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Abstract

Our work addresses long-term motion context issues for

predicting future frames. To predict the future precisely,

it is required to capture which long-term motion context

(e.g., walking or running) the input motion (e.g., leg move-

ment) belongs to. The bottlenecks arising when dealing

with the long-term motion context are: (i) how to predict

the long-term motion context naturally matching input se-

quences with limited dynamics, (ii) how to predict the long-

term motion context with high-dimensionality (e.g., com-

plex motion). To address the issues, we propose novel mo-

tion context-aware video prediction. To solve the bottle-

neck (i), we introduce a long-term motion context memory

(LMC-Memory) with memory alignment learning. The pro-

posed memory alignment learning enables to store long-

term motion contexts into the memory and to match them

with sequences including limited dynamics. As a result,

the long-term context can be recalled from the limited in-

put sequence. In addition, to resolve the bottleneck (ii), we

propose memory query decomposition to store local motion

context (i.e., low-dimensional dynamics) and recall the suit-

able local context for each local part of the input individu-

ally. It enables to boost the alignment effects of the mem-

ory. Experimental results show that the proposed method

outperforms other sophisticated RNN-based methods, espe-

cially in long-term condition. Further, we validate the ef-

fectiveness of the proposed network designs by conducting

ablation studies and memory feature analysis. The source

code of this work is available†.

1. Introduction

Video prediction in computer vision is to estimate up-

coming future frames at pixel-level from given previous

frames. Since predicting the future is an important base-

∗Corresponding author
†https://github.com/sangmin-git/LMC-Memory

ment for intelligent decision-making systems, the video pre-

diction has attracted increasing attention in industry and

research fields. It has the potential to be applied to var-

ious tasks such as weather forecasting [40], traffic situa-

tion prediction [5], and autonomous driving [4]. However,

the pixel-level video prediction is still challenging mainly

due to the difficulties of capturing high-dimensionality and

long-term motion dynamics [11, 33, 34, 36].

Recently, several studies with deep neural networks

(DNNs) have been proposed to capture the high-

dimensionality and the long-term dynamics of video data

in the video prediction field [7, 11, 29, 33–36]. The models

considering the high-dimensionality of videos tried to sim-

plify the problem by constraining motion and disentangling

components [7, 11, 33]. However, these methods did not

consider the long-term frame dynamics, which leads to pre-

dicting blurry frames or wrong motion trajectories. Recur-

rent neural networks (RNNs) have been developed to cap-

ture the long-term dynamics with consideration for long-

term dependencies in the video prediction [34–36]. The

long-term dependencies in the RNNs is about remember-

ing past step inputs. The RNN-based methods exploited the

memory cell states in the RNN unit. The cell states are re-

currently changed according to the current input sequence

to remember the previous steps of the sequence. However, it

is difficult to capture the long-term motion dynamics for the

input sequence with limited dynamics (i.e., short-term mo-

tion) because such cell states mainly depend on revealing

relations within the current input sequence. For example,

given short-length input frames for a walking motion, the

leg movement from the input is limited itself. Therefore, it

is difficult to grasp what will happen to the leg in the fu-

ture through the cell states of the RNNs. In this case, the

long-term motion context of the partial action may not be

properly captured by the RNN-based methods.

Our work addresses long-term motion context issues for

predicting future frames, which have not been properly

dealt with in previous video prediction works. To predict

the future precisely, it is required to capture which long-
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term motion context the input motion belongs to. For exam-

ple, in order to predict the future of leg movement, we need

to know such partial leg movement belongs to either walk-

ing or running (i.e., long-term motion context). The bot-

tlenecks arising when dealing with long-term motion con-

text are as follows: (i) how to predict the long-term motion

context naturally matching input sequences with limited dy-

namics, (ii) how to predict the long-term motion context

with high-dimensionality.

In this paper, we propose novel motion context-aware

video prediction to address the aforementioned issues. To

solve the bottleneck (i), we introduce a long-term motion

context memory (LMC-Memory) with memory alignment

learning. Contrary to the internal memory cells of the

RNNs, the LMC-Memory externally exists with its own

parameters to preserve various long-term motion contexts

of training data, which are not limited to the current input.

Memory alignment learning is proposed to effectively store

long-term motion contexts into the LMC-Memory and re-

call them even with inputs having limited dynamics. Mem-

ory alignment learning contains two training phases to align

long-term and short-term motions: 〈Phase 1〉 storing long-

term motion context from long-term sequences into the

memory, 〈Phase 2〉 matching input short-term sequences

with the stored long-term motion contexts in the memory.

As a result, the long-term motion context (e.g., long-term

walking dynamics) can be recalled from the input short-

term sequence alone (e.g., short-term walking clip).

Furthermore, to resolve the bottleneck (ii), we propose

decomposition of a memory query that is used to store and

recall the motion context. Even if various motion contexts

of training data are stored in the LMC-Memory, it is difficult

to capture the motion context that is exactly matched with

the input. This is because motions of video sequences have

high-dimensionality (e.g., complex motion with local mo-

tion components). The dimensionality indicates the number

of pixels in a video sequence. Since each motion is slightly

different from one another in a global manner even for the

same category, the proposed memory query decomposition

is useful in that it enables to store local context (i.e., low-

dimensional dynamics) and recall the suitable local context

for each local part of the input individually. It can boost

the alignment effects between the input and the stored long-

term motion context in the LMC-Memory.

The major contributions of the paper are as follows.

• We introduce novel motion context-aware video pre-

diction to solve the inherent problem of the RNN-

based methods in capturing long-term motion context.

We address the arising long-term motion context issues

in the video prediction.

• We propose the LMC-Memory with memory align-

ment learning to address storing and recalling long-

term motion contexts. Through the learning, it is pos-

sible to recall long-term motion context corresponding

to an input sequence even with limited dynamics.

• To address the high-dimensionality of motions, we de-

compose memory query to separate an overall motion

into local motions with low-dimensional dynamics. It

makes it possible to recall suitable local motion con-

text for each local part of the input individually.

2. Related Work

2.1. Video Prediction

In video prediction, errors for predicting future frames

can be divided into two factors [36]. The first one is about

systematic errors due to the lack of modeling capacity for

deterministic changes. The second one is related to model-

ing the intrinsic uncertainty of the future. There have been

several works to address the second factor [1, 6, 19, 42].

These methods utilized stochastic modeling to generate

plausible multiple futures. Contrary to these, our paper ad-

dresses the video prediction focusing on the first factor.

Recently, deep learning-based video prediction methods

have been proposed to deal with the first factor. They con-

sidered the problems leading to prediction difficulty such as

capturing high-dimensionality and long-term dynamics in

video data [2,7,8,13,15,16,21,24,29,31–37,39,41,43,44].

Finn et al. [7] incorporated appearance information in the

previous frames with the predicted pixel motion informa-

tion for long-range video prediction. Villegas et al. [34]

introduced a hierarchical prediction model that generates

the future image from the predicted high-level structure.

A predictive recurrent neural network (PredRNN) model

was presented by Wang et al. [37] to model and memorize

both spatial and temporal representations simultaneously.

Wang et al. [35] further extended this model, named Pre-

dRNN++ to solve the vanishing gradient problem in deep-

in-time prediction by building adaptive learning between

long-term and short-term frame relation. Recently, eide-

tic 3D LSTM (E3D-LSTM) [36] was proposed to integrate

3D convolutions into the RNNs for effectively addressing

memories across long-term periods. Jin et al. [13] intro-

duced spatial-temporal multi-frequency analysis for high-

fidelity video prediction with temporal-consistency . Su et

al. [29] proposed convolutional tensor-train decomposition

to learn long-term spatio-temporal correlations. However,

these works still have a limitation in encoding long-term

dynamics in that they mainly rely on the input sequence to

find frame relations. Therefore, it is difficult to capture the

long-term motion context for predicting the future from the

input sequence with limited dynamics.

2.2. Memory Network

Memory augmented networks have recently been intro-

duced for solving various problems in computer vision tasks
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Figure 1: Overall framework with the proposed LMC-memory for video prediction at testing phase. The lower path is for

recalling long-term motion context from the external memory, named LMC-Memory. The upper path is for predicting future

frames with recurrent manner considering the recalled long-term motion context.

[3, 9, 10, 14, 18, 20, 23, 25, 46, 47]. Such computer vision

tasks include anomaly detection [9, 23], few-shot learning

[3, 14, 46], image generation [47], and video summariza-

tion [20]. Kaiser et al. [14] presented a large scale long-term

memory module for life-long learning. Memory-attended

recurrent network was proposed by Pei et al. [25] to capture

the full-spectrum correspondence between the word and its

visual contexts across video sequences in training data. To

utilize the external memory network for our purposes, we

introduce novel memory alignment learning that enables to

store the long-term motion contexts into the memory and to

recall them with limited input sequences. In addition, we

separate overall motion into low-dimensional dynamics and

utilize them as an individual memory query to recall proper

long-term motion context for each local part of inputs.

3. Proposed Method

3.1. Motion Context­Aware Video Prediction

Video prediction task can be formulated as follows. Let

It ∈ R
W×H×C denote the (t)-th frame in the video, and

St−n+1:t = {Ii}
t

i=t−n+1
denote the video sequence con-

taining (t-n+1)-th to (t)-th frames. The goal is to optimize

the predictive function F for making generated next se-

quence Ŝt+1:t+K=F(St−n+1:t) be similar with actual next

sequence St+1:t+K for given previous sequence St−n+1:t.

Figure 1 shows the overall framework of the proposed video

frame prediction at inference phase. The input sequence

goes through two paths to predict the future frames. One

(lower path of Figure 1) is for recalling long-term motion

context from the memory. The other (upper path of Fig-

ure 1) is for predicting frames recurrently with the recalled

long-term motion context.

First, in the lower path of Figure 1, the differences be-

tween the consecutive frames (i.e., difference frames) are

used as inputs of motion matching encoder EMM . Then, a

motion matching feature ZMM is extracted to recall the mo-

tion context memory feature Fmem from the external mem-

ory, named LMC-Memory. This LMC-Memory contains

various long-term motion contexts of training data. Thus,

Fmem from the memory can be considered as long-term

information corresponding to the input sequence St−n+1:t

(described in Section 3.2 in detail). It is then embedded in

the upper part P . This long-term motion context embed-

ding contains 2D-DeConvs to match the spatial size with

the upper part, which results in F̃mem.

The upper part of Figure 1 demonstrates long-term mo-

tion context-aware video prediction P scheme. In this path,

the required motion context is refined through attention-

based encoding to effectively embed it in predicting fu-

ture frames. Each frame of the input sequence is inde-

pendently fed to spatial encoder Esp with 2D-Convs to ex-

tract appearance characteristics. The ConvLSTM [40] re-

ceives each extracted spatial feature fsp
t = Esp(It) as in-

puts in time step order. A cell state Ct and an output

state Ht are obtained from recurrent processing of the Con-

vLSTM. Since Ct contains the information from the past

to the present of the input sequence, we use Ct to refine

F̃mem for embedding the required motion context at the

current step. Ct and F̃mem are concatenated and pass

through fully connected layers to make channel-wise atten-

tion Amem
t for F̃mem. The channel-wise refined feature

F̃mem
t =Amem

t ⊗ F̃mem and output state Ht from the Con-

vLSTM are concatenated to embed long-term context to the

ConvLSTM output (i.e., spatio-temporal information of the

input). The concatenated feature is fed to a frame decoder
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Figure 2: Training scheme of LMC-memory. To align the long-term and short-term in the memory, the networks are trained

with two phases: (1) storing long-term motion context, (2) matching limited short-term sequence with the long-term context.

D with 2D-DeConvs to generate corresponding next frame

Ît+1 = D([Ht; F̃
mem
t ]). The embedded motion context

memory feature can provide the prior of long-term motion

context for the current input sequence. Note that the gener-

ated next frame Ît+1 enters P as a new input to create the

further future frame.

3.2. LMC­Memory with Alignment Learning

The long-term motion context memory, named LMC-

Memory is to provide the long-term motion context for cur-

rent input sequences to predict future frames. To effectively

recall the long-term motion context even for the input se-

quence with limited dynamics, we propose novel memory

alignment learning. Figure 2 shows the training scheme of

the LMC-Memory. The memory is trained alternately with

two phases: 〈Phase 1〉 storing long-term motion context

into the memory and 〈Phase 2〉matching a limited sequence

with the corresponding long-term context in the memory.

During the storing phase 〈Phase 1〉, we take a long-

term sequence Slong
N with length N from the training data.

After obtaining the difference frames, the motion con-

text of the long-term sequence is extracted by a long-

term motion context encoder ELMC . We adopt typical

motion extractor, C3D [30] with 3D-Convs for ELMC .

The resulting long-term motion context feature ZLMC ={
zLMC
l

}w×h

l=1
∈Rw×h×c is divided into local parts to exploit

decomposed dynamics. The local feature zLMC
l ∈Rc is used

as a memory query individually.

The parameters of the LMC-Memory have a matrix

form, M = {mi}
s

i=1
∈Rs×c with s slot size and c channels.

A row vector mi∈R
c denotes a memory item of M . An ad-

dressing vector al = {al i}
s

i=1
∈Rs for query zLMC

l is used

to address the location of the memory M . Each scalar value

al i of al can be considered as an attention weight for the

corresponding memory slot mi. Memory addressing proce-

dure can be formulated as

al i =
exp(d(zLMC

l ,mi))∑s

j=1
exp(d(zLMC

l ,mj))
, (1)

where d(·, ·) indicates cosine similarity function and

exp(·)/
∑

exp(·) denotes softmax function. With M and

al = {al i}
s

i=1
, the memory outputs a local motion context

memory feature fmem
l ∈Rc (l = 1, 2, ..., w × h) for each

location l as follows

fmem
l =

∑s

i=1
al imi. (2)

Finally, a motion context memory feature Fmem =

{fmem
l }

w×h

l=1
∈Rw×h×c is obtained by positioning each lo-

cal feature fmem
l as shown in Figure 2. As addressed in

Section 3.1, Fmem is embedded to motion context-aware

video prediction P . During the training phase 1, the weights

of the memory M are updated through backpropagation

as [9]. We train the networks to generate long-term future

from long-term input so that long-term motion context can

be stored in the memory at this phase.

At the matching phase 〈Phase 2〉, the model receives a

short-term sequence Sshort
n with length n (long-term length

N > short-term length n). The matching phase allows

long-term information in the memory to be recalled by a

limited short-term sequence. Similar to the long-term en-

coding process, the difference frames are utilized for mo-

tion encoding. Then, motion matching feature ZMM is

extracted by a motion matching encoder EMM . Same as
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Algorithm 1 Memory Alignment Learning

1: Inputs: short-term sequence Sshort
n = St−n+1:t, long-

term sequence Slong
N = St−n+1+r:t−n+r+N (random

integer r ∼ U{0, n}), and learning rate α.

2: Initialize parameters of PHASE 1 networks (θ), PHASE

2 networks (φ), and LMC-memory (M ).

3: for each iteration do

4: 〈PHASE 1: STORING PHASE〉

5: Get ZLMC = ELMC(S
long
N )

6: Get Fmem = LMC-Memory(ZLMC)
7: for i = 0, 1, ...,K-1 do

8: Get Ît+i+1 = P (St−n+1:t, Ŝt+1:t+i, F
mem)

9: end for

10: L ← Lpred(Ŝt+1:t+K , St+1:t+K)
11: Update θ ← θ − α∇θL
12: 〈PHASE 2: MATCHING PHASE〉
13: Get ZMM = EMM (Sshort

n )
14: Get Fmem = LMC-Memory(ZMM )
15: for i = 0, 1, ...,K-1 do

16: Get Ît+i+1 = P (St−n+1:t, Ŝt+1:t+i, F
mem)

17: end for

18: L ← Lpred(Ŝt+1:t+K , St+1:t+K)
19: Update φ (except M)← φ− α∇φL
20: end for

ELMC , EMM has the C3D [30] structure, but does not

share parameters with ELMC . The local feature zMM
l of

ZMM =
{
zMM
l

}w×h

l=1
∈Rw×h×c is used to recall the corre-

sponding long-term motion context from the memory. The

memory addressing procedures are the same as the first stor-

ing phase (Eq. 1 and 2). However, unlike the phase 1, the

weights of the memory M are not optimized and only used

to recall the motion context during this matching phase.

This is to preserve the stored long-term motion context in

M . Except for the memory M , overall network weights are

trained to predict the long-term future frames with the mem-

ory feature. Thus, it enables EMM to extract ZMM that

properly recalls the corresponding long-term motion con-

text in the given LMC-memory. Optimization is performed

with the prediction framework P (see Figure 2). Only the

short-term sequence Sshort
n = St−n+1:t is fed as a main in-

put of P . The memory path receives the long-term Slong
N

and short-term Sshort
n alternately. Two training phases are

alternately performed in each iteration. In both phases, ac-

cording to [29,35–37], we exploit a prediction loss function

Lpred as follows

Lpred =‖Ŝt+1:t+K − St+1:t+K‖
2
2

+ ‖Ŝt+1:t+K − St+1:t+K‖1,
(3)

where Ŝt+1:t+K denotes K predicted future frames while

St+1:t+K denotes K ground truth future frames. Note that

the proposed method only takes short-term sequences at in-

ference time as shown in Figure 1. Training procedure is

further described in Algorithm 1.

4. Experiments

4.1. Datasets

To validate the proposed method, we utilize both syn-

thetic and natural video datasets. We use a synthetic

Moving-MNIST dataset [28] that is mainly used in video

prediction. In addition, we use a KTH Action [26] and a

Human 3.6M [12] datasets including natural videos with

human action scenarios.

Moving-MNIST. The Moving-MNIST [28] contains the

moving of two randomly sampled digits from the origi-

nal MNIST dataset. Each digit moves in a random direc-

tion within a 64×64 size image with a gray scale. The

constructed Moving-MNIST dataset consists of 10,000 se-

quences for training and 5,000 sequences for testing as [35].

KTH Action. KTH Action dataset [26] consists of 6 types

of action videos for 25 subjects. It includes indoor, outdoor,

scale variations, and different clothes. Each frame is resized

to 128×128 with a gray scale. The videos of 1-16 subjects

are used as the training set while the videos of 17-25 sub-

jects are used as the test set. We follow the experimental

setting [33] of video prediction for the KTH Action dataset.

Human 3.6M. The Human 3.6M [12] includes 17 human

action scenarios with total 11 actors. It contains 4 different

camera views. Each frame is resized to 64×64 with RGB

color channels. Videos of subjects 1, 5, 6, 7, and 8 are used

to train the model while videos of subjects 9 and 11 are used

to test the model. We follow the experimental setting [34].

4.2. Implementation

The video frames are normalized to intensity of [0, 1]

and resized to 64 × 64 (MNIST and Human 3.6M) or 128

× 128 (KTH) as [33–35]. The proposed model is trained by

Adam optimizer [17] with a learning rate of 0.0002. Mem-

ory slot size s is fixed as 100 for all experiments. Input

short-term sequence length n is set as 10. Long-term se-

quence length N is set as 30 (MNIST) or 40 (KTH and Hu-

man 3.6M). Our model is trained to predict corresponding

N future frames. We use 4-layer ConvLSTMs for frame

prediction. The overall detailed network structures are de-

scribed in the supplementary material.

4.3. Evaluation

We use MSE, PSNR, SSIM [38], and LPIPS [45] to

measure the performances. MSE and PSNR are calculated

by the pixel-wise difference between the actual frame and

the predicted frame. We also evaluate the performance us-

ing SSIM that considers the structural similarity between
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Prediction Method

Performance

(10→ 10)

Performance

(10→ 30)

Computational Cost

(10→ 30)

MSE SSIM LPIPS MSE SSIM LPIPS Inference Time (s)

TRAJGRU [27] 106.9 0.713 - 163.0 0.588 - -

CDNA [7] 97.4 0.721 - 142.3 0.609 - -

VPN [15] 64.1 0.870 - 129.6 0.620 - -

PredRNN [37] 56.8 0.867 - 112.2 0.645 - -

PredRNN++ [35] 42.1 0.913 59.5 84.0 0.834 139.9 0.308

E3D-LSTM [36] 50.9 0.912 86.7 102.2 0.849 156.3 0.299

Conv-TT-LSTM [29] 53.0 0.915 40.5 105.7 0.840 90.3 0.378

Proposed Method 41.5 0.924 46.9 73.2 0.879 71.6 0.099

Table 1: Results on the Moving-MNIST. Higher SSIM values are better while lower MSE and LPIPS values are better. Red

and Blue indicate the best and the second best, respectively. Ours outperforms the others especially in long-term condition.

Inputs Prediction Ground Truth 

t=1 t=5 t=9 t=19 t=29 t=39 t=49 t=59 t=69 t=79 t=89 t=99

Proposed Method

E3D-LSTM

PredRNN++

t=14 t=24 t=34 t=44 t=54 t=64 t=74 t=84 t=94

Conv-TT-LSTM

Figure 3: Qualitative results with given 10 frames on the Moving-MNIST. The other results are obtained from official sources.

frames. Furthermore, we utilize LPIPS as a perceptual met-

ric, which tends to be similar to the human recognition sys-

tem [45]. Higher values are better for PSNR and SSIM

while lower values are better for MSE and LPIPS. LPIPS

results are represented in 10−3 scale. Single TITAN XP is

used to evaluate computational costs for all models. Note

that official source codes are used for other methods.

Results on Moving-MNIST. Table 1 shows the perfor-

mance comparisons with the state-of-the-art methods on the

Moving-MNIST. The left part of the table shows the exper-

imental results of 10 frames prediction with the input 10

frames. The right part of the table shows the experimen-

tal results for 30 frames prediction with 10 input frames.

The proposed method outperforms the other state-of-the-art

methods. In particular, our method far surpasses the oth-

ers in predicting 30 frames in terms of the LPIPS metric.

In addition, the proposed method shows much better results

on the computational cost compared to the other methods.

Compared to other complex RNN-based methods, we adopt

simple ConvLSTMs. Further, memory feature Fmem is ex-

tracted only once at the beginning, which is advantageous

in computational cost. Figure 3 shows examples of frames

predicted by the proposed method and other video predic-

tion methods. As shown in the figure, the predicted frames

of the proposed method show convincingly similar results to

the ground truth. However, the prediction results by other

methods show that they lose the trajectories or the shape of

digits, especially in long-term condition.

Results on KTH Action. Table 2 shows the quantitative

results of the proposed method and other state-of-the-art

methods on the KTH Action dataset. The left part of the ta-

ble shows the experimental results for predicting 20 frames

with 10 input frames. The right part of the table indi-

cates performances for predicting the next 40 frames. As

shown in the table, the proposed method mostly surpasses

the other state-of-the-art methods in predicting 40 frames.

Especially, it is significant in the human perceptual met-

ric (i.e., LPIPS). In addition, the proposed method shows

a much faster inference speed compared to the other meth-

ods also on the KTH. Figure 4 shows qualitative long-term

prediction results for input sequence with limited dynamics

on the KTH. This input motion is limited because motion
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Prediction Method

Performance

(10→ 20)

Performance

(10→ 40)

Computational Cost

(10→ 40)

PSNR SSIM LPIPS PSNR SSIM LPIPS Inference Time (s)

MCNET [33] 25.95 0.804 - - - - -

FRNN [22] 26.12 0.771 - 23.77 0.678 - -

PredRNN [37] 27.55 0.839 - 24.16 0.703 - -

PredRNN++ [35] 28.62 0.888 228.9 26.94 0.865 279.0 0.411

E3D-LSTM [36] 27.92 0.893 298.4 26.55 0.878 328.8 0.422

Conv-TT-LSTM [29] 28.36 0.907 133.4 26.11 0.882 191.2 1.188

Proposed Method 28.61 0.894 133.3 27.50 0.879 159.8 0.147

Table 2: Results on the KTH. Higher values are better for PSNR and SSIM while lower values are better for LPIPS. Red and

Blue indicate the best and the second best, respectively. Ours outperforms the others especially in long-term condition.

Inputs Prediction Ground Truth 

t=1 t=5 t=9 t=19 t=29 t=39 t=49 t=59 t=69 t=79 t=89 t=99

Proposed Method

E3D-LSTM

PredRNN++

t=14 t=24 t=34 t=44 t=54 t=64 t=74 t=84 t=94

Conv-TT-LSTM

Figure 4: Qualitative results with given 10 frames on the KTH Action. The other results are obtained from official sources.

Prediction Method

Performance

(10→ 40)

Performance

(10→ 40, Last 10)

PSNR SSIM LPIPS PSNR SSIM LPIPS

PredRNN++ [35] 23.23 0.876 106.6 22.10 0.862 123.3

E3D-LSTM [36] 22.33 0.850 113.3 21.11 0.825 140.1

Propose Method 24.97 0.919 63.2 23.46 0.902 80.1

Table 3: Results on the Human 3.6M. Higher PSNR and

SSIM are better while lower LPIPS is better.

actually starts from the middle. As shown in the figure, the

other methods fail to capture the detailed leg movement,

especially in long-term condition. Whereas, our predicted

frames are very similar to the ground truth frames. The pro-

posed method maintains a clear shape of the legs while fol-

lowing the long-term trajectories even in such a challenging

condition (i.e., limited dynamics).

Results on Human 3.6M. Table 3 shows the performance

comparisons with the other methods on the Human 3.6M.

The left part of the table shows the experimental results

for predicting 40 frames with given 10 input frames. The

Inputs Prediction Ground Truth 

t=1 t=5 t=9 t=19 t=29 t=39 t=49 t=59 t=69 t=79 t=89 t=99

Proposed Method

E3D-LSTM

PredRNN++

Figure 5: Qualitative results with given 10 frames on the

Human 3.6M. Results of the others are from official sources.

right part of the table indicates performances for the last 10

frames among the future 40 frames. The proposed method

outperforms other state-of-the-art video prediction methods

both in predicting 40 future frames and predicting the last

10 frames. Figure 5 shows qualitative results for the long-

term prediction on the Human 3.6M. The proposed method

captures direction changing in the long-term while the other

methods show the disappearance of a person at the corner.

Compared to the others, the proposed method properly cap-

tures the long-term motion context with redirection.
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Prediction Method

Performance

(10→ 40, Last 10)

Computational Cost

(10→ 40)

PSNR SSIM LPIPS Inference Time (s)

Model w/o LMC-Memory 25.29 0.851 321.1 0.118

Model w/ LMC-Memory

(Non-local Motion Context)
25.57 0.854 298.8 0.136

Model w/ LMC-Memory

(Local Motion Context)
26.21 0.862 195.6 0.147

Table 4: Effects of the network designs on the performance

and the computational cost. Performance evaluations are

conducted on KTH Action dataset.

Model w/o LMC-Memory

Model w/ LMC-Memory

(Non-local Motion Context)

Model w/ LMC-Memory

(Local Motion Context)

Predicted  Frames

Figure 6: Video prediction qualitative results for the differ-

ent network designs on the KTH Action dataset.

4.4. Ablation Study

We analyze the effects of network designs by ablating

them as shown in Table 4. In detail, we investigate the ef-

fectiveness of the LMC-Memory (i.e., memory alignment

learning) and the local motion context (i.e., memory query

decomposition). The baseline, ‘Model w/o LMC-Memory’

consists of the spatial encoder, the ConvLSTMs, and the

frame decoder. The second one, ‘Model w/ LMC-Memory

(Non-local motion context)’ contains LMC-Memory but it

does not adopt memory query decomposition to use lo-

cal motion context as memory queries. This model uses

a globally pooled motion context feature as a query. The

last one indicates our final proposed model of this paper.

As shown in the table, each component contributes to the

performances in predicting the last 10 among 40 frames.

The final model outperforms the other models, especially in

terms of perceptual metric LPIPS. These results show that

locally manipulated query boosts the effects of the memory

since it is more accessible to store and recall the motion con-

text with low-dimensional dynamics. Further, the additional

computational cost to use the LMC-Memory is marginal.

Figure 6 shows qualitative results for different network

designs. The first model does not properly capture the long-

term motion. The second one predicts long-term motion to

some extent. However, the detailed local parts are distorted

because it addresses the motion context in an only global

manner. The final model effectively predicts future frames

by properly capturing the context of long-term motion.

Handwaving

Handwaving

Jogging

Memory Addressing

Similarity: 0.061

Walking

Walking

Boxing

Long-term

Sequence

Short-term

Sequence

Long-term

Sequence

Short-term

Sequence

Memory Addressing

Similarity: 0.803

Memory Addressing

Similarity: 0.130

Memory Addressing

Similarity: 0.712

Figure 7: Examples of similarity between memory address-

ing vectors from long-term and short-term sequences in the

KTH Action dataset.

4.5. Memory Addressing

We analyze the memory addressing for different se-

quences. Figure 7 shows the cosine similarity values be-

tween addressing vectors from long-term and short-term se-

quences including different subjects. The areas addressed

in the memory are more comparable (similarity between

addressing vectors is high) in the case of the same action

scenario than in the case of the different actions. It shows

that the long-term and short-term features that belongs to

the similar action are convincingly aligned in the memory.

5. Conclusion

The objective of the proposed work is to predict future

frames being aware of the long-term motion context. To

this end, we propose the LMC-Memory with the align-

ment learning scheme to effectively store abundant long-

term contexts of training data and recall suitable motion

context even from limited inputs. In addition, we utilize

memory query decomposition to separate overall motion

into low-dimensional dynamics. It enables to cope with the

high-dimensionality in terms of utilizing motion contexts in

the memory. As a result, the proposed method outperforms

the state-of-the-art methods with sophisticated RNNs. In

particular, it is significantly noticeable in long-term condi-

tion. Further, the effectiveness of the proposed method is

analyzed in both quantitative and qualitative ways.
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