
Picasso: A CUDA-based Library for Deep Learning over 3D Meshes

Huan Lei Naveed Akhtar Ajmal Mian

The University of Western Australia

huan.lei@research.uwa.edu.au, {naveed.akhtar,ajmal.mian}@uwa.edu.au

Code: https://github.com/hlei-ziyan/Picasso

Abstract

We present Picasso, a CUDA-based library comprising

novel modules for deep learning over complex real-world

3D meshes. Hierarchical neural architectures have proved

effective in multi-scale feature extraction which signifies the

need for fast mesh decimation. However, existing meth-

ods rely on CPU-based implementations to obtain multi-

resolution meshes. We design GPU-accelerated mesh deci-

mation to facilitate network resolution reduction efficiently

on-the-fly. Pooling and unpooling modules are defined on

the vertex clusters gathered during decimation. For fea-

ture learning over meshes, Picasso contains three types of

novel convolutions namely, facet2vertex, vertex2facet, and

facet2facet convolution. Hence, it treats a mesh as a geo-

metric structure comprising vertices and facets, rather than

a spatial graph with edges as previous methods do. Picasso

also incorporates a fuzzy mechanism in its filters for robust-

ness to mesh sampling (vertex density). It exploits Gaussian

mixtures to define fuzzy coefficients for the facet2vertex con-

volution, and barycentric interpolation to define the coeffi-

cients for the remaining two convolutions. In this release,

we demonstrate the effectiveness of the proposed modules

with competitive segmentation results on S3DIS. The library

will be made public through github.

1. Introduction

Data in computer vision vary commonly from homoge-

neous format in 2D projective space (e.g. images, videos)

to heterogeneous format in 3D Euclidean space (e.g. point

clouds, meshes). The success of convolutional feature

learning on homogeneous data [21, 28, 37, 38, 46, 47, 50,

55] has sparked research interest in geometric deep learn-

ing [6, 7, 14, 26, 54], which aims for equally effective fea-

ture learning on heterogeneous data. Due to the rise of au-

tonomous driving and robotics, 3D deep learning has now

become an important branch of the geometric research di-

rection. Compared to 3D point clouds, 3D meshes convey

richer geometric information about the object surface and

topology. Yet, the heterogeneous facet shapes and sizes

combined with unstructured vertex locations make its adap-

tion to deep learning more difficult as compared to point

clouds. This is why most approaches address real-world

3D scene understanding via convolutions on point clouds

[31, 32, 33, 35, 43, 44]. However, point clouds still lack in

preserving the structural details that are easily represented

by meshes.

There are a few works that learn features from meshes,

but they are largely constrained to shape analysis on small

synthetic models [5, 20, 39, 41, 45, 68]. These methods

either apply convolutions throughout the network to a sin-

gle mesh resolution (the input), or exploit inefficient CPU-

based algorithms to decimate the mesh [16, 17, 51, 71].

However, non-hierarchical network configurations and slow

network coarsening are both problematic while dealing with

real-world meshes because of their large-scale nature. This

calls for mesh simplification methods that are fast and

amenable to deep learning for the real-world applications.

We present a GPU-accelerated mesh simplification algo-

rithm to facilitate the exploration of hierarchical architec-

tures on meshes. The proposed method is not only fast in

decimating small-scale watertight meshes from CAD mod-

elling [4, 9, 11, 36], but is also efficient in simplifying large-

scale unstructured real-wold meshes [2, 8, 12, 22]. We per-

form all computations in parallel on GPU, except for the

grouping of vertex pairs to be contracted. Meanwhile, to in-

crease its compatibility with modern deep learning modules

such as normalization [3, 24, 60, 66], we contract vertex

clusters by controlling the desired vertex size of the deci-

mated mesh. This also advances mesh-based modules to be

exploited in conjunction with the various point cloud based

modules [52]. Our algorithm is able to reduce the number

of mesh vertices by half in each iteration. Figure 1 com-

pares the runtime of our method with two well-founded dec-

imation methods, VC [51] and QEM [17]. Notice that our

method is 30× faster than QEM. During the simplification,

we record all vertex clustering information into a 1-D ten-

sor. Based on this tensor, we also define max, average and

weighted poolings, as well as unpooling.

Earlier attempts for convolution on meshes [5, 39, 41]

explored local patch operators in hand-crafted coordinate

systems. The development of spatial graph convolutions has

led recent methods [20, 45, 52] to predominantly consider

(triangular) mesh as a special graph and convolve features

of each vertex from their geodesic k-ring neighborhood.

13854

(a) The input mesh (b) VC: 177 ms (c) QEM: 2160 ms (d) Ours: 65 ms

Figure 1: Runtime comparison of mesh simplification. The input mesh consists of 115, 114 vertices and 231, 293 facets.

Different methods simplify it to similar mesh sizes. The number of vertices and facets in the decimated meshs are 41, 483
and 85, 424 for vertex clustering (VC) [51], 41, 133 and 83, 050 for the quadric error metrics (QEM) [16, 17]; and 41, 449
and 83, 051 for our GPU-accelerated algorithm. The runtime of VC, QEM, and our method are respectively 177 ms, 2160 ms,

and 65 ms. For VC and QEM, we utilize their popular implementations in Open3D [71]. For better visualization, we show

wireframes of the meshes only. Best viewed in color and enlarged.

In contrast, we study mesh as a set of vertices and facets,

following its natural geometric structure. To learn features

of each vertex, we aggregate their context information from

the adjacent facets. We refer to the resulting operation as

facet2vertex convolution. Lei et al. [32] showed that fuzzy

mechanism makes the convolutional network robust to point

density variation. Hence, we further exploit fuzzy coeffi-

cients in the facet2vertex convolution. Due to the fact that

facet normals are distributed strictly on the surface of a unit

sphere, i.e. S3 = {x ∈ R
3 : ‖x‖ = 1}, we associate learn-

able filter weights to Gaussian mixtures defined on S
3. The

parameters of the Gaussian components can optionally be

kept fixed or trainable within the network in our library. On

the other hand, to learn features of the mesh facets, we intro-

duce vertex2facet and facet2facet convolutions. The former

propagates features from the vertices of a facet to the facet

itself, while the latter is applied when facets of the input

mesh are rendered with textures. We incorporate fuzziness

into these two convolutions using barycentric interpolation.

The three proposed convolutions altogether enable flexible

vertex-wise and facet-wise feature learning on the mesh.

We provide CUDA implementations for all the above

mentioned modules and organize them into a self-contained

library, named Picasso1, to facilitate deep learning over the

unstructured real-world 3D meshes. We note that meshes

and point clouds are tightly bonded together, and it is more

desirable to extract features from the two data modali-

ties cooperatively rather than individually or competitively.

DCM-Net [52] also validates this argument. For this rea-

son, we additionally incorporate all the point cloud modules

from Lei et al. [32, 33] in our library (with author permis-

sion). In this maiden release of our library, we demonstrate

promise of its proposed modules with competitive segmen-

tation results on S3DIS [2]. The segmentation network is

1Paying homage to Pablo Picasso for cubism in paintings.

abbreviated as PicassoNet for consistency. We summarize

the main contributions of our work below:

• We present a fast GPU-accelerated 3D mesh decima-

tion technique to reduce mesh resolution on-the-fly.

A public implementation with complementary CUDA-

based pooling and unpooling operations is provided.

• We propose three novel convolution modules, i.e.

facet2vertex, vertex2facet, facet2facet, to alternatively

learn vertex-wise and facet-wise features on a mesh.

Diverging from existing methods, we do not rely on re-

strictive treatment of mesh as an undirected graph with

edges. Instead, it’s a geometric structure composed of

vertices and facets for our modules, which is also a

more conducive representation for the digital devices.

• With this paper, we release Picasso — a self-contained

library for deep learning over unstructured real-world

3D meshes, along with synthetic watertight meshes.

The provided anonymous github link will be made

public for the broader research community.

2. Related Work

Convolutions on point clouds: 3D-CNNs [15, 18, 40, 49,

67] are the most intuitive solutions of transferring CNNs

from images to point clouds. A few methods also explore

similar regular-grid kernels in a transformed data domain

[56, 57]. The permutation invariant networks exploit multi-

layer perceptrons (MLPs) and max-pooling to learn features

from point clouds [27, 34, 43, 44, 48, 53, 65]. They demon-

strate the effectiveness of taking point coordinates xyz as

input features. Graph-based networks allow convolutions

to be performed in either spectral or spatial domain. How-

ever, the mandatory alignment of different graph Laplacians

makes the application of spectral graph convolutions to

point clouds more difficult than spatial graph convolutions

13855

[70]. As a pioneering work, ECC [54] exploited dynamic

filters [13] to analyze point clouds with the spatial graph

convolutions. Subsequent works explored more effective

filter or kernel parameterizations [19, 35, 62, 65, 69]. The

recent discrete kernels [31, 32, 33, 59] are appealing alter-

natives to those dynamic methods as they avoid the depen-

dence of filter generations within the network. KPConv [59]

reported more competitive results, while the spherical ker-

nels [32, 33] are more memory and runtime efficient.

Convolution on meshes: In nascency of this direction,

researchers generally performed convolutions over local

patches defined in a hand-crafted coordinate system [5, 39,

41]. The coordinate system could either be established by

geodesic level sets [39] or surface normals and principle

curvatures [5, 41]. In FeaStNet [61], Verma et al. capi-

talized on a learnable mapping between filter weights and

graph neighborhoods to replace those hand-crafted local

patches. TextureNet [23] takes surface meshes with high-

resolution facet textures as input, and explores a 4-RoSy

field to parameterize the mesh into local planar patches such

that standard CNNs [28] are applicable. Ranjan et al. [14]

proposed to learn human facial expressions with hierarchi-

cal mesh-based networks, using the spectral graph convolu-

tions. Schult et al. [52] proposed to extract features from

both meshes and point clouds simultaneously. Similar to

[35, 54, 64, 65], they still conduct convolution using dy-

namically generated filters. Whereas most methods learn

vertex-wise features, MeshCNN [20] defines convolution to

learn edge-wise features on a mesh.

Generally, previous methods treat mesh as an edge-based

graph and employ geodesic convolutions over it. In this pa-

per, we explore convolutions on the mesh following its own

geometric structure, i.e. vertices and facets. To promote this

more natural perspective, we also provide computation and

memory optimized CUDA implementations for forward and

backward propagations of all the convolutions we propose.

Mesh decimation: Hierarchical networks allow convolu-

tions to be applied on an increasing receptive fields of the in-

put data. To create such hierarchical architectures on point

clouds, researchers usually exploit random point sampling

or farthest point sampling (FPS) [33, 44, 65]. However, be-

cause of their inability to track vertex connections, they are

not applicable to mesh processing. Fortunately, mesh sim-

plification is a well-studied topic in the graphics commu-

nity. There are methods available that can be used to deci-

mate a mesh [16, 17, 51]. For example, Ranjan et al. [45]

used the quadric error metrics [17] to simplify their syn-

thetic facial meshes. Schult et al. [52] explored vertex clus-

tering [51] and quadric error metrics [16, 17] to simplify

their indoor room meshes. In particular, they made use

of the simplification functions provided by Open3D [71]

- a popular library for 3D geometry processing in Python.

However, the implementations in Open3D are CPU-based,

which are not amenable to deep learning.

In this work, we also introduce a fast mesh decimation

method based on the algorithm of Garland et al. [16, 17].

Their method simplifies a mesh through iterative contrac-

tions of vertex pairs, and demands that the vertex pair con-

tribution to quadric error be determined after each iteration.

This progressive strategy makes the algorithm impossible

for parallel deployment on GPUs. In comparison, we sort

all the vertex pairs by their quadric errors only once, and

group them into isolated vertex clusters. All other compu-

tations in our method are mutually independent and can be

accelerated via parallel GPU computing. We represent the

vertex cluster information as a 1-D tensor to facilitate the

pooling and unpooling operations.

3. GPU-Accelerated Mesh Decimation

To explore flexible deep neural networks for meshes,

there has been an increasing demand for a fast mesh dec-

imation method in the 3D community. The quadric error

simplification [17] performs iterative contraction of vertex

pairs until the desired number of facets is obtained. This

method is known to be effective for simplifying meshes

while retaining the quality. However, it is not suited to par-

allel computing due to the implicit dependencies between

its iterative contractions. Considering its high relevance,

we provide the quadric error method as Algorithm 1. The

iterative dependency of the method is clear from lines 7–13

of the algorithm.

We extend [17] and propose a fast mesh decimation

method that exploits the parallel computing power of a

GPU. The main difference is that we do not perform iter-

ative contractions any more. Instead, we group the vertices

into multiple isolated clusters based on their connections.

Figure 2 provides a toy example to illustrate the clustering

process. During clustering, we control the expected vertex

number rather than the number of facets or edges. Since

the contractions of isolated clusters are independent of each

other, they can be executed on a GPU in parallel. More

specifically, we initialize the candidates of vertex pairs to

be contracted using existing mesh edges only. The vertex

clusters are established with disjoint vertex pairs in the can-

didates, before which we sort the candidates in an ascend-

ing order by their quadric cost2. See Algorithm 2 for our

method. We note that our core algorithm reduces the vertex

number roughly by a half, per-iteration. Yet, we can still

handle arbitrary number of output vertices. It is achieved

by running the core algorithm multiple times. For clarity,

we present Algorithm 2 with a single mesh taken as the in-

put. In our library, the decimation function can take mini-

batches of concatenated meshes as input. This improves

its compatibility with deep learning, e.g. batch normaliza-

2Shuffling strategy is inserted into the sorting of quadrics for variations

of the decimated mesh at different epochs.

13856

Algorithm 1 The original quadric error simplification

Input: A triangular mesh T i = (Vi,F i), the number of

output facets M , threshold τ .

Output: A decimated mesh T o = (Vo,Fo).
1: select any pair (vi, vj) that is an edge or ‖vi−vj‖ < τ

as candidates

2: compute the quadric of each vertex pair

3: for each candidate pair (vi, vj) do

4: (b) determine the target position v̄ of contraction

5: (c) apply consistency checks and penalties

6: end for

7: repeat

8: if the pair (vi, vj) has the least quadric cost Q then

9: (b) perform contraction (vi,vj) → v̄

10: (c) update Qi = Qi +Qj

11: (d) for each affected pair (vi, vk), recompute its

target position and cost as in steps 3-6

12: end if

13: until |Fo| < M

14: return

Figure 2: Illustration of edge-based vertex clustering. (a)

shows an input mesh with 10 vertex pairs. (b) initializes the

disjoint vertex pairs (c, e), (a, f) as clusters {c, e}, {a, f}
- shown by red and blue. (c) groups the remaining points

d, b to the vertex clusters they each connect to, resulting in

the final vertex clusters {c, d, e} and {a, b, f}.

tion [24] is easily applicable. The vertex clustering opera-

tions (lines 3–11 in Algorithm 2) is currently executed on

CPU, that helps in deploying heavy computations to GPU.

We note that consistency checks and penalties are excluded

in our method in favor of better runtime efficiency. For con-

tinuity, we delegate the details on complementary output

parameters replace and mapping to the source code itself.

Pooling and unpooling: We record the vertex clustering

information as well as the degenerated vertex information

into different 1-D tensors. The sizes of the two tensors are

both identical to the input vertex number. They largely fa-

cilitate the pooling and unpooling operations. Given the

vertex clusters as neighborhood, different pooling opera-

tions can be defined, such as sum(·), average(·), max(·) and

weighted(·). We provide average(·), max(·), weighted(·)
poolings in the library. For unpooling, we simply interpo-

late features of all vertices in a cluster based on features of

the representative vertex in the cluster.

Algorithm 2 Fast GPU-accelerated mesh simplification

Input: A triangular mesh T i = (Vi,F i), the number of

output vertices N .

Output: A decimated mesh T o = (Vo,Fo); vertex clus-

tering information replace; vertex degeneration infor-

mation mapping.

1: select any pair (vi, vj) that is an edge.

2: compute the quadric of each vertex pair

3: sort all pairs ascendingly based on their quadrics

4: set the number of vertices to remove as Nr = |Vi|−N ;

the number of vertices removed as nr = 0
5: for each pair (vi, vj) do

6: if vi, vj are not in any cluster and nr < Nr then

7: (a) form (vi,vj) as a new cluster

8: (b) set nr = nr + 1
9: end if

10: end for

11: add the remaining vertices that are not in any cluster to

an existing cluster containing vertices connected to it.

12: for each vertex cluster do

13: (a) compute quadric Q

14: (b) determine the target position v̄ of contraction

15: (c) perform contraction (vi,vj) → v̄

16: end for

17: return

4. Mesh Convolution

Let T = (V,F) be a triangular mesh. The input features

of its vertices are (x, y, z, r, g, b), while the normals and ar-

eas of each facet are n = (nx, ny, nz) and A. If the mesh is

rendered, we denote the textures of a facet as Γ×3, in which

Γ represents the texture resolution of the facet, 3 relates to

the (r, g, b) colors. Since the facets usually have varying

areas, we allow varying Γ for different facets as well.

4.1. Vertex2Facet convolution

We compute the features of each facet based on the fea-

tures of its vertices. In particular, we define a kernel com-

posed of 3 filters associated to the three vertices of the tri-

angular facet. The Barycentric interpolation is used to in-

corporate fuzzy scheme into the convolution. We determine

the total number of interpolated points K as

K =
k × (k + 1)

2
, k =

⌊

A−Amin

Amax −Amin

⌋

× α+ β, (1)

in which Amin, Amax are the minimum and maximum facet

areas of the mesh, while α, β are the hyper-parameters. We

use α = β = 1 in our experiments.

Let (I1, I2, I3) be the vertex features, and (w1, w2, w3)
be the filter weights. The Barycentric coordinates satisfies

ξk1 + ξk2 + ξk3 = 1, ξk1, ξk2, ξk3 ≥ 0. We use it to inter-

polate interior points uniformly on the facet, whose features

13857

(a) front (b) back (c) top (d) bottom

Figure 3: The distributions of surface normals of an ar-

bitrary room. We show it from different views, including

front, back, top and bottom. The six apparent clusters have

centers approximating to [±1, 0, 0], [0,±1, 0], [0, 0,±1].

and filter weights are computed respectively as

Ik = ξk1 ∗ I1 + ξk2 ∗ I2 + ξk3 ∗ I3, (2)

Wk = ξk1 ∗ w1 + ξk2 ∗ w2 + ξk3 ∗ w3, k ∈ K. (3)

Here, K is the total number of interpolated points defined

based on the facet area. With {Ik} and {Wk}, we finally

compute the feature of each facet as

J =
1

K

∑

k

Wk ∗ Ik. (4)

Facet2Facet convolution: The facet2facet convolution is

only applicable when the input mesh is rendered with tex-

tures. Each facet contains Γ interpolated points with texture

features of size Γ×3. The definition of the facet2facet con-

volution is quite similar to that of the vertex2facet convolu-

tion. The main difference is that in facet2facet convolution,

there is no need to interpolate features for the interior points

since their features are already available. We only need to

interpolate the filter weights {Wk}, and then compute the

facet features following Eq. (4).

4.2. Facet2Vertex Convolution

We compute vertex features from the features of their ad-

jacent facets. Considering that the normals of each facet are

strictly located on the surface of a unit sphere, we define

filter weights of our kernel by associating them to different

positions on the sphere. Besides, we observe that normals

of the real-world meshes generally distribute in distinctive

patterns on a unit sphere, especially for the indoor meshes.

This is related to the construction preferences of human-

beings. We show an example in Fig. 3. The data is taken

from S3DIS [2]. There are six main clustering patterns.

They correspond to different normal directions, which are

roughly [±1, 0, 0], [0,±1, 0], [0, 0,±1]. Consequently, we

exploit the mixture of different Gaussian components to di-

vide the sphere surface and implicitly cluster normals.

Let the total number of Gaussian components be T , their

expectations and covariance matrices be {µt} and {Σt}.

Using its normal ni, we compute the fuzzy coefficients

Figure 4: Convolution operations introduced in Picasso. (a)

The vertex2facet convolution propagates features from the

original and interpolated points on a facet to the facet itself.

(b) The facet2vertex convolution propagates features from

the adjacent facets of a vertex to the vertex itself. We omit

illustration of the facet2facet convolution for its visual simi-

larity to the vertex2facet convolution. (c) The vertex2vertex

convolution is composed of a vertex2facet convolution fol-

lowed by a facet2vertex convolution. We apply batch nor-

malization to the vertex features.

{πit} of the facet fi as

zit = (ni − µt)
TΣ−1

t (ni − µt), (5)

πit =
exp(−zit)

∑

m exp(−zim)
. (6)

For simplicity, we use homogeneous diagonal matrix for Σk

in our experiments. Let the filter weights in the kernel be

{wt}, the adjacent facets of vertex v be N (v), and the facet

features be {Ji}. The vertex feature gets computed as

Iv =
1

N (v)

∑

fi∈N (v)

(

T
∑

t=1

πitwt

)

Ji. (7)

In our library, we allow the expectations and covariance

matrices of the Gaussians to be constant, or learnable to-

gether with the filter weights during training. We initialize

the Gaussian means as regularly distributed points on the

sphere in our experiments and keep those constant, while

allowing the covariance matrices as learnable parameters.

We note that the facet2vertex convolution is scale and trans-

lation invariant but not rotation invariant because its fuzzy

coefficients are computed based on facet normals.

For all the proposed convolutions, we split the operation

into channel-wise and depth-wise operations. Doing so is

known to improve the computational efficiency of the oper-

ation [10, 33]. Our mesh decimation technique forces the

vertex number, rather than the facet number, of each deci-

mated mesh in a batch to be the same. Therefore, we apply

batch normalization to vertex features for stable computa-

tion of the batch statistics. Combining the vertex2facet and

facet2vertex convolutions, we can perform vertex2vertex

convolution. Figure 4 illustrate the concept of vertex2facet

and facet2vertex convolutions, along with a flow chart to

elucidate the operations in vertex2vertex convolution.

13858

Figure 5: Convolutional blocks of PicassoNet. The network consists of 5 mesh resolutions including the input, which relates

to a network of 5 hierarchical layers. Convolutional blocks are used to learn features within a single hierarchical layer. We

test the performance of different block configurations for feature learning. (a) The vanilla block consists of two vertex2vertex

convolutions with a shortcut connection. (b) The efficient block type contains two vertex2vertex convolutions as well as one

point-based convolution before each feature concatenation. It can process meshes with 1 million facets per-second at the

inference time, while maintaining highly competitive results. (c) The generic convolution block uses l ≥ 1 vertex2vertex

convolutions together with a single point-based convolution before the feature combination. We report at-par results to

state-of-the-art on S3DIS [2] by using generic block with l = 4.

5. Network Architecture

Receptive field: All the convolutions we propose follow

the natural organisation of vertex lists in the mesh facets.

Therefore, the operations accumulate context from the first-

order neighborhood. This is similar to the receptive field

reached by 3 × 3 convolution in standard CNNs for image

processing. To benefit feature learning from larger context,

we apply multiple cascaded vertex2vertex convolutions in

our network, which leads to a deeper neural network.

Disconnected components: Real-world meshes are not

guaranteed to form a connected graph. It is probable that

a mesh is composed of multiple disconnected components.

This breaks the context aggregation between different com-

ponents for mesh convolutions. On the other hand, forcing

the mesh to be connected can damage its geometric struc-

ture. In this work, we counter the potential issues of mesh

connections using point cloud convolution, e.g. the fuzzy

SPH3D [32]. By using range search [42], point cloud con-

volutions permit arbitrary respective fields. Finally, this

strategy enables our feature learning to go beyond single

connected components and learn features across multiple

components.

The PicassoNet: To explore the proposed modules, we de-

sign a U-net [50] like architecture for the popular seman-

tic segmentation task. For consistency, we name our net-

work as PicassoNet. The proposed network is composed

of 5 mesh resolutions, indicating 5 hierarchical layers. We

use convolution blocks to learn features within a single net-

work resolution. Figure 5 shows different block configura-

tions considered in this work. The vanilla block uses only

the mesh convolutions, while the efficient block uses l = 2
mesh convolutions accompanied by a point-based convolu-

tion in parallel, before feature concatenation. PicassoNet

based on the efficient block is able to process 1 million

facets per-second at the inference time, still reporting com-

petitive results. The generic block uses arbitrary number of

mesh-based convolutions with one point-based convolution

to extract features before the concatenation. Unlike DCM-

Net [52], we do not tune the ratio of feature channels be-

tween mesh-based and point-based convolutions. We use

identical feature channels for both the convolutions, which

correspond to a fixed ratio of 0.5. We use max mesh pool-

ing to obtain down-sampled features for the low-resolution

networks. For efficiency, we apply the convolution blocks

only in the encoder. Whereas in the decoder, we use 1 × 1
convolutions and mesh unpooling to upsample the features,

somewhat similar to the methods in [32, 59].

6. Experiments

PicassoNet takes 6-dimensional input features

(x, y, z, r, g, b), similar to many point cloud networks

[32, 33, 59]. Although normals are readily available for

both facets and vertices on meshes, we do not observe

noticeable performance gain by using vertex normals

as input features in our experiments. To investigate the

modules presented in the Picasso library, we focus on the

semantic segmentation of the real-world dataset S3DIS [2]

using the PicassoNet. We choose S3DIS dataset due to

the public availability of its training and testing sets. The

rgb color values are re-scaled in the range [−1, 1] before

feeding into the network.

Our network is trained on a single GeForce RTX 2080 Ti

GPU with Adam Optimizer [25]. For training, we adopt ini-

tial learning rate 0.001 with exponential decay. In specific,

we decay the learning rate with a rate of 0.7 every 20K batch

updates. Throughout the experiments, we use 18 Gaussian

components whose centers are located regularly on the unit

sphere for all facet2vertex convolutions. See supplementary

for their specific values. The standard deviations of these

Gaussians are universally initialized to 0.25, which is de-

13859

Figure 6: Visualized comparison of the trained Gaussians

at different mesh resolutions with their universal initialisa-

tion. The brightness of the colors also accounts for the dif-

ference in the values. The green markers indicates centers

of each Gaussian. We show only the results at mesh resolu-

tions T 0, T 1, T 2. The following resolutions look visually

similar to T 2.

termined by the nearest center distances between different

Gaussians. We switch off training of the Gaussian expec-

tations on purpose because we observe that their values do

not change too much in our experiments. Figure 6 provides

an example to show the updates of the standard deviations

of the Gaussians during the training.

We use the fuzzy spherical kernel proposed in [32] to

achieve point-based convolution in our efficient and generic

blocks. The kernel size and neighborhood search configu-

rations are identical to [32]. Our network uses batch size 16
in the training and takes point clouds of size 8, 192 as in-

puts. We exploit the widely used data augmentations in our

experiments, including random flipping, shifting, random

scaling, noisy translation, random azimuth rotation and ar-

bitrary rotation perturbations. We also apply random color

dropping to augment the vertex textures. The shuffling strat-

egy we inserted in the mesh simplification also played a role

of data augmentation. We apply these augmentations on-

the-fly during the network training.

Network Configuration: We use identical feature configu-

rations for different convolution blocks shown in Fig. 5. In

specific, the desired vertex sizes of meshes T 0, T 1, T 2, T 3,

T 4 are 8192, 2048, 1024, 512, 256 respectively. To con-

struct the neighborhoods for point-based convolution, we

use an increasing range search radius 0.1, 0.2, 0.4, 0.8, 1.6.

The output feature sizes of the 5 hierarchical layers are 128,

128, 256, 256, 256, respectively. When mesh-based and

point-based convolutions are both included, they each com-

pute features of half the size of the defined output feature

channels. For example, when the output feature channels

are set to 128, they each compute features of 64 channels.

This results in their concatenated features to have 128 chan-

nels. We set the multiplier λ of all convolutions to 1 ex-

cept for the convolution performed on the inputs, which has

λ = 2. In the decoder, we explore mesh unpooling for fea-

ture interpolation. The output feature channels of the 1× 1
convolutions are the same as their corresponding encoder

features. PicassoNet also classifies the features obtained at

resolution T 0 in the decoder directly for efficiency.

6.1. Semantic Segmentation

The Stanford large-scale 3D Indoor Spaces (S3DIS)

dataset [2] is a real-world dataset composed of dense 3D

point clouds but sparse 3D meshes of 6 large-scale indoor

areas. The data is collected using Matterport scanner from

three different buildings on the Standard campus. Seman-

tic segmentation on this dataset is to classify the 13 defined

classes, ceiling, floor, wall, beam, column, window, door,

table, chair, sofa, bookcase, board, and clutter. We follow

the standard training/test split by using Area 5 as the test set

while the other areas as training set [30, 35, 43, 58, 63]. The

evaluation metrics for this dataset comprise the Overall Ac-

curacy (OA), average Accuracy of all 13 classes (mAcc),

class-wise Intersection Over Union (IoU), together with

their average (i.e. mIoU). mIoU is commonly considered

a more reliable metric than the others.

DCM-Net [52] used over-tessellation and interpolation

to produce high resolution meshes with labels from the orig-

inal meshes in S3DIS. In contrast, we triangulate the la-

belled point cloud into triangular meshes using the algo-

rithm from [1]. Our network takes meshes of size 2.0m ×
2.0m cropped from the room mesh as input data. The ex-

periment results for different block configurations in the Pi-

cassoNet are provided in Table 1. It can be noticed that

PicassoNet (l = 4) provides competitive results to KPConv

[59], and slightly outperforms SegGCN [32] and DCM-Net

[52]. Table 2 reports the training time of PicassoNet (l = 2)

for batch size 16, and its testing time for different batches.

It can be seen that PicassoNet (l = 2) can process over a

million facets per-second on a commonly available single

RTX 2080 Ti GPU.

6.2. Mesh Simplification Efficiency

We summarize the statistics of vertex and facet sizes of

room meshes we generate in S3DIS. The minimum, maxi-

mum, average of (vertex, facet) numbers are (10K, 20K),
(1157K, 2288K), and (125K, 247K). The standard devi-

ations are as large as (122K, 241K). Our fast mesh dec-

imation method contributes largely to the efficiency of our

network, e.g. million facets processed per second. We apply

our simplification algorithm to all room samples in S3DIS

to decimate them each into a mesh of 65536 vertices. We

compare the speed of our algorithm to the quadric error met-

rics (QEM) method [17] that our method builds upon. The

results are shown in Fig. 7 (left plot), in which the x-axis

indicates input vertex sizes of the room meshes while the

y-axis reports the runtime of the algorithms.

Besides, we also test the runtime of our algorithm by

decimating those room meshes into different resolutions,

which corresponds to vertex sizes of 65536, 32768, 16384,

8192, 4096, 2048, 1024, 512 and 256. These results are re-

ported in Fig. 7 (right plot). We can tell from the figure that

the runtime of our algorithm is essentially linear in the size

13860

Table 1: Performance of different configurations for PicassoNet on the fifth fold (Area 5) of S3DIS dataset. The results of

PicassoNet using l = 4 outperforms SegGCN and DCM-Net slightly, and are competitive for KPConv. See supplementary

for details of input representations exploited by each method.

Methods OA mAcc mIoU ceiling floor wall beam column window door table chair sofa bookcase board clutter

A
re

a
5

PointNet [43] - 49.0 41.1 88.8 97.3 69.8 0.1 3.9 46.3 10.8 58.9 52.6 5.9 40.3 26.4 33.2

SEGCloud [58] - 57.4 48.9 90.1 96.1 69.9 0.0 18.4 38.4 23.1 70.4 75.9 40.9 58.4 13.0 41.6

Tangent-Conv [57] 82.5 62.2 52.8 - - - - - - - - - - - - -

SPG [30] 86.4 66.5 58.0 89.4 96.9 78.1 0.0 42.8 48.9 61.6 75.4 84.7 52.6 69.8 2.1 52.2

PointCNN [35] 85.9 63.9 57.3 92.3 98.2 79.4 0.0 17.6 22.8 62.1 74.4 80.6 31.7 66.7 62.1 56.7

SSP+SPG [29] 87.9 68.2 61.7 - - - - - - - - - - - - -

GACNet [62] 87.8 - 62.9 92.3 98.3 81.9 0.0 20.4 59.1 40.9 78.5 85.8 61.7 70.8 74.7 52.8

SPH3D-GCN [33] 87.7 65.9 59.5 93.3 97.1 81.1 0.0 33.2 45.8 43.8 79.7 86.9 33.2 71.5 54.1 53.7

KPConv [59] - 70.9 65.4 92.6 97.3 81.4 0.0 16.5 54.5 69.5 90.1 80.2 74.6 66.4 63.7 58.1

SegGCN [32] 88.2 70.4 63.6 93.7 98.6 80.6 0.0 28.5 42.6 74.5 80.9 88.7 69.0 71.3 44.4 54.3

DCM-Net[52] - 71.2 64.0 92.1 96.8 78.6 0.0 21.6 61.7 54.6 78.9 88.7 68.1 72.3 66.5 52.4

PicassoNet (Prop. vanilla) 86.6 65.6 58.0 93.2 98.0 78.3 0.0 16.8 28.5 61.7 75.5 86.4 49.2 69.0 45.4 52.1

PicassoNet (Prop. l = 1) 87.8 67.8 61.0 93.8 97.6 80.6 0.0 32.6 48.2 69.3 77.8 87.0 56.8 70.1 25.5 53.3

PicassoNet (Prop. l = 2) 88.2 69.4 62.5 93.2 98.4 81.1 0.0 32.1 45.9 75.6 78.5 85.9 51.5 69.0 45.2 55.3

PicassoNet (Prop. l = 4) 89.4 70.9 64.6 93.3 97.7 83.5 0.0 31.9 53.4 69.2 81.7 88.0 50.5 74.3 58.2 57.9

Table 2: Training and testing time of the efficient PicassoNet (l = 2) for different mini-batch settings. The ‘mesh size’

indicates total number of vertices and facets as (vertices, facets) in the concatenated mesh of a batch. We add the testing

runtime of SegGCN under identical settings for pure point cloud input at the bottom row as a reference.

Phase training testing

batch size 16 16 32 64 68 128

mesh size (0.13M,0.24M) (0.13M,0.24M) (0.26M,0.48M) (0.52M,0.96M) (0.56M,1.02M) (1.04M,1.92M)

runtime 920 ms 318 ms 500 ms 890 ms 915 ms 1750 ms

testing runtime of SegGCN [32] 153 ms 250 ms 470 ms 485 ms 930 ms

of vertices of the input mesh. These conclusions about the

efficiency of our simplification algorithm are generic, as we

observe similar results consistently on other mesh datasets

also. See the supplementary for further results.

7. Conclusion

We provide a fast CUDA-accelerated mesh decimation

technique to facilitate the 3D community to explore hi-

erarchical neural architectures on meshes. We propose 3

novel convolutions, namely; vertex2facet, facet2facet, and

facet2vertex. We provide CUDA implementations for for-

ward and backward passes for these convolutions. We

also introduce the vertex2vertex convolution on top of ver-

tex2facet and facet2vertex convolutions. We use Gaussian

mixtures and Barycentric interpolation to incorporate fuzzi-

ness into the proposed convolutions. Our mesh simplifi-

cation gather vertex clustering information into a 1-D ten-

sor, which is convenient for the CUDA-based pooling and

unpooling operations. Most importantly, we introduce Pi-

casso, a self-contained library for deep learning over 3D

meshes and point clouds. We also present PicassoNet for

semantic segmentation, and test its performance on S3DIS

which provides at par results to state-of-the-art. The effi-

cient version of PicassoNet can process 1 million facets dur-

ing inference while retaining competitive accuracy. We also

Figure 7: The left figure compares the runtime of our mesh

decimation method with QEM. The data is plotted by dec-

imating every sample in S3DIS to a mesh of 65536 ver-

tices by both methods. We notice that QEM takes much

more time than ours, usually in ‘seconds’, while our algo-

rithm runs in ‘milliseconds’. The right figure shows the time

taken by our simplification algorithm to decimate all mesh

samples in S3DIS to different vertex sizes, including 65536,

32768, 16384, 8192, 4096, 2048, 1024, 512, and 256. It can

be observed that the runtime of our algorithm remains gen-

erally linear to the vertex size of the input mesh.

observe that more mesh convolutions in the deeper version

increases the receptive field, and hence learn better features.

In the future, we will maintain and upgrade the introduced

library for efficiency and further functionalities.

Acknowledgements: This work is supported by ARC Dis-

covery Grant DP190102443.

13861

References

[1] Surface reconstruction from scattered points. https:

/ / au . mathworks . com / matlabcentral /

fileexchange / 63731 - surface -

reconstruction - from - scattered - points -

cloud-open-surfaces. accessed 17-Nov-2020.

[2] Iro Armeni, Ozan Sener, Amir R Zamir, Helen Jiang, Ioannis

Brilakis, Martin Fischer, and Silvio Savarese. 3D semantic

parsing of large-scale indoor spaces. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 1534–1543, 2016.

[3] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-

ton. Layer normalization. arXiv preprint arXiv:1607.06450,

2016.

[4] Federica Bogo, Javier Romero, Matthew Loper, and

Michael J. Black. FAUST: Dataset and evaluation for 3D

mesh registration. In Proceedings IEEE Conf. on Com-

puter Vision and Pattern Recognition (CVPR), Piscataway,

NJ, USA, June 2014. IEEE.

[5] Davide Boscaini, Jonathan Masci, Emanuele Rodolà, and

Michael Bronstein. Learning shape correspondence with

anisotropic convolutional neural networks. In Advances in

neural information processing systems, pages 3189–3197,

2016.

[6] Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur

Szlam, and Pierre Vandergheynst. Geometric deep learning:

going beyond euclidean data. IEEE Signal Processing Mag-

azine, 34(4):18–42, 2017.

[7] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann Le-

Cun. Spectral networks and locally connected networks on

graphs. In International Conference on Learning Represen-

tations, 2014.

[8] Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Hal-

ber, Matthias Niessner, Manolis Savva, Shuran Song, Andy

Zeng, and Yinda Zhang. Matterport3d: Learning from rgb-

d data in indoor environments. International Conference on

3D Vision (3DV), 2017.

[9] Angel X Chang, Thomas Funkhouser, Leonidas Guibas,

Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese,

Manolis Savva, Shuran Song, Hao Su, et al. ShapeNet:

An information-rich 3D model repository. arXiv preprint

arXiv:1512.03012, 2015.

[10] François Chollet. Xception: Deep learning with depthwise

separable convolutions. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages

1251–1258, 2017.

[11] Luca Cosmo, Emanuele Rodolà, Michael M Bronstein, An-

drea Torsello, Daniel Cremers, and Y Sahillioglu. Shrec’16:

Partial matching of deformable shapes. Proc. 3DOR,

2(9):12, 2016.

[12] Angela Dai, Angel X. Chang, Manolis Savva, Maciej Hal-

ber, Thomas Funkhouser, and Matthias Nießner. ScanNet:

Richly-annotated 3d reconstructions of indoor scenes. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 5828–5839, 2017.

[13] Bert De Brabandere, Xu Jia, Tinne Tuytelaars, and Luc

Van Gool. Dynamic filter networks. In Advances in Neu-

ral Information Processing Systems, 2016.

[14] Michaël Defferrard, Xavier Bresson, and Pierre Van-

dergheynst. Convolutional neural networks on graphs with

fast localized spectral filtering. In Advances in Neural Infor-

mation Processing Systems, pages 3844–3852, 2016.

[15] M. Engelcke, D. Rao, D. Zeng Wang, C. Hay Tong, and I.

Posner. Vote3Deep: Fast object detection in 3D point clouds

using efficient convolutional neural networks. In IEEE In-

ternational Conference on Robotics and Automation, June

2017.

[16] Michael Garland. Quadric-based polygonal surface simpli-

fication [thesis]. Pittsburgh: Carnegie Mellon University,

1999.

[17] Michael Garland and Paul S Heckbert. Surface simplification

using quadric error metrics. In Proceedings of the 24th an-

nual conference on Computer graphics and interactive tech-

niques, pages 209–216, 1997.

[18] Benjamin Graham, Martin Engelcke, and Laurens Van

Der Maaten. 3D semantic segmentation with submani-

fold sparse convolutional networks. In Proceedings of the

IEEE conference on computer vision and pattern recogni-

tion, pages 9224–9232, 2018.

[19] Fabian Groh, Patrick Wieschollek, and Hendrik PA Lensch.

Flex-convolution. In Asian Conference on Computer Vision,

pages 105–122. Springer, 2018.

[20] Rana Hanocka, Amir Hertz, Noa Fish, Raja Giryes, Shachar

Fleishman, and Daniel Cohen-Or. Meshcnn: a network with

an edge. ACM Transactions on Graphics (TOG), 38(4):1–12,

2019.

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 770–778, 2016.

[22] Binh-Son Hua, Quang-Hieu Pham, Duc Thanh Nguyen,

Minh-Khoi Tran, Lap-Fai Yu, and Sai-Kit Yeung. Scenenn:

A scene meshes dataset with annotations. In International

Conference on 3D Vision (3DV), 2016.

[23] Jingwei Huang, Haotian Zhang, Li Yi, Thomas Funkhouser,

Matthias Nießner, and Leonidas J Guibas. Texturenet:

Consistent local parametrizations for learning from high-

resolution signals on meshes. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 4440–4449, 2019.

[24] Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal co-

variate shift. In International Conference on Machine Learn-

ing, 2015.

[25] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. International Conference on Learn-

ing Representations, 2015.

[26] Thomas N. Kipf and Max Welling. Semi-supervised classi-

fication with graph convolutional networks. In International

Conference on Learning Representations, 2017.

[27] Roman Klokov and Victor Lempitsky. Escape from cells:

Deep kd-networks for the recognition of 3d point cloud mod-

13862

els. In Proceedings of the IEEE International Conference on

Computer Vision, pages 863–872. IEEE, 2017.

[28] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

ImageNet classification with deep convolutional neural net-

works. In Advances in Neural Information Processing Sys-

tems, pages 1097–1105, 2012.

[29] Loic Landrieu and Mohamed Boussaha. Point cloud over-

segmentation with graph-structured deep metric learning. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 2019.

[30] Loic Landrieu and Martin Simonovsky. Large-scale point

cloud semantic segmentation with superpoint graphs. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, 2018.

[31] Huan Lei, Naveed Akhtar, and Ajmal Mian. Octree guided

cnn with spherical kernels for 3d point clouds. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 9631–9640, 2019.

[32] Huan Lei, Naveed Akhtar, and Ajmal Mian. Seggcn: Effi-

cient 3d point cloud segmentation with fuzzy spherical ker-

nel. In Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition, pages 11611–11620,

2020.

[33] Huan Lei, Naveed Akhtar, and Ajmal Mian. Spherical kernel

for efficient graph convolution on 3d point clouds. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

2020.

[34] Jiaxin Li, Ben M Chen, and Gim Hee Lee. So-net: Self-

organizing network for point cloud analysis. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 9397–9406, 2018.

[35] Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di,

and Baoquan Chen. Pointcnn: Convolution on x-transformed

points. In Advances in Neural Information Processing Sys-

tems, pages 820–830, 2018.

[36] Z Lian, A Godil, B Bustos, M Daoudi, J Hermans, S Kawa-

mura, Y Kurita, G Lavoua, and P Dp Suetens. Shape re-

trieval on non-rigid 3d watertight meshes. In Eurographics

workshop on 3d object retrieval (3DOR). Citeseer, 2011.

[37] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian

Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C

Berg. SSD: Single shot multibox detector. In European Con-

ference on Computer Vision, pages 21–37, 2016.

[38] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully

convolutional networks for semantic segmentation. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 3431–3440, 2015.

[39] Jonathan Masci, Davide Boscaini, Michael Bronstein, and

Pierre Vandergheynst. Geodesic convolutional neural net-

works on riemannian manifolds. In Proceedings of the

IEEE international conference on computer vision work-

shops, pages 37–45, 2015.

[40] Daniel Maturana and Sebastian Scherer. VoxNet: A 3D con-

volutional neural network for real-time object recognition.

In IEEE/RSJ International Conference on Intelligent Robots

and Systems, pages 922–928. IEEE, 2015.

[41] Federico Monti, Davide Boscaini, Jonathan Masci,

Emanuele Rodola, Jan Svoboda, and Michael M Bronstein.

Geometric deep learning on graphs and manifolds using

mixture model cnns. In Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition, pages

5115–5124, 2017.

[42] Franco P Preparata and Michael I Shamos. Computational

geometry: an introduction. Springer Science & Business

Media, 2012.

[43] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.

PointNet: Deep learning on point sets for 3D classification

and segmentation. Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 652–660,

2017.

[44] Charles R Qi, Li Yi, Hao Su, and Leonidas J Guibas. Point-

Net++: Deep hierarchical feature learning on point sets in

a metric space. Advances in Neural Information Processing

Systems, 2017.

[45] Anurag Ranjan, Timo Bolkart, Soubhik Sanyal, and

Michael J Black. Generating 3d faces using convolutional

mesh autoencoders. In Proceedings of the European Confer-

ence on Computer Vision (ECCV), pages 704–720, 2018.

[46] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali

Farhadi. You only look once: Unified, real-time object de-

tection. In Proceedings of the IEEE conference on Computer

Vision and Pattern Recognition, pages 779–788, 2016.

[47] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster r-cnn: Towards real-time object detection with region

proposal networks. In Advances in Neural Information Pro-

cessing Systems, pages 91–99, 2015.

[48] Dario Rethage, Johanna Wald, Jurgen Sturm, Nassir Navab,

and Federico Tombari. Fully-convolutional point networks

for large-scale point clouds. In Proceedings of the Euro-

pean Conference on Computer Vision (ECCV), pages 596–

611, 2018.

[49] Gernot Riegler, Ali Osman Ulusoy, and Andreas Geiger.

OctNet: Learning deep 3d representations at high resolu-

tions. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 3577–3586, 2017.

[50] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:

Convolutional networks for biomedical image segmentation.

In International Conference on Medical Image Computing

and Computer-Assisted Intervention, pages 234–241, 2015.

[51] Jarek Rossignac and Paul Borrel. Multi-resolution 3d ap-

proximations for rendering complex scenes. In Modeling in

computer graphics, pages 455–465. Springer, 1993.

[52] Jonas Schult, Francis Engelmann, Theodora Kontogianni,

and Bastian Leibe. Dualconvmesh-net: Joint geodesic and

euclidean convolutions on 3d meshes. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 8612–8622, 2020.

[53] Yiru Shen, Chen Feng, Yaoqing Yang, and Dong Tian. Min-

ing point cloud local structures by kernel correlation and

graph pooling. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, volume 4, 2018.

[54] Martin Simonovsky and Nikos Komodakis. Dynamic edge-

conditioned filters in convolutional neural networks on

graphs. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2017.

13863

[55] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. Interna-

tional Conference on Learning Representations, 2015.

[56] Hang Su, Varun Jampani, Deqing Sun, Subhransu Maji,

Evangelos Kalogerakis, Ming-Hsuan Yang, and Jan Kautz.

SPLATNet: Sparse lattice networks for point cloud process-

ing. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 2530–2539, 2018.

[57] Maxim Tatarchenko, Jaesik Park, Vladlen Koltun, and Qian-

Yi Zhou. Tangent convolutions for dense prediction in 3d.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 3887–3896, 2018.

[58] Lyne Tchapmi, Christopher Choy, Iro Armeni, JunYoung

Gwak, and Silvio Savarese. Segcloud: Semantic segmen-

tation of 3d point clouds. In International Conference on 3D

Vision, pages 537–547. IEEE, 2017.

[59] Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud,

Beatriz Marcotegui, François Goulette, and Leonidas J

Guibas. Kpconv: Flexible and deformable convolution for

point clouds. Proceedings of the IEEE International Confer-

ence on Computer Vision, 2019.

[60] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. In-

stance normalization: The missing ingredient for fast styliza-

tion. arXiv preprint arXiv:1607.08022, 2016.

[61] Nitika Verma, Edmond Boyer, and Jakob Verbeek. Feastnet:

Feature-steered graph convolutions for 3d shape analysis. In

Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 2598–2606, 2018.

[62] Lei Wang, Yuchun Huang, Yaolin Hou, Shenman Zhang, and

Jie Shan. Graph attention convolution for point cloud se-

mantic segmentation. In The IEEE Conference on Computer

Vision and Pattern Recognition, June 2019.

[63] Lei Wang, Yuchun Huang, Yaolin Hou, Shenman Zhang, and

Jie Shan. Graph attention convolution for point cloud seman-

tic segmentation. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 10296–

10305, 2019.

[64] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,

Michael M Bronstein, and Justin M Solomon. Dynamic

graph cnn for learning on point clouds. arXiv preprint

arXiv:1801.07829, 2018.

[65] Wenxuan Wu, Zhongang Qi, and Li Fuxin. Pointconv: Deep

convolutional networks on 3d point clouds. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 9621–9630, 2019.

[66] Yuxin Wu and Kaiming He. Group normalization. In Pro-

ceedings of the European conference on computer vision

(ECCV), pages 3–19, 2018.

[67] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-

guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3D

ShapeNets: A deep representation for volumetric shapes. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 1912–1920, 2015.

[68] Jin Xie, Yi Fang, Fan Zhu, and Edward Wong. Deepshape:

Deep learned shape descriptor for 3d shape matching and re-

trieval. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 1275–1283, 2015.

[69] Yifan Xu, Tianqi Fan, Mingye Xu, Long Zeng, and Yu Qiao.

Spidercnn: Deep learning on point sets with parameterized

convolutional filters. In Proceedings of the European Con-

ference on Computer Vision, pages 87–102, 2018.

[70] Li Yi, Hao Su, Xingwen Guo, and Leonidas J Guibas. Sync-

speccnn: Synchronized spectral cnn for 3d shape segmenta-

tion. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 2282–2290, 2017.

[71] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Open3d:

A modern library for 3d data processing. arXiv preprint

arXiv:1801.09847, 2018.

13864

