi-view camera system. It contains 756K frames of 80

subjects.

The gaze distribution plots of all these datasets and their

example face images are shown in Fig. 3. For GazeCap-

ture and ETH-XGaze, we use the normalization procedure

described in [47] to create normalized face crops. For all

other datasets, we employ the procedure described in [17]

to create normalized head crops. For all evaluations, we

report the angular error (in degrees) between the estimated

and ground truth unit gaze vectors, averaged across the cor-

responding test dataset.
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GazeCapture XGazePanopticGaze360 AVA

Figure 3. Top Gaze direction distribution of the Gaze360 [17], AVA-LAEO [25, 10], CMU Panoptic [15], GazeCapture [20] and ETH-

XGaze [44] datasets. Note that here the approximate gaze for CMU Panoptic and AVA-LAEO is computed by joining the LAEO pair of

subjects’ 3D cyclopean eye locations. Bottom Example face or head crops (if available) from the individual datasets.

4.1. Ablation Study
To verify the contributions of our individual losses, we

conduct a purely weakly-supervised cross-dataset ablation

study. We train our method with the CMU Panoptic or AVA-

LAEO datasets and evaluate performance on the Gaze360

dataset’s test partition. Table 1 highlights the effect of

the various weakly-supervised LAEO losses in this cross-

dataset setting. All values reported are for the case when

the symmetry loss was used by default. We train two con-

figurations of our gaze estimation model – (a) a temporal

version, which accepts 7 frames as input, and (b) a static

variant, which predicts gaze from a single input frame.

We observe that among the individual weakly-

supervised losses, Lpseudo
G and L2D

geom on their own or

together, result in degenerate solutions. This is not sur-

prising as it highlights the effects of depth ambiguity (see

Sec. 3.3). Strong supervision can be provided by explicitly

constraining the estimated gaze to intersect a 3D target, in

our case, the viewed subject’s head in the LAEO condition.

This can be seen from the fact that L3D
geom significantly

improves over its degenerate counterparts. We observe that

the best performance is achieved by utilizing a combination

of L3D
geom, L2D

geom and the Lpseudo
G losses, especially with the

real-world AVA-LAEO dataset where the scene geometry

is not known. We also find that removing the symmetry

loss increases the overall gaze error of our best (temporal)

model to 27.9◦ from 25.9◦ for CMU Panoptic and to 27.9◦

from 26.3◦ for AVA-LAEO (not listed in Table 1). We

provide additional ablation studies to explore the effect

of the aleatoric and symmetric losses; other variants of

the Lpseudo
G and L3D

geom losses; and the utility of L2D
geom in

Sec. B of the supplementary.

4.2. Semisupervised Evaluation
Despite successfully learning to estimate gaze, the

performance of our purely weakly-supervised model

(trained on the AVA-LAEO dataset and tested on the

Gaze360 dataset) lags behind the fully-supervised model on

Gaze360’s training set [17] as shown in Table 2 (26.3◦ vs

13.2◦ for the temporal model). One reason for this discrep-

ancy is the presence of noise in the gaze labels derived from

Temporal Static

Loss functions Pano. AVA Pano. AVA

L
pseudo
G 55.4 52.9 61.9 48.0

L2D
geom 58.7 52.4 49.0 46.9

L3D
geom 28.0 30.1 31.4 30.4

L2D
geom + L

pseudo
G 55.0 54.1 54.0 51.3

L3D
geom + L

pseudo
G 26.1 27.3 29.0 30.6

L3D
geom + L2D

geom 26.9 26.4 31.3 30.8

L
pseudo
G + L3D

geom + L2D
geom 25.9 26.3 31.3 28.7

Table 1. An ablation study to evaluate our individual weakly-

supervised LAEO losses. The symmetry loss is always used. All

numbers reported are using predictions from the temporal and

static variants of our gaze estimation model, when evaluated on

Gaze360’s test set, measured in gaze angular error in degrees.

Lower is better.

LAEO data (as discussed in Sec. D.3 of the supplementary)

and the other is the the existence of domain gap between

the AVA-LAEO and Gaze360 datasets. The latter is evident

from the gaze distribution plots shown in Fig. 3. LAEO

data tends to be biased towards viewing individuals from

larger profile angles (see Fig. 1 and Fig. 2) and contains

less frontal face data. It also contains less diversity in the

head’s pitch (up/down rotation).

Hence, in this experiment, we explore a semi-supervised

setting, where we evaluate if weakly-supervised LAEO data

can successfully augment limited gaze-labeled data and im-

prove its generalization for the task of physically uncon-

strained gaze estimation in-the-wild. We conduct both

cross-dataset and within-dataset experiments. For the cross-

dataset experiment, we train our model with several exist-

ing datasets other than Gaze360 and test on Gaze360’s test

partition. For the within-dataset experiment, we train on

various subsets of Gaze360’s training partition along with

LAEO data and evaluate performance on Gaze360’s test set.

Unlike [44], which evaluates performance on only frontal

faces from Gaze360, we evaluate performance on both (a)

frontal and (b) all faces from Gaze360’s test set (including

large profile faces).

Cross-dataset In Table 2, we compare the generaliza-

tion performance of the GazeCapture and the ETH-XGaze
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Within dataset, Gaze + LAEO Labels

Training Data Frontal face crops All head crops

Gaze360 [17] 11.1 13.5

Gaze360 10.1 13.2

Gaze360 + AVA 10.2 13.2

Cross dataset, Gaze + LAEO Labels

Training Data Frontal face crops All head crops

GazeCapture [44] 30.2 -

GazeCapture 29.2 58.2

GazeCapture + AVA 19.5 27.2

ETH-XGaze [44] 27.3 -

ETH-XGaze 20.5 52.6

ETH-XGaze + AVA 16.9 25.0

Cross dataset, LAEO Labels

Training Data Frontal face crops All head crops

AVA 29.0 26.3

CMU Panoptic 26.0 25.9

CMU Panoptic + AVA 22.5 24.4

Table 2. Performance evaluation of our temporal model on

Gaze360 dataset’s test partition with various different training

datasets ranging from those containing full gaze supervision

(Gaze360, GazeCapture, ETH-XGaze), weak LAEO supervision

only (the AVA-LAEO or CMU Panoptic datasets), or their com-

binations. All reported values are gaze angular errors in de-

grees (lower is better) on either (a) frontal face crops only or (b)

all head crops from Gaze360’s test set. Note that the addition

of AVA-LAEO to GazeCapture or ETH-XGaze significantly im-

proves their generalization performance on Gaze360.

datasets on Gaze360, with and without weak supervision

from AVA-LAEO. Both these supervised gaze datasets, al-

though large, are limited in some respect for the task of

physically unconstrained gaze estimation in-the-wild. The

GazeCapture dataset contains images acquired indoors and

outdoors, but of mostly frontal faces with a narrow distri-

bution of gaze angles (Fig. 3). The ETH-XGaze dataset, on

the other hand, has a broad distribution of gaze angles from

80 subjects (Fig. 3), but is captured indoors only.

Table 2 highlights that on including weak gaze supervi-

sion from AVA-LAEO, the generalization performances of

both GazeCapture and ETH-XGaze on Gaze360, for frontal

and all faces is improved. For frontal faces, the addition

of AVA-LAEO results in improvements of 7.4◦ for Gaze-

Capture and 3.6◦ for ETH-XGaze. On all head crops, how-

ever, this improvement is even more pronounced – 31.0◦

for GazeCapture and 27.6◦ for ETH-XGaze. Fig. 3 shows

that the AVA-LAEO dataset complements both the Gaze-

Capture and ETH-XGaze datasets by expanding their un-

derlying distributions via weak gaze labels (see more de-

tails in Sec. C of supplementary). In Table 2, we also show

the cross-dataset performance of jointly training with CMU

Panoptic and AVA-LAEO with their weak gaze labels only.

We find that the in-the-wild AVA-LAEO data also slightly

Figure 4. Gaze error (in degrees) on the Gaze360 test set on aug-

menting a reduced Gaze360 training set (with less subjects) with

AVA-LAEO. We vary the number of Gaze360 training subjects

along the horizontal axis. The shaded area corresponds to the stan-

dard error of the average metric evaluated over 5 repetitions of

each experiment performed by picking a different random subset

of subjects each time.

improves the generalization performance of the indoor-only

CMU Panoptic data on Gaze360. Finally, Table 2 shows

that our model also outperforms the previously reported

state-of-the-art performances [17, 44] on all benchmarks.

Within-dataset Training data acquired from a larger

number of subjects improves generalization of gaze estima-

tors as shown in [20]. However, recruiting more subjects

requires additional cost and time. In Fig. 4, we evaluate the

performance of training with progressively larger numbers

of subjects from Gaze360’s training set, without (labeled as

“Gaze360” in Fig. 4) and with (labeled as “+AVA” in Fig. 4)

AVA-LAEO. We use all available videos of a particular sub-

ject during training. We assess both our temporal and static

models. For this within-domain semi-supervised setting,

we find that training on a small number of subjects from

Gaze360 along with weak supervision from AVA-LAEO,

offers the same performance as using a larger number of

subjects from Gaze360.

5. Conclusion

In this work, we present the first exploration of a weakly-

supervised 3D gaze learning paradigm from images/videos

of people looking at each other (LAEO). This approach is

trivially scalable due to the ease of acquiring LAEO anno-

tations from Internet videos. To facilitate the learning of

3D gaze, we propose three training objectives, which ex-

ploit the underlying geometry native to the LAEO activ-

ity. Through many experiments we demonstrate that our

approach is successful in augmenting gaze datasets limited

in gaze distributions, subjects, or environmental conditions

with unconstrained images of people under LAEO, result-

ing in improved physically unconstrained gaze estimation

in the wild.
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