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Abstract

We propose a novel method for estimating the global ro-

tations of the cameras independently of their positions and

the scene structure. When two calibrated cameras observe

five or more of the same points, their relative rotation can be

recovered independently of the translation. We extend this

idea to multiple views, thereby decoupling the rotation es-

timation from the translation and structure estimation. Our

approach provides several benefits such as complete immu-

nity to inaccurate translations and structure, and the accu-

racy improvement when used with rotation averaging. We

perform extensive evaluations on both synthetic and real

datasets, demonstrating consistent and significant gains in

accuracy when used with the state-of-the-art rotation aver-

aging method.

1. Introduction

Bundle adjustment is the problem of reconstructing the

camera poses (i.e., rotations and translations) and the 3D

scene structure from the image measurements. It plays a

crucial role in many areas of 3D vision, such as structure

from motion [26], visual odometry [53], and simultaneous

localization and mapping [8]. For this reason, significant re-

search endeavors have been devoted to this problem, which

led to tremendous progress over the past two decades.

Bundle adjustment aims to obtain jointly optimal struc-

ture and camera poses by minimizing the image reprojec-

tion errors [57]. Being a nonlinear optimization problem,

it requires a good initialization to ensure the convergence

to the statistically optimal solution [26]. A common strat-

egy involves the following steps: (1) Estimate the pairwise

motions. (2) Estimate the global rotations through rotation

averaging (e.g., [5, 10]). (3) Estimate the global translations

(e.g., [24, 59]). (4) Triangulate the points (e.g., [32, 43]).

In such a pipeline, it is important to make an accurate ini-

tial guess of the rotations, as the subsequent steps directly

depend on it. To this end, one could try to improve the rota-

tion averaging method or its input (i.e., the relative pairwise
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motion estimates). Recent examples of the former include

[5, 10, 16, 19, 51] and the latter include [6, 7, 23, 63].

These two types of approaches are certainly useful for

initializing the rotations. However, relative pose estimation

is limited to two views only, while rotation averaging does

not directly leverage the image measurements. That is, it

treats all relative rotations equally even if they were esti-

mated from different numbers of points with different noise

statistics and distributions. To our knowledge, no previous

work has addressed this limitation for rotation estimation.

In this work, we present a novel method that, given the

initial estimates of the rotations, performs rotation-only op-

timization using the image measurements as direct input.

Our work is based on [34], where it was proposed to opti-

mize the rotation between two views independently of the

translation. We extend this idea to multiple views. We

call our approach rotation-only bundle adjustment because

it can be seen as the decoupling of the rotation estimation

from the translation and structure estimation in bundle ad-

justment. This provides the following advantages:

• The rotations are estimated without requiring the

knowledge of the translations and structure. This

greatly simplifies the optimization problem.

• The rotations are immune to inaccurate estimation of

the translations and structure.

• Both pure and non-pure rotations are treated in a uni-

fied manner, as we do not need to triangulate and dis-

card the low-parallax points.

• It can be used after rotation averaging to improve the

accuracy of the rotation estimates.

Table 1 summarizes the differences between our method

and the related methods.

The paper is organized as follows: In the next two sec-

tions, we review the related work and the preliminaries.

Section 4 reviews the two-view rotation-only method by

Kneip and Lynen [34]. We describe our method in Section

5 and show the experimental results in Section 6. Finally,

Section 7 and 8 present discussions and conclusions.

To download our code and the supplementary material,

go to https://seonghun-lee.github.io.
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Independent of the translations Directly using the image Applicable

and the 3D scene structure? measurements as input? to n views?

Full bundle adjustment (e.g., [57]) ✗ ✓ ✓

Rotation averaging (e.g., [10]) ✓ ✗ ✓

Direct rotation optimization [34] ✓ ✓ ✗

Rotation-only bundle adjustment ✓ ✓ ✓

Table 1. Comparison between the related methods. To the best of our knowledge, we are the first to propose a multiview rotation-only

optimization method using the image measurements as direct input. Our method can be generalized to both pure and non-pure rotations.

2. Related Work

Our work is related to several areas of study in 3D vision

and robotics, namely structure from motion, simultaneous

localization and mapping, bundle adjustment, rotation aver-

aging, and relative pose estimation.

Structure from motion (SfM) is the problem of recov-

ering the camera poses and the 3D scene from an unordered

set of images. Large-scale systems may handle from hun-

dreds of thousands [2] to millions of images [29, 64]. We

refer to [50, 54] for excellent reviews of the SfM literature.

The backbone of most SfM systems is bundle adjustment,

the joint optimization of the camera poses and the 3D struc-

ture. To obtain the optimal solution, it requires good ini-

tial estimates of the poses and points [26]. In many works

[4, 13, 14, 18, 24, 46, 47, 59, 66], the initialization consists

of the following steps: (1) Estimate the relative poses be-

tween the camera pairs observing many points in common.

(2) Perform multiple rotation averaging. (3) Estimate the

camera locations (and the 3D points). In such a pipeline,

one may use our method as Step 2.5 to refine the rotations.

Simultaneous localization and mapping (SLAM) is

the problem of estimating the camera motion and the 3D

scene in real time. Like SfM, the modern SLAM systems

rely on bundle adjustment to jointly optimize the keyframe

poses and the map points [9, 17, 40, 48]. Recently, in

[11, 65], it was suggested that decoupling the rotation es-

timation through rotation averaging improves the efficiency

and the handling of pure rotations.

Bundle adjustment is mainly classified into geometric

and photometric methods. The former minimizes the repro-

jection errors [1, 26, 44, 57], and the latter minimizes the

photometric errors [3, 15, 17, 60]. The bundle adjustment

problems have been studied extensively for several decades,

which led to diverse techniques for improving the scalabil-

ity (e.g., [1, 36, 38, 44]) and the accuracy (e.g., [57, 61, 62]).

In [30], an initialization-free approach was proposed. To

our knowledge, however, no previous work has completely

decoupled the rotation estimation in bundle adjustment.

Rotation averaging takes two forms: single rotation

averaging that averages several estimates of a single rota-

tion to obtain the best estimate [25, 42], and multiple ro-

tation averaging that finds the multiple rotations Ri given

several noisy constraints on the relative rotations RiR
⊤
j

[4, 5, 10, 16, 19, 25, 46]. We refer to [28, 58] for an excel-

lent tutorial and survey on the topic. As discussed earlier,

multiple rotation averaging has wide application to SfM.

This problem differs from bundle adjustment in that (1) only

rotations are estimated, and (2) the input is the relative ro-

tation estimates, not the image measurements. Since the

states and the input are small compared to bundle adjust-

ment, the computation process is faster and simpler. How-

ever, the downside is that it does not directly reflect the er-

rors with respect to the image measurements. In contrast,

our optimization method directly uses the image measure-

ments as input, while maintaining only rotations in the state

space. In this context, our method can be seen as the middle

ground between rotation averaging and bundle adjustment.

Relative pose estimation Given a set of five or more

point matches between two calibrated views, their rela-

tive pose can be obtained using a minimal method (e.g.,

[20, 31, 37, 49]) with RANSAC [6, 21, 52] or a non-

minimal method (e.g., [7, 27, 34, 63]). In [34, 35], it was

shown that the rotation can be estimated independently of

the translation. In this work, we extend the idea of [34] to

n ≥ 2 views by aggregating multiple two-view costs and

minimizing it through iterative nonlinear optimization.

3. Preliminaries and Notation

We use bold lowercase letters for vectors, bold uppercase

letters for matrices, and light letters for scalars. We denote

the Hadamard product, division and square root by A ◦B,

A⊘B and A◦1/2, respectively. For a 3D vector v, we de-

fine v∧ as the corresponding 3× 3 skew-symmetric matrix,

and denote the inverse operator by (·)∨, i.e., (v∧)
∨

= v.

The Euclidean norm of v is denoted by ‖v‖, and its unit

vector by v̂ = v/‖v‖. A rotation matrix R ∈ SO(3) can be

represented by the corresponding rotation vector u = θû,

where θ and û represent the angle and the unit axis of the

rotation, respectively. The two representations are related

by Rodrigues formula, and we denote the mapping between

them by Exp(·) and Log(·) [22]:

R = Exp(u) := I+
sin (‖u‖)
‖u‖ u∧+

1− cos (‖u‖)
‖u‖2 (u∧)

2
,

(1)

u = Log(R) :=
θ

2 sin(θ)

(
R−R⊤

)∨
(2)

with θ = arccos ((tr(R)− 1) /2) . (3)
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We denote the 3D position of a point with index i in a

world reference frame w as (xi)w = [(xi)w, (yi)w, (zi)w]
⊤

and a perspective camera with index j as cj . In the refer-

ence frame of cj , the position of xi is given by (xi)j =
[(xi)j , (yi)j , (zi)j ]

⊤ = Rj(xi)w+tj , where Rj and tj are

the rotation and translation that relate the local reference

frame of cj to the world. The projection of xi in the im-

age plane of cj has the pixel coordinates [(ui)j , (vi)j ]
⊤ =

[ 1 0 0
0 1 0 ]Kj(fi)j , where Kj is the camera calibration matrix

of cj and (fi)j = [(xi)j/(zi)j , (yi)j/(zi)j , 1]
⊤ is the nor-

malized image coordinates of (xi)j . Then, (fi)j can be ob-

tained by (fi)j = K−1
j [(ui)j , (vi)j , 1]

⊤. We denote the

rotation and the translation between camera j and k as Rjk

and tjk. The point xi in the reference frame of cj and ck
is related by (xi)j = Rjk(xi)k + tjk. This means that

Rjk = RjR
⊤
k and tjk = −RjR

⊤
k tk + tj .

4. Review of Two-view Rotation-Only Method

In this section, we review the two-view rotation-only op-

timization method proposed by Kneip and Lynen in [34].

Consider two views with known internal calibration, cj
and ck, observing m ≥ 5 common points with index

i ∈ {1, 2, . . . ,m}. The normalized epipolar error [41] as-

sociated with each point i is defined as

(ei)(j,k) =
∣∣∣ t̂jk ·

((
f̂i
)
j
×Rjk

(
f̂i
)
k

)∣∣∣ , (4)

where
(
f̂i
)
j

and
(
f̂i
)
k

are the unit bearing vectors corre-

sponding to the ith point in cj and ck, respectively. The

sum of squares of all these errors is then given by

m∑

i=1

(ei)
2
(j,k) = t̂⊤jkMjkt̂jk, (5)

where

Mjk=

m∑

i=1

((
f̂i
)
j
×Rjk

(
f̂i
)
k

)((
f̂i
)
j
×Rjk

(
f̂i
)
k

)⊤

. (6)

In [34], it was shown that the 3 × 3 matrix Mjk can also

be computed as follows: denoting the entries of
(
f̂i
)
j

as

[(fxi)j , (fyi)j , (fzi)j ]
⊤, the following matrices are defined:

(Fxx)jk =
∑m

i=1(fxi)
2
j

(
f̂i
)
k

(
f̂i
)⊤
k
, (7)

(Fxy)jk =
∑m

i=1(fxi)j(fyi)j
(
f̂i
)
k

(
f̂i
)⊤
k
, (8)

(Fxz)jk =
∑m

i=1(fxi)j(fzi)j
(
f̂i
)
k

(
f̂i
)⊤
k
, (9)

(Fyy)jk =
∑m

i=1(fyi)
2
j

(
f̂i
)
k

(
f̂i
)⊤
k
, (10)

(Fyz)jk =
∑m

i=1(fyi)j(fzi)j
(
f̂i
)
k

(
f̂i
)⊤
k
. (11)

Let r1, r2, r3 be each row of Rjk, and mab be the element

of Mjk at the ath row and bth column. (Notice that we

omitted the subscript jk here for simplicity). Then,

m11 = r3Fyyr
⊤
3 − 2r3Fyzr

⊤
2 + r2Fzzr

⊤
2 , (12)

m22 = r1Fzzr
⊤
1 − 2r1Fxzr

⊤
3 + r3Fxxr

⊤
3 , (13)

m33 = r2Fxxr
⊤
2 − 2r1Fxyr

⊤
2 + r1Fyyr

⊤
1 , (14)

m12 = r1Fyzr
⊤
3 − r1Fzzr

⊤
2 − r3Fxyr

⊤
3 + r3Fxzr

⊤
2 , (15)

m13 = r2Fxyr
⊤
3 − r2Fxzr

⊤
2 − r1Fyyr

⊤
3 + r1Fyzr

⊤
2 , (16)

m23 = r1Fxzr
⊤
2 − r1Fyzr

⊤
1 − r3Fxxr

⊤
2 + r3Fxyr

⊤
1 , (17)

and m21 = m12, m31 = m13, m32 = m23. This is a

more efficient computation of Mjk than (6), as (7)–(11) can

be precomputed regardless of Rjk, reducing the number of

operations during the rotation optimization [34].

Given the set of corresponding unit bearing vectors, one

can jointly optimize the relative rotation and translation by

minimizing (5) with respect to Rjk and t̂jk. In [34], it was

shown that this problem can be transformed into a rotation-

only form:

R∗
jk = argmin

Rjk

λM(Rjk), (18)

where λM(Rjk) is the smallest eigenvalue of Mjk (which

is a function of Rjk). This eigenvalue can be obtained in

closed form [34]:

b1 = −m11 −m22 −m33, (19)

b2 = −m2
13 −m2

23 −m2
12

+m11m22 +m11m33 +m22m33, (20)

b3 = m22m
2
13 +m11m

2
23 +m33m

2
12

−m11m22m33 − 2m12m23m13, (21)

s = 2b31 − 9b1b2 + 27b3, (22)

t = 4(b21 − 3b2)
3, (23)

k =
(√

t/2
)1/3

cos
(
arccos

(
s/
√
t
)
/3

)
, (24)

λM(Rjk) = (−b1 − 2k) /3. (25)

To summarize, the rotation part of the optimal solution

(R∗
jk, t̂

∗
jk) that minimizes (5) is obtained by solving (18).

5. Rotation-Only Bundle Adjustment

5.1. Cost function

We extend the idea of [34] for n views. Let E be the set

of all edges, i.e., camera pairs (j, k) observing a sufficient

number of points in common (> 10 in our implementation).

Then, we formulate the optimization problem as follows:

{R∗
1, · · · ,R∗

n} = argmin
R1,··· ,Rn

C(R1, · · · ,Rn) (26)

with
C(R1, · · · ,Rn) =

∑

(j,k)∈E

√
λM(Rjk)

︸ ︷︷ ︸
cjk

, (27)
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where λM(Rjk) is the same cost function used in (18) for

the two-view case and cjk =
√
λM(Rjk) is our edge cost.

We empirically found that this square rooting improves the

convergence rate (see Table 5), which we presume is due to

the downweighted influence of outliers. Alg. 1 summarizes

the steps for computing the edge cost cjk.

5.2. Optimization

To solve (26) iteratively, we use Adam [33], a first-

order gradient-based optimization algorithm for stochastic

objective functions. Adam has been widely used in deep

learning, and we found that it also works well for our ge-

ometric optimization problem. Given the initial estimates

of R1, · · · ,Rn, let s0 be the initial state vector formed

by stacking Log(R1), · · · ,Log(Rn) in one column. Let

m0 = 03n×1, v0 = 03n×1, t = 0 and ǫ = (10−8)13n×1.

Then, using Adam, we repeat the following steps at each

iteration t of our optimization:

t← t+ 1, (28)

gt ← ∇sC(R1, · · · ,Rn), (29)

mt ← β1mt−1 + (1− β1)gt, (30)

vt ← β2vt−1 + (1− β2)(gt ◦ gt), (31)

m′
t ←mt/(1− βt

1), (32)

v′
t ← vt/(1− βt

2), (33)

st ← st−1 − αm′
t ⊘ (v′

t
◦1/2 + ǫ), (34)

ui ← [(st)3i−2, (st)3i−1, (st)3i]
⊤ for i = 1, · · · , n, (35)

Ri ← Exp(ui) for i = 1, · · · , n. (36)

We detail the computation of the gradient (i.e., (29)) in the

next section. For the hyper-parameters β1 and β2, we use

the default values given in [33]: β1 = 0.9 and β2 = 0.999.

For the step size α, we use α = 0.01 at the beginning and

switch to α = 0.001 permanently once the cost increases

in five successive iterations. We empirically found that this

switching sometimes helps the convergence (see Table 5).

Alg. 2 summarizes our method.

5.3. Gradient computation

We compute the gradient gt in (29) numerically1. This

can be done efficiently by slightly perturbing each rotation

parameter in st and summing the resulting changes of all

the edge costs cjk (27) as we traverse the edge set E . Since

we need to run Alg. 1 seven times for each edge (i.e., 1 from

the unperturbed state, 3 × 2 from perturbing Rj and Rk),

if there are nE edges, this method will require 7nE compu-

tations of edge costs. To reduce the computation time, we

1It is possible to compute it analytically. However, the closed-form

expressions involve more operations than the numerical method (see the

supplementary material of [34]). We empirically found that this takes ap-

proximately 1.8 times longer, while the numerical difference is negligible.

Algorithm 1: Computation of edge cost cjk

Input: Relative rotation Rjk, Precomputed matrices

(Fxx)jk, (Fxy)jk, (Fxz)jk, (Fyy)jk, (Fyz)jk.
Output: Edge cost cjk.

1 ri ← (Rjk)ith row for i = 1, 2, 3;
2 compute m11, · · · ,m23 using (12)–(17);

3 compute λM(Rjk) using (19)–(25);

4 cjk ←
√
λM(Rjk);

5 return cjk;

Algorithm 2: Rotation-Only Bundle Adjustment

Input: Initial rotations R1, · · · ,Rn, Edges E ,
Matched unit bearing vectors

((
f̂i
)
j
,
(
f̂i
)
k

)

for all i ∈ 1, · · · ,m(j,k) for all (j, k) ∈ E ,

Number of iterations nit.

Output: Final rotations R1, · · · ,Rn.

/* Initialization: */

1 compute (Fxx)jk, · · · , (Fyz)jk for all (j, k) ∈ E
using (7)–(11);

2 compute C using (27) and Alg. 1;

3 obtain s0 by stacking Log(R1), · · · ,Log(Rn) in

one column;

4 β1← 0.9; β2← 0.999; α← 0.01; ǫ← (10−8)13n×1;
5 m0 ← 03n×1; v0 ← 03n×1; t← 0;
/* Optimization: */

6 while t < nit do

7 t← t+ 1;

8 compute C and gt using Alg. 3;

9 Perform (30)–(36);

10 if C increased in five successive iterations then

11 α← 0.001;

12 return R1, · · · ,Rn;

make the following approximation:

cjk
(
Rj(Rk)

⊤
x+∆x

)
− cjk(RjR

⊤
k )

≈ cjk(RjR
⊤
k )− cjk

(
(Rj)x+∆xR

⊤
k

)
, (37)

where (Rj)x+∆x and (Rk)x+∆x respectively denote Rj

and Rk after being perturbed (by the same magnitude) in

the x component of the rotation vector. That is, we assume

that ∆cjk due to (Rk)x+∆x is approximately equal to the

negative of ∆cjk due to (Rj)x+∆x. We make analogous

approximations for the perturbations in the y and z com-

ponent of the rotation vector. By approximating the gradi-

ent of Rk using that of Rj , we reduce the number of edge

cost computations from 7nE to 4nE . Empirically, we found

that this improves the efficiency significantly at a relatively

small loss of accuracy (see Table 6). Alg. 3 summarizes the

procedure for computing the gradient and the total cost.
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Algorithm 3: Cost and gradient computation

Input: Current rotations R1, · · · ,Rn, Edges E ,
(Fxx)jk, (Fxy)jk, (Fxz)jk, (Fyy)jk, (Fyz)jk
for all (j, k) ∈ E

Output: Cost C, Gradient g.

1 C ← 0; g← 03n×1; δ ← 10−4;

2 δx ← [δ, 0, 0]⊤; δy ← [0, δ, 0]⊤; δz ← [0, 0, δ]⊤;
3 ui ← Log(Ri) for all i ∈ 1, · · · , n;
/* Perturb the rotations: */

4 (Ri)x+∆x ← Exp (ui + δx) for all i ∈ 1, · · · , n;
5 (Ri)y+∆y ← Exp (ui + δy) for all i ∈ 1, · · · , n;
6 (Ri)z+∆z ← Exp (ui + δz) for all i ∈ 1, · · · , n;
/* Sum the resulting changes of each cjk : */

7 for (j, k) ∈ E do

8 Rjk ← RjR
⊤
k ;

9 (Rjk)x+∆x ← (Rj)x+∆xR
⊤
k ;

10 (Rjk)y+∆y ← (Rj)y+∆yR
⊤
k ;

11 (Rjk)z+∆z ← (Rj)z+∆zR
⊤
k ;

12 obtain cjk using Alg. 1 with Rjk.

13 obtain (cjk)x+∆x using Alg. 1 with (Rjk)x+∆x.

14 obtain (cjk)y+∆y using Alg. 1 with (Rjk)y+∆y .

15 obtain (cjk)z+∆z using Alg. 1 with (Rjk)z+∆z .

16 ∆(cjk)x ← (cjk)x+∆x − cjk;
17 ∆(cjk)y ← (cjk)y+∆y − cjk;
18 ∆(cjk)z ← (cjk)z+∆z − cjk;
19 g3j−2 ← g3j−2 +∆(cjk)x;
20 g3j−1 ← g3j−1 +∆(cjk)y;
21 g3j ← g3j +∆(cjk)z;
22 g3k−2 ← g3k−2 −∆(cjk)x;
23 g3k−1 ← g3k−1 −∆(cjk)y;
24 g3k ← g3k −∆(cjk)z;
25 C ← C + cjk;

26 g← g/δ;
27 return C and g;

6. Results

6.1. Evaluation method

We compare our method (henceforth ROBA) against the

state-of-the-art rotation averaging method by Chatterjee and

Govindu [10] (henceforth RA). Both methods are imple-

mented in MATLAB and run on a laptop CPU (Intel i7-

4710MQ, 2.8GHz). For RA, we use the code publicly

shared by the authors of [10]2 with the L 1

2

loss function,

as recommended in [10]. We use the output of RA as input

to ROBA, so that we can compare RA versus RA + ROBA.

In Alg. 2, the bottleneck is the gradient computation

(line 8), where the predominant part is the computation of

the edge costs using Alg. 1. To speed up this part, we im-

2http://www.ee.iisc.ac.in/labs/cvl/research/

rotaveraging/

plement Alg. 1 in a C++ MEX function. We set the number

of iterations (nit) to 100 in Alg. 2. Note that, in practice, it

would be sensible to adopt some stopping criteria to detect

the convergence (e.g., based on the relative change of the

total cost or the angular change in the rotations). In our ex-

periment, however, we aim to investigate the convergence

behavior of ROBA, so we are agnostic about this heuristics.

Finally, we draw attention to the error metrics for eval-

uating the rotation estimates (R1, · · · ,Rn). Since they do

not share the same reference frame as the ground-truth ro-

tations (Rgt
1 , · · · ,Rgt

n), we must first align them with the

ground truth to evaluate the accuracy. Commonly, this is

done by rotating them with one of the following rotations:

RL1 = argmin
RL1

n∑

j=1

d
(
RL1,R

⊤
j R

gt
j

)
, (38)

RL2 = argmin
RL2

n∑

j=1

d
(
RL2,R

⊤
j R

gt
j

)2
, (39)

where d(·, ·) denotes the geodesic distance between the two

rotations, i.e., d(R1,R2) = arccos((tr(R1R
⊤
2 ) − 1)/2).

Note that (38) and (39) are single rotation averaging prob-

lems, and they can be solved using iterative algorithms

[25, 28]. Afterwards, we rotate the estimates as follows3:

Rj ← RjRL1, or Rj ← RjRL2. (40)

Since RL1 minimizes the sum of absolute distances and

RL2 minimizes the sum of squares, we call the first method

L1 alignment and the second L2 alignment. In our evalu-

ation, we report the mean and median angular errors using

these two alignment methods.

6.2. Synthetic data

To study how different factors affect our method, we

run Monte Carlo simulations in controlled settings: we uni-

formly distribute n cameras on a circle on the xy-plane such

that the neighbors are 1 unit apart. After aligning their

optical axes with the z-axis, we perturb the rotations by

random angles θ ∼ U(0, 20◦). We set the image size to

640 × 480 pixels and the focal length to 525 pixels, the

same as those in [56]. We create 3D points at random dis-

tances d ∼ U(dmin, dmax) from the xy-plane, ensuring that

every neighboring view observes at least ncov points in com-

mon. We perturb the image coordinates of the points by

N (0, σ2). For every pair of views observing ncov or more

points in common, we estimate the relative pose and the

inlying points. If there are at least 10 inliers, we add the

pair as an edge in E . Table 2 specifies the configuration pa-

rameters we set for our simulations. For each parameter set-

ting, we generate 100 different datasets, each with randomly

sampled camera rotations, 3D points and 2D measurements.

3We must use right multiplication here in order to make sure that

(R12)after = (R1RL1)(R2RL1)
⊤ = R1R

⊤
2

= (R12)before.
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Figure 1. Results on the synthetic data (see Table 2 for the settings). We compare RA [10] and ROBA (initialized by RA) in terms of

the mean angular error after the L1 alignment (see the supplementary material for the other error metrics). It shows that ROBA improves

the results of RA in all scenarios considered. In particular, the relative error reduction is large for fewer views, farther points and pure

rotations, all of which lead to a denser view-graph (see Table 3).
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Figure 2. Evolution of the cost function (left) and the mean an-

gular errors after the L1 alignment (right) in the baseline setting.

Here, we only show the interquartile range. Notice that while our

cost (27) seems to plateau after 30–40 iterations, the actual rota-

tion errors continue to decrease. This is discussed in Section 7.2.

To obtain the relative rotation estimates, we use the fol-

lowing method: first, we obtain 100 pose samples around

the ground-truth relative pose. We do this by perturbing the

rotation and the translation by two arbitrary angles (< 20
deg). Then, we evaluate the L1-optimal angular reprojec-

tion errors [39]4 for each pose and choose the one that yields

the most inliers. This method is similar to the standard

method of using a minimal solver (e.g., five-point algorithm

[49]) in RANSAC [21], except that our samples are simu-

lated, not estimated. We use this method because our focus

is on the optimization of the rotations and we are agnostic

about the relative pose estimation method.

Fig. 1 and Table 3 present the results in each setting. No-

tice that ROBA improves the results of RA in all scenarios

considered. In Fig. 2, we show the evolution of our cost

function (27) and the rotation error in the baseline setting.

4This can be computed using (4) and their relation derived in [41]. We

do not consider cheirality [26], because otherwise we would end up dis-

carding many inlying low-parallax points that appear in pure rotations.

Baseline n = 100, ncov = 50, σ = 1px, dmin = 2, dmax = 5,

setting Views are uniformly spaced by 1 unit on a circle.

Variations

More points (ncov = 100), Fewer views (n = 30),

More views (n = 300), Closer points (dmax = 3),

Farther points (dmax=10), Less noise (σ = 0.5px),

More noise (σ = 2px), Planar scene (dmin = 5).

Pure rotations (all views are placed at the origin),

Pure rotations + Planar scene (dmin = 5),

Mixed rotations (20 groups of views are uniform-

ly spaced by 1 unit on a circle. A group consists of

five views at the same location).

Table 2. Simulation settings.

Settings %E eE ẽE RA [10]
RA [10]

%better
+ ROBA

Baseline 6.0% 2.21 1.39 2.31 1.26 100%

More points 7.2% 2.51 1.52 1.78 1.05 100%

Fewer views 21% 2.23 1.38 1.08 0.33 100%

More views 2.0% 2.24 1.40 4.35 3.73 100%

Closer points 4.0% 2.57 1.65 5.74 3.99 100%

Farther points 10% 1.97 1.22 0.69 0.36 100%

Less noise 6.0% 2.25 1.40 2.30 1.17 100%

More noise 5.9% 2.23 1.38 2.31 1.48 100%

Planar scene 7.4% 2.61 1.56 1.74 0.80 100%

Pure rotations 100% 0.89 0.74 0.045 0.026 100%

Pure + Planar 100% 0.89 0.74 0.045 0.027 100%

Mixed rotations 37% 3.13 1.66 0.17 0.069 100%

%E , %better: proportion of existing edges and improved results,

eE , ẽE : mean and median angular errors (in deg) of

the relative rotations from all edges.

Table 3. Median results of the 100 simulations in each setting. The

5th and 6th columns give the median errors shown in Fig. 1. Over-

all, the denser the view-graph, the more accurate both methods are.

ROBA improves upon RA in 1200 out of 1200 simulations.
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Datasets RA [10] RA [10] + ROBA (100 iter) Computation time (s)

Name (n, nE ,%E) mn1 md1 mn2 md2 mn1 md1 mn2 md2 RA [10] Init Opti Total

ALM (577, 96653, 58%) 4.08 1.11 4.74 2.17 2.35 0.42 3.20 1.47 16 35 216 267

ELS (227, 18709, 73%) 2.10 0.50 2.37 0.93 1.06 0.10 1.48 0.57 1 5 42 48

GDM (677, 33662, 15%) 6.05 2.78 6.14 3.12 2.43 1.13 2.44 1.15 3 8 76 87

MDR (341, 23228, 40%) 6.20 1.27 7.23 2.88 4.42 0.61 5.71 2.50 2 7 52 61

MND (480, 51172, 45%) 1.46 0.51 1.59 0.72 0.82 0.26 1.01 0.50 4 24 114 142

NTD (553, 96672, 63%) 2.08 0.64 2.31 0.88 1.27 0.30 1.47 0.57 14 60 217 291

NYC (332, 18787, 34%) 2.87 1.32 2.99 1.40 1.03 0.20 1.20 0.45 1 6 42 49

PDP (338, 24121, 42%) 3.86 0.91 4.67 2.48 2.18 0.33 2.92 1.64 1 6 54 61

PIC (2151, 275895, 12%) 4.14 2.28 4.18 2.38 1.58 0.29 1.75 0.49 220 62 617 899

ROF (1083, 68379, 12%) 2.94 1.52 2.99 1.56 2.18 0.27 2.28 0.61 6 26 154 186

TOL (472, 23379, 21%) 3.83 2.33 3.85 2.38 1.15 0.16 1.20 0.24 1 10 53 64

TFG (5057, 663755, 5%) 3.40 2.34 3.42 2.28 2.76 2.09 2.78 1.79 553 153 1488 2194

USQ (787, 23639, 8%) 5.59 4.03 5.60 4.06 3.26 0.90 3.46 1.26 1 7 54 62

VNC (836, 98999, 28%) 6.12 1.33 7.96 4.06 4.96 0.25 7.31 3.47 15 53 221 289

YKM (437, 27039, 28%) 3.67 1.60 3.72 1.61 1.66 0.19 1.74 0.28 1 12 61 74

n: # connected views with known ground truth, nE : # edges with at least 10 covisible 3D points, %E = nE/nC2 in %,

mn/md/1/2: mean/median angular error (in deg) after the L1/L2 alignment,

Init: Initialization (line 1–5 of Alg. 2), Opti: Optimization (line 6–11 of Alg. 2).

Table 4. Results on the real data [59]. For all datasets, ROBA improves the results of RA [10]. This is shown across all error criteria, and

often, the relative error reduction is significant. See the supplementary material for the evolution of the total cost (27) and the errors.

6.3. Real data

We also perform an evaluation on the real-world datasets

publicly shared by the authors of [59]5, which include:

• internal camera calibration and radial distortion data,

• SIFT [45] feature tracks and their image coordinates,

• estimated relative rotations,

• reconstruction made with Bundler [55], consisting

of the camera poses and a sparse set of 3D points.6

As in [42], we use the provided reconstruction model as the

ground truth in our experiment. We undistort all image mea-

surements when we process the input. Additionally, some

preprocessing is required for these datasets because (1) they

do not provide the SIFT IDs of the reconstructed 3D points,

and (2) some edges (i.e., camera pairs for which the esti-

mated relative rotations are given) lack covisible 3D points

because some of the tracks were disregarded during the re-

construction process (e.g., outliers and low-parallax points).

We address the first issue by projecting each 3D point in

its associated images and finding the track that yields the

smallest mean reprojection error. Since most reconstructed

points have small reprojection errors (<1–2 pixels), this

can associate the points quite accurately, which we verified

qualitatively. We address the second issue by removing all

edges with less than 10 covisible 3D points. As a result,

some cameras get disconnected from the main view-graph.

In our experiment, we disregard all such cameras, as well as

those without the available ground truth.

5http://www.cs.cornell.edu/projects/1dsfm/
6The pose estimates are not available for some of the cameras. Also,

some of the SIFT features are not associated with the available 3D points.
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Figure 3. Relative errors with respect to the initial values for the

real-world datasets [59]. Here, we use the mean angular errors af-

ter the L1 alignment (see the supplementary material for the other

metrics). For more than half of the datasets, the error decreases

to less than 60% of the initial value after 50 iterations. After 100

iterations, we observe error reductions up to 70%.

Table 4 presents the results. It shows that ROBA offers

a consistent and significant gain in accuracy. In Fig. 3, we

plot the evolution of the relative errors aggregated from all

datasets. Table 5 and 6 present the ablation study results.

7. Discussions

7.1. On error metrics

As shown in Table 4, the different alignment methods in

(40) result in different error values. For example, the mean

errors are always lower with the L1 alignment because it

yields the theoretically minimal mean error among all pos-
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Baseline
Without Without√

in (27) switching α
Datasets mn1 mn2 mn1 mn2 mn1 mn2

ALM 2.35 3.20 2.48 3.35 2.35 3.20

ELS 1.06 1.48 0.95 1.32 0.94 1.27

GDM 2.43 2.44 2.73 2.77 2.45 2.47

MDR 4.42 5.71 4.82 6.02 4.42 5.71

MND 0.82 1.01 0.94 1.11 0.82 1.01

NTD 1.27 1.47 1.47 1.75 1.28 1.41

NYC 1.03 1.20 1.23 1.44 1.03 1.20

PDP 2.18 2.92 2.57 3.38 2.18 2.92

PIC 1.58 1.75 2.43 2.73 1.62 1.72

ROF 2.18 2.28 2.92 3.09 3.53 3.83

TOL 1.15 1.20 1.98 2.04 1.10 1.14

TFG 2.76 2.78 3.07 3.11 3.53 3.59

USQ 3.26 3.46 4.32 4.41 3.08 3.21

VNC 4.96 7.31 5.70 7.93 5.09 7.48

YKM 1.66 1.74 1.85 1.93 1.59 1.66

Baseline: RA [10] + ROBA (100 iterations),

mn1/2: mean angular error (deg) after L1/L2 alignment

Table 5. Ablation study I: Undoing the square-rooting in (27)

(line 4 of Alg. 1) worsens the accuracy for all datasets except

ELS. Also, disabling the change of the step size α (line 11 of Alg.

2) significantly worsens the accuracy for ROF and TFG.

sible alignments. Also, the L1 alignment often gives very

small median errors because using both median and the L1

alignment significantly diminishes the influence of large er-

rors. This was also reported in [10]. In Section 6, we used

the mean error after the L1 alignment as our primary metric

due to its moderate sensitivity to large errors.

7.2. On convergence

Most of the time, ROBA converges after 30–40 itera-

tions, but it is subject to local minima. Generally, the better

the initial rotations, the better the final result. Since rota-

tion averaging depends entirely on the relative rotation es-

timates, these input rotations must be accurate enough to

achieve good results. Empirically, we found that it is much

better to have noisier input with fewer outliers than the other

way around. We also observed that sometimes a relatively

small change in the total cost (27) induces a non-negligible

change in the rotational accuracy (see Fig. 3 and the sup-

plementary material). This is somewhat in line with the ob-

servation in [7] for the two-view case.

7.3. On robustness to outliers

In this work, we did not consider outliers in the input,

i.e., the image measurements and the initial rotation esti-

mates. We assumed that the outliers in the former have al-

ready been dealt with by a robust pose estimator and the

latter by robust rotation averaging. Taking into account also

the outliers in our optimization is left for future work.

Baseline
Without

approximating g

Datasets mn1 mn2 Opti mn1 mn2 Opti

ALM 2.35 3.20 216 2.23 3.09 389

ELS 1.06 1.48 42 0.97 1.32 76

GDM 2.43 2.44 76 2.36 2.40 135

MDR 4.42 5.71 52 4.21 5.41 93

MND 0.82 1.01 114 0.76 0.97 207

NTD 1.27 1.47 217 1.14 1.33 384

NYC 1.03 1.20 42 1.00 1.21 75

PDP 2.18 2.92 54 1.99 2.67 96

PIC 1.58 1.75 617 1.43 1.61 1103

ROF 2.18 2.28 154 1.17 1.29 274

TOL 1.15 1.20 53 1.10 1.13 94

TFG 2.76 2.78 1488 2.54 2.55 2664

USQ 3.26 3.46 54 2.68 2.95 95

VNC 4.96 7.31 221 4.39 7.03 395

YKM 1.66 1.74 61 1.56 1.64 109

Baseline: RA [10] + ROBA (100 iterations),

mn1/2: mean angular error (deg) after L1/L2 alignment

Opti: Optimization time (in s) (line 6–11 of Alg. 2).

Table 6. Ablation study II: In Alg. 3, computing g without using

the approximation (37) improves the accuracy slightly. Exceptions

are ROF and USQ where we observe large gains. In all cases,

however, this significantly increases the optimization time.

7.4. On speed and scalability

As discussed in Section 6.1, we fixed the number of itera-

tions at 100. In some of the datasets, we observe that ROBA

converges in much fewer iterations (see the supplementary

material), so implementing the stopping criteria would re-

duce the runtime. We also note that our code was not highly

optimized. Possibly, one could increase the speed by vec-

torizing line 2 in Al. 1 using SIMD instructions.

As can be seen from Table 4, the complexity of ROBA

is linear in the number of edges. To enhance the scalability,

one could partition the view-graph and perform the local

and the global optimization in parallel, as in [12, 64]. This

is left for future work.

8. Conclusion

In this work, we presented rotation-only bundle adjust-

ment, a novel method for estimating the global rotations

of multiple views independently of the translations and the

scene structure. We formulate the optimization problem by

extending the two-view rotation-only method of [34] and

solve it using the Adam optimizer [33]. As we decouple the

rotation estimation from the translation and structure esti-

mation, it is completely immune to their inaccuracies. Our

evaluation shows that (1) our method is robust to challeng-

ing configurations such as pure rotations and planar scenes,

and (2) it consistently and significantly improves the accu-

racy when used after rotation averaging.
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