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Abstract

Domain adaptation (DA) enables knowledge transfer

from a labeled source domain to an unlabeled target do-

main by reducing the cross-domain distribution discrep-

ancy. Most prior DA approaches leverage complicated and

powerful deep neural networks to improve the adaptation

capacity and have shown remarkable success. However,

they may have a lack of applicability to real-world situa-

tions such as real-time interaction, where low target infer-

ence latency is an essential requirement under limited com-

putational budget. In this paper, we tackle the problem by

proposing a dynamic domain adaptation (DDA) framework,

which can simultaneously achieve efficient target inference

in low-resource scenarios and inherit the favorable cross-

domain generalization brought by DA. In contrast to static

models, as a simple yet generic method, DDA can integrate

various domain confusion constraints into any typical adap-

tive network, where multiple intermediate classifiers can be

equipped to infer “easier” and “harder” target data dy-

namically. Moreover, we present two novel strategies to fur-

ther boost the adaptation performance of multiple predic-

tion exits: 1) a confidence score learning strategy to derive

accurate target pseudo labels by fully exploring the predic-

tion consistency of different classifiers; 2) a class-balanced

self-training strategy to explicitly adapt multi-stage clas-

sifiers from source to target without losing prediction di-

versity. Extensive experiments on multiple benchmarks are

conducted to verify that DDA can consistently improve the

adaptation performance and accelerate target inference un-

der domain shift and limited resources scenarios.

1. Introduction

Many intelligent technologies are boosted by the rapid

development of computational capacity [32, 48, 44] and

deep neural networks [43, 21, 9, 15]. To ensure high relia-

bility, their loaded deep models have to be trained with mas-

sive amount of data, so as to enumerate all possible practical

scenarios. Unfortunately, there is always a future situation

†C. Liu is the corresponding author.
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Figure 1. Motivation of the proposed dynamic domain adapta-

tion, which seeks to balance the cross-domain classification per-

formance and the computational cost for target inference. The

target images in left column are easy to transfer with a small

model, whereas the “harder” images require computational expen-

sive models to be correctly recognized.

that is unpredictable, and even an object in the same envi-

ronment may display visual diversity at different times. For

instance, the photos captured by cameras of self-driving car

may exhibit large variations under different lighting con-

ditions of day and night. This would inevitably lead to

degraded recognition, since test data (target domain) and

training data (source domain) follow different distributions.

Such a phenomenon is known as domain shift [47],

which can be tackled by domain adaptation (DA) tech-

niques [33]. To date there have been considerable research

efforts in DA, flourishing with impressive results, especially

when applying deep neural networks [5, 29, 40, 23, 25].

They delve into searching for a feature space in which la-

beled and rich information in source domain can be trans-

ferred to unlabeled but related target domain. Generally,

these prevailing deep DA methods leverage static and high-

complexity base learners owing to their good transferable

capacity brought by deep and wide architectures. However,

they do not consider the transferability of different target

samples as shown in Fig. 1. In consequence, they may not

be applicable in some real-world situations that require real-

time responses or are delay-sensitive to stringent computa-

tional resource constraints at inference time.

To allow deep networks to get a grip back on fast in-

ference, there are several techniques that can effectively re-
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duce redundant computational burdens, including network

pruning [22, 27, 54], architecture design [12, 17, 41], and

knowledge distillation [10, 1]. Although computation accel-

eration can be achieved, they are vulnerable to lightweight

networks [12, 14] that are highly optimized. In contrast, an-

other line of work is to explore adaptive inference [50, 31],

which focuses on dynamically determining the inference

structures conditioned on the complexity of input samples

and has gained increasing attention recently. Nevertheless,

all these methods suffer from poor generalization perfor-

mance to a new domain, especially when the domain dis-

crepancy is large. Even when state-of-the-art DA methods

are applied to these models, as shown in the experiments,

they still cannot achieve satisfying adaptation performance

with efficient inference guaranteed.

Therefore, there is a strong motivation to apply model

on resource-constrained device to handle domain discrep-

ancy without losing accuracy. To tackle this problem, in

this paper, we propose a novel framework named Dynamic

Domain Adaptation (DDA), which can effectively equip

vanilla domain adaptation with efficient target inference to

balance transferable performance and computational cost in

the test phrase. Here, we take the representative adaptive

network MSDNet [13] as our backbone network that has

multiple intermediate classifiers at different depth of the

network. It could save a large amount of computational cost

on “easy” samples. Further, we expect that a qualified so-

lution should be feasible in situations of anytime prediction

and budget prediction ‡ under vanilla DA scenarios.

To be specific, on top of the multi-exist adaptive archi-

tecture, we first seek to apply domain confusion constraints

to each of the classifier to reduce cross-domain distribution

discrepancy of multi-scale features. Based on the direct fea-

ture alignment, the multiple classifiers should be able to

achieve consistent predictions on samples that are “easy”

to transfer. Thereby, these target data could be leveraged as

“labeled” data to further retrain the network with pseudo

target supervision, which could significantly improve the

target prediction performance. Notably, different from aug-

menting labeled target set relying on a single classifier, here

we exploit probability predictions from multiple classifiers

and propose a novel and effective confidence score strategy

to discover highly confident pseudo-labeled target samples.

By leveraging the calculated confidence score, a trustwor-

thy target set with pseudo labels can be generated, and as

the training proceeds, this target set will be more and more

precise.

Based on the trustworthy target set, we then utilize the

proposed class-balanced self-training strategy to retrain all

the classifiers progressively while preserving the prediction

‡Anytime and budget predictions are two classical settings to evaluate

the effectiveness of adaptive inference models, which has been described

in detail in [13].

diversity among exits. As a result, the classifiers at dif-

ferent stages will be gradually adapted from source to tar-

get by the class-balanced self-training. In such a way, our

method does not only maintain the efficiency of adaptive

network, but also significantly improve the transferability

of each classifier. In general, we highlight the three-fold

contributions.

• We propose a dynamic domain adaptation framework

to simultaneously achieve satisfying DA performance

and fast target inference with low computational cost,

which successfully sheds new light on future direction

for efficient inference of DA towards resource-limited

devices.

• Two simple yet effective strategies, confidence score

learning and class-balanced self-training, are intro-

duced. By utilizing them, highly confident pseudo-

labeled target samples can be selected to retrain all

the classifiers, which could significantly improve their

adaptation performance.

• Comprehensive experimental results verify that the

proposed method could greatly save time and compu-

tational resources at both anytime and budget predic-

tion settings with promising cross-domain recognition

accuracy.

2. Related Work

Adaptive Computation for Deep Network. Adap-

tive computation aims to make unwieldy model lighter to

meet the requirements of limited-resource scenarios. Ex-

isting works can be typically classified into two threads:

static methods and dynamic methods. For static methods,

their goal is to remove redundant network parameters via

pruning [22, 27, 54], weight quantization [16, 18, 38] or

lightweight architecture design [12, 14]. Although these

methods could greatly reduce computational complexity,

they relinquish powerful deep network by replacing it with

a smaller one or eliminating large amounts of parameters,

resulting in their limited representation ability. This moti-

vates a series of works towards dynamic architecture de-

sign to obtain a better balance between speed and accu-

racy [49, 19, 8, 50, 46, 13]. Specifically, the adaptive net-

work intends to allocate appropriate resources to different

samples according to their complexity, and classify “easy”

and “hard” samples correctly with dynamic network archi-

tectures.

However, these methods will inevitably confront with

performance drop caused by the domain shift. In contrast,

our DDA framework is proposed to improve their transfer-

ability while maintaining the merits of efficient inference.

Domain Adaptation. Domain adaptation (DA) [33]

seeks to learn a well performing model that can gener-
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alize from labeled source domain to unlabeled target do-

main. Prior works mainly rely on distribution alignment

by moment matching [28, 45, 56] or adversarial tech-

niques [6, 40] to reduce domain shift. To name a few,

DAN [28], JAN [30] and DRCN [23] utilize multi-kernel

or joint maximum mean discrepancy [7] to transfer knowl-

edge in task-specific layers. MDD [56] introduces a mar-

gin disparity discrepancy to couple two domains with a new

generalization bound. However, these methods may suf-

fer from a heavy calculation as the number of samples in-

creases. In contrast, adversarial based DA methods aim

to capture domain-invariant representations via a min-max

game between feature extractor and domain classifier. For

instance, DANN [5] enables adaptation behavior by the pro-

posed gradient reversal layer. Afterwards, [35, 24, 4] intro-

duce different domain confusion terms by adding additional

discriminators or classifiers.

Besides the aforementioned mainstream DA works,

there are several methods combined with self-training strat-

egy to adapt source classifier to target via various target se-

lection techniques [51, 42, 55, 2, 58]. However, these ap-

proaches are proposed for static network architecture with

unique exit, which cannot be directly used on cascade of in-

termediate classifiers, and also cannot reduce resource cost

at inference. To remedy this, we develop simple yet effec-

tive target selection and retraining strategies, which are spe-

cially designed for the adaptive network to accelerate target

inference with good adaptability guaranteed.

A closely related work targeting at efficient inference in

DA, called REDA [20], adopts a similar MSDNet architec-

ture compared with our method. It utilizes knowledge distil-

lation [10] method to enhance the performance of shallower

classifiers, while performing vanilla DA at the last classifier

to guarantee transferability. However, this method limits

the improvement of the last classifier, since it doesn’t obtain

any knowledge from the shallower classifiers. Our proposed

strategies, on the contrary, explore the prediction consis-

tency between classifiers of different depth and find within

the common knowledge to teach all of them. In this case, all

classifiers in DDA mutually promote each other, and thus it

is able to achieve an overall performance improvement and

thus find a better balance between adaptation performance

and computational cost for fast target inference.

3. Dynamic Domain Adaptation

3.1. Preliminaries and Motivation

In domain adaptation (DA), we usually have access to

a labeled source domain Ds = {(xs
i , y

s
i )}

Ns

i=1 with Ns la-

beled samples from C classes, while working on an unla-

beled target domain Dt = {xt
j}

Nt

j=1 of Nt unlabeled sam-

ples. The source and target samples are drawn from differ-

ent distributions Ps and Pt. Given the fact that Ps 6= Pt,

Block 1

…

…

Block 2 Block KSource

Target

Confident Scores …

Similarity Comparison

Target with 
Pseudo Labels Sorted Target

Highly Confident Target
with Pseudo Labels

Average

Classifier Prediction Probability Average Prediction Loss

Figure 2. Illustration of the proposed dynamic domain adaptation

(DDA). DDA leverages target class-balanced self-training strategy

to effectively improve the transferability of all classifiers in this

multi-exit architecture. Meanwhile, target inference time can be

significantly accelerated by DDA.

the goal of DA is to train a deep neural network that gen-

eralizes well on the target domain by reducing the domain

discrepancy.

Due to the static network architecture, though the learned

model is with high transferability, vanilla deep DA meth-

ods cannot accelerate the target inference time. These

methods are limited to real-world applications on resource-

constrained platforms such as smart phones or wearable de-

vices. Consequently, it is essential to equip DA with fast

inference capacity via adaptive inference models. In this

paper, the representative adaptive network MSDNet is used

as our backbone network, and we note that the proposed

DDA is orthogonal to other adaptive inference models.

Specifically, we denote G = {fk(·; θk)}
K
k=1 as the adap-

tive inference model with K intermediate classifiers (also

called “exit”) at the varying depth, as shown in Fig. 2,

where fk is the kth classifier with the corresponding param-

eters θk. Notably, we expect to improve all the classifiers’

transferability. The characteristics of multi-exit architecture

are that the early exits can only produce coarse predictions

since they only have access to coarse-level features from

shallow networks, however, the last exit predicts samples

more correctly due to fine-grained and global information.

Intuitively, to improve the model transferability, one can

deploy domain confusion loss on each exit separately. But

in such a way, the domain confusion loss will inevitably

sacrifice the feature discriminability for transferability, and

even deteriorate cross-domain recognition performance of

some classifiers, since features in different scales have dis-

tinct transferability as shown in [52]. Besides, the brute-

force alignment on all scale features without interaction

may cause over transfer. Accordingly, a satisfactory bal-

ance between feature discriminability and transferability

should be attended to. To cope with these limitations, in

this work, we specially design confident target selection and

7834



self-training strategies to improve the transferability of all

the classifiers without losing their recognition capacities.

3.2. Adaptive Inference Network with Domain Con­
fusion Learning

Given source samples and their corresponding ground

truth labels, it is straightforward to equip network with basic

source classification ability. Thus, following the standard

source supervised learning setting, we first use empirical

risk minimization for all classifiers on source samples:

Ls =
1

Ns

Ns
∑

i=1

K
∑

k=1

E(fk(x
s
i ; θk), y

s
i ), (1)

where E(·, ·) is cross-entropy loss, and fk(x
s
i ; θk) is the

probability output predicted by the kth classifier for xs
i .

Then, to enable all the classifiers’ adaptation capacity,

we can apply various domain confusion losses on each exit.

Here, we take the domain adversarial loss [6] as an example

by imposing the binary domain discriminator. Given the

source samples labeled as 0 and target samples labeled as 1,

the domain discriminator can be trained with standard cross

entropy loss as:

Ld =
1

Ns

∑

x∈Ds

K
∑

k=1

[logDk(Fk(x; θk))]

+
1

Nt

∑

x∈Dt

K
∑

k=1

[log(1−Dk(Fk(x; θk)))],

(2)

where Dk(·) is the kth domain discriminator, and Fk(x; θk)
denotes the feature representations of x before the kth clas-

sifier. Finally, the domain-invariant representations at dif-

ferent scales can be achieved independently by training their

corresponding feature extractors and domain discriminators

adversarially. However, due to the differences of domain

shift and transferability of multi-scale features as shown in

[52], directly applying domain confusion losses may dete-

riorate the discriminability of each classifier.

As a consequence, it is crucial to well balance the feature

transferability and discriminability in early classifiers and to

effectively transfer the fine-grained and global knowledge

from the later exits to the earlier predictors. To this end,

in our DDA framework, we propose to select highly confi-

dent target data with their pseudo labels, and then leverage

them to retrain the adaptive model for better transfer per-

formance. Then, the speedability and recognition power of

all the classifiers can be fully explored under domain shift

scenarios.

3.3. Target Confidence Score Learning Strategy

The architecture of multi-exit network can be considered

as a sequential prediction by a set of subnetworks. The ear-

lier exits will predict samples based on coarse-level features

with faster inference, and the later exits will predict the sam-

ples more correctly with much more computational cost, es-

pecially for the “hard” images. Hence, the prediction of

the same instance may vary between classifiers. Moreover,

we cannot guarantee that the last classifier would make the

most correct inference for target data, as each instance could

have its suitable receptive field to be recognized [57]. Thus,

in this kind of multi-exit network, we propose to assign tar-

get pseudo labels via modeling certainty across all classi-

fiers instead of using the prediction of any individual exit,

which could greatly reduce possible noise in label construc-

tion for target data.

Specifically, given a target sample x
t
j , we compute the

average prediction p̄
t
j = 1

K

∑K

k=1 fk(x
t
j ; θk) of all classi-

fiers as the prediction mean of the multi-exit network. We

assume that the divergence between the prediction of each

classifier fk(x
j
t ; θk) and the average prediction p̄

j
t reflects

how much the classifier agrees with the result to some ex-

tent. We thus measure the agreement between them via

a cosine similarity. Note that high similarities between

prediction probabilities indicate high confidence of predic-

tions.

Nevertheless, when a sample confuses all classifiers due

to its difficulty, i.e., its prediction probabilities are evenly

spread over classes, it is possible that the obtained confi-

dence score would be closer to 1 as well. To avoid this, we

rescale the confidence score by the max value in p̄
j
t , which

ensures that hard examples have low confidence. Therefore,

we can formulate the confidence score vj for sample x
j
t as:

vj = max(p̄t
j)

K
∑

k=1

fk(x
t
j ; θk) · p̄

t
j

|fk(xt
j ; θk)||p̄

t
j |
. (3)

Once the confidence score set V = {vj}
Nt

j=1 for target

domain has been built, we can sort the score set by the val-

ues and select highly confident target samples with pseudo

labels for the follow-up class-balanced self-training.

3.4. Target Class­balanced Self­training Strategy

Intuitively, the top dozens of samples would be ideal for

constructing additional target self-training set. However,

the confidence scores may relatively high in easy-to-transfer

classes, leading to imbalanced predictions. Namely, sam-

ples with the highest confidence scores may all belong to

several specific categories, which may result in model over-

fitting to those classes, and reduce prediction diversity.

To alleviate this issue, we propose a novel class-balanced

strategy that adopts a global view for pseudo-labeled target

sample selection. To be specific, for each target class c, we

can derive the class-wise confidence score ec via accumu-
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lating the corresponding target confidence scores as:

ec =
1

N c
t

∑

x
t
j
∈D̂c

t

vj , (4)

where D̂c
t denotes all the target samples with their pseudo

labels being c, and N c
t is the number of instances in D̂c

t .

Obviously, class-wise confidence score is varied with the

transferability. For those classes with poor transferability,

its corresponding class-wise confidence score is lower than

others. In order to ensure that target samples under those

categories can still be selected for target self-training to

improve the prediction diversity, we apply a simple linear

method to decide the number of selected target samples for

class c from our built target self-training set. The number

threshold λc conditioned on class c is defined as:

λc = Nt × µ
ec

∑C

i=1 ei
, (5)

where µ is a control factor that determines the proportion

of target data that will be used to construct the target self-

training set U . Hence, to conduct target class-balanced self-

training, we first select highly confident target samples ac-

cording to the order of confidence score in the sorted set V .

Given the jth element in V , we can assume its relevant tar-

get sample xt
(vj)

with prediction being class c. At this time,

if the total number of samples in target self-training subset

Uc of class c is smaller than threshold λc, we take target

sample x
t
(vj)

into Uc and the size of it will be increased by

1. The process of self-training set selection can be formu-

lated as:

Itj =

{

1, if |Uc| < λc and ŷt(vj)
= c,

0, otherwise,
(6)

where Itj is the decision function and |Uc| is the size of tar-

get self-training subset for category c. We show empirically

in the ablation study that this strategy works better for DDA

than the classical class-balance method [59].

After obtaining set U , the processing phase can move to

self-training with highly confident and class-balanced target

data. Formally, we randomly allocate samples in U to dif-

ferent classifiers, and we denote the targeted exit for sample

x
t
j ∈ U as kj . Then target self-training classification objec-

tive with cross-entropy loss can be formulated as:

Lt =
1

|U |

∑

x
t
j
∈U

E(fkj
(xt

j ; θkj
), ŷtj), (7)

where |U | is the size of target self-training samples. Using

all samples in U to train each classifier may lead them to

learn similar decision boundaries. So that the confidence

score based on classifiers divergence will not work. This

motivates us to feed each exit with different samples for

self-training to ensure the diversification of their capabili-

ties.

In summary, the overall objective function of DDA is:

L = Ls + αLd + βLt, (8)

where α and β are two trade-off parameters. DDA not only

leverages the proposed target class-balanced self-training to

overcome the cross-domain discrepancy effectively for all

the classifiers, but also speeds up the target inference sig-

nificantly compared with the existing DA methods. The

complete DDA algorithm is presented in Alg. 1.

Algorithm 1 Dynamic Domain Adaptation.

Input: Source domain {(xs
i , y

s
i )}

Ns

i=1
; Target domain {xt

j}
Nt

j=1
;

Parameters µ, α and β; Max iteration: I

Output: trained model G = {fk(·; θk)|
K
k=1}

Step 1 Adaptive Network with Domain Confusion Learning:

1: Compute Ls and Ld with SGD optimization;

Step 2 Target Class-balanced Self-training:

2: for i = 1, 2, · · · , I do

3: For each x
t
j , calculate p̄

t
j and confidence score vj ;

4: Sort confidence score set V ;

5: For each class c, calculate threshold λc;

6: Construct target self-training set U ;

7: Randomly assign samples in U to different classifiers;

8: Proceed target class-balanced self-training, compute Ls,

Lt and Ld with SGD optimization;

9: end for

4. Experiment

4.1. Datasets and Setup

Office31 [39] is a standard dataset for DA which con-

tains 4,652 images from 3 domains: Amazon (A), Webcam

(W), Dslr (D). We evaluate our method on all six transfer

tasks: A → W, W → A, · · · , W → D and D → W.

VisDA-2017 [37] is a dataset for 2017 Visual Domain

Adaptation Challenge §. It includes over 280K images and

12 categories . Among them, the training set is synthetic

images (S) and the validation set contains real images (R)

collected from Microsoft COCO [26].

DomainNet [36] is currently the largest cross-domain

benchmark. The whole dataset comprises ∼0.6 million im-

ages from 6 distinct domains: Infograph (inf), Quickdraw

(qdr), Real (rel), Sketch (skt), Clipart (clp), Painting (pnt).

Each domain has 345 categories.

All the models in our experiment are implemented us-

ing PyTorch [34]. We utilize MSDNet(S4) and MSD-

Net(S7) pretrained on ImageNet as the backbone network

§http://ai.bu.edu/VisDA-2017/
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Figure 3. Anytime prediction and budgeted classification results of DA under a variant combinations of DA methods and datasets, all the

networks within a subplot utilize the same DA method marked above. (best viewed in color)

Table 1. Accuracy (%) on DomainNet for unsupervised domain adaption. In each sub-table, the column-wise domains are selected as the

source domain and the row-wise domains are selected as the target domain.

Res50

DANN
clp inf pnt qdr rel skt Avg.

DDA(S4)

DANN
clp inf pnt qdr rel skt Avg.

Res152

DANN
clp inf pnt qdr rel skt Avg.

DDA(S7)

DANN
clp inf pnt qdr rel skt Avg.

clp - 13.3 28.4 9.7 44.3 29.3 25.0 clp - 15.5 33.8 18.5 47.0 36.2 30.2 clp - 15.6 33.8 13.1 50.2 35.6 29.6 clp - 16.8 36.3 20.7 51.3 39.0 32.8

inf 19.1 - 21.7 2.6 30.7 17.0 18.2 inf 28.2 - 26.0 8.4 38.0 21.1 24.3 inf 23.8 - 26.5 4.3 35.6 21.0 22.2 inf 29.4 - 28.1 10.0 43.8 23.0 26.9

pnt 29.5 14.2 - 4.4 45.8 26.7 24.1 pnt 37.6 15.9 - 8.9 48.1 31.8 28.5 pnt 35.4 15.8 - 5.9 50.3 32.8 28.1 pnt 40.4 17.2 - 10.9 52.1 33.9 30.9

qdr 10.4 1.9 3.5 - 7.4 7.1 6.1 qdr 21.5 2.8 7.4 - 15.1 13.0 11.9 qdr 14.6 2.3 5.0 - 12.0 9.1 8.6 qdr 21.2 3.0 8.4 - 18.6 14.1 13.1

rel 36.5 15.6 39.8 4.5 - 26.3 24.6 rel 43.4 18.1 41.8 9.4 - 30.7 28.7 rel 42.5 17.6 44.2 6.1 - 32.5 28.6 rel 46.0 18.7 44.9 11.8 - 33.9 31.1

skt 37.4 13.2 33.1 9.1 41.4 - 26.8 skt 49.5 16.4 36.6 17.9 47.0 - 33.5 skt 44.8 16.4 40.3 12.2 47.3 - 32.2 skt 51.1 17.3 40.0 20.5 50.9 - 36.0

Avg. 26.6 11.6 25.3 6.0 33.9 21.3 20.8 Avg. 36.0 13.7 29.1 12.6 39.0 26.6 26.2 Avg. 32.2 13.5 29.9 8.3 39.1 26.2 24.9 Avg. 37.6 14.6 31.5 14.8 43.3 28.8 28.4

Res50

CDAN
clp inf pnt qdr rel skt Avg.

DDA(S4)

CDAN
clp inf pnt qdr rel skt Avg.

Res50

BSP
clp inf pnt qdr rel skt Avg.

DDA(S4)

BSP
clp inf pnt qdr rel skt Avg.

clp - 13.5 28.3 9.3 43.8 30.2 25.0 clp - 14.5 32.6 21.4 48.5 36.9 30.8 clp - 13.8 28.2 10.1 44.5 30.8 25.5 clp - 14.6 33.1 20.9 49.2 35.8 30.8

inf 18.9 - 21.4 1.9 36.3 20.8 19.9 inf 30.7 - 28.9 8.1 42.9 23.2 26.8 inf 19.6 - 21.5 2.3 37.4 21.0 20.4 inf 30.4 - 30.0 8.3 43.3 23.7 27.2

pnt 29.6 14.4 - 4.1 45.2 29.0 24.5 pnt 38.9 14.8 - 9.6 50.3 33.4 29.4 pnt 32.2 14.7 - 4.3 50.8 29.3 26.3 pnt 38.6 15.0 - 9.1 50.4 34.4 29.5

qdr 11.8 1.2 4.0 - 9.4 5.7 6.4 qdr 23.7 1.3 3.9 - 16.1 14.4 11.9 qdr 13.9 1.2 3.8 - 10.4 6.6 7.2 qdr 23.8 1.4 3.8 - 17.6 14.3 12.2

rel 36.4 18.3 40.9 3.4 - 26.2 25.0 rel 44.9 16.8 43.3 12.1 - 33.7 30.2 rel 37.0 18.5 40.7 4.1 - 26.8 25.4 rel 45.0 18.7 43.1 12.7 - 33.9 30.7

skt 38.2 14.7 33.9 7.0 36.6 - 26.1 skt 49.8 15.3 38.2 21.1 48.4 - 34.5 skt 38.8 14.9 34.4 8.0 36.8 - 26.6 skt 49.9 15.5 38.0 17.5 46.9 - 33.6

Avg. 27.0 12.4 25.7 5.1 34.3 22.4 21.1 Avg. 37.6 12.5 29.3 14.4 41.2 28.3 27.2 Avg. 28.3 12.6 25.7 5.8 36.0 22.9 21.9 Avg. 37.5 13.1 29.6 13.7 41.5 28.5 27.3
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for DDA(S4) and DDA(S7) respectively. Note that both

backbones have 5 classifier exits, but, their convolutional

layers in each network block are different (i.e., 4 layers

for MSDNet(S4) and 7 layers for MSDNet(S7)). To show

that DDA is a general framework for most of the DA meth-

ods, we choose the classical DANN [5] and recently better-

performed CDAN [29], BSP [3] as specifications of Eq.

(2). We denote them in the form of “DDA+method” (i.e.,

DDA+DANN). Moreover, the trade-off parameters α and

β are both selected as 1.0 using Deep Embedded Valida-

tion [53], and the control factor µ is set as 80% in all

datasets without special annealing. Code is available at

https://github.com/BIT-DA/DDA.

4.2. Anytime Prediction

In anytime prediction setup, the model should possess

the capacity to make predictions at a randomly given time.

Baselines. We compare our DDA with the follow-

ing baselines selected from all aspects: ResNet (18 to

152 layers) [9], DenseNet (121 to 201 layers) [15], Mo-

bileNetV3 [11], ResNet (18, 34, 50 layers) with knowledge

distillation [1], MSDNet [13] and REDA [20].

Among these baselines, ResNets are the most commonly

used backbones for DA, and MobileNetV3 is a representa-

tive efficient network architecture. Knowledge distillation

technique is implemented using ResNet101 as the teacher

network and KL-divergence as the additional loss. REDA

is implemented by ourselves with all the parameters con-

sistent with the original paper. All methods are compared

when applied the same DA method, i.e., ResNet18+DANN

vs. REDA+DANN vs. DDA+DANN.

Experiment results. As presented in Fig. 3(upper

half), we compare DDA with different baseline nets in-

tegrate with the same DA method. Those results on Of-

fice31 and DomainNet are obtained by taking the av-

erage over all tasks. As a result, our method signif-

icantly outperforms all the baselines on these datasets.

The last exit of DDA(S4)+DANN obtains 2.1% higher

average-accuracy while reducing 4× FLOPs compared to

ResNet50+DANN on Office31, and DDA(S7)+CDAN out-

performs ResNet152+CDAN by 4.5% on VisDA-2017 with

3.6× FLOPs saving. On the more challenging Domain-

Net, DDA also achieves the best adaptability with less

computational cost. Similarly, when competing against

ResNets+KD and lightweight MobileNetV3, DDA reaches

higher prediction accuracy than each of the counterparts us-

ing equal amount of resources.

Comparison to MSDNet and REDA. When compared

to MSDNet+DA which simply adds domain confusion ob-

jective to all exits, DDA achieves an average-accuracy boost

of 5.5% (Office31-DANN), 5.6% (VisDA2017-CDAN)

and 2.6% (VisDA2017-BSP). Most notably, DDA sur-

passes its efficient DA inference rival REDA at every exits,

especially the last one. Such result proves that the pseudo-

labeled target samples selected by our two novel strategies

are beneficial to all exits: they not only, like the knowl-

edge distillation in REDA, improve the transferability at

shallower classifiers, but also teaches the last classifier to

learn better domain invariant features.

Table 2. Accuracy (%) on Office31 (W → A) and VisDA-2017 for

unsupervised domain adaption.

Task

ResNet50 DDA(S4)

DANN CDAN BSP DANN CDAN BSP

Office31 (W → A) 67.4 69.3 70.7 70.6 (3.2 ↑) 70.9 (1.6 ↑) 71.5 (0.8 ↑)

VisDA-2017 57.1 68.0 69.3 69.4 (12.3 ↑) 71.2 (3.2 ↑) 71.4 (2.1 ↑)

To better illustrate that DDA can effectively enhance

the cross-domain performance on the last exit, we sum-

marize the test accuracy of the entire 30 tasks on Do-

mainNet in Table 1, and we make two pairwise compar-

ison for networks having similar amount of parameters:

ResNet50 vs. full depth of DDA(S4), ResNet152 vs. full

depth of DDA(S7). Clearly, we can see that the final

exit of DDA(S4)+DANN gains an 5.4% average-accuracy

increase over ResNet50+DANN, while the increment of

DDA(S7)+DANN over ResNet152+DANN is also up to

3.5%. Same superiority appears in DDA+CDAN/BSP.

Moreover, note that on DomainNet we conduct inductive

learning and DDA(S7)+DANN prevails ResNet152+DANN

on each sub-tasks. It shows that our class-balanced self-

training helps to regularize a more robust decision bound-

ary instead of merely remembers the target samples. More

results shown in Table 2 support our conclusion.

4.3. Budgeted Classification

In this setting, the model needs to assign resources based

on the difficulty of samples to ensure that accumulated in-

ferences are completed under a fixed computational budget.

Baselines. Except the baselines introduced in anytime

prediction experiments, we additionally consider the en-

semble of ResNet/DenseNet with dynamic inference as

baselines, where an instance with high confidence will not

pass through the deeper network. We follow the dynamic

evaluation (DE) procedure proposed in [13], and calculate

FLOPs according to the exit position of the sample.

Experiment results. In Fig. 3(lower half), we plot

the accuracy of DDA(S4) and DDA(S7) as well as the

baselines under DE. On Office31, the test accuracy of

DDA(S4)+DANN with dynamic inference rises quickly and

reaches 87.3% within the budget of 0.6× 109 MUL-ADD,

which is 6.5% higher than MSDNet+DANN. On VisDA-

2017, both DDA(S7)+DANN and DDA(S7)+CDAN out-

performs their respective counterparts substantially. In the

budget range from 1×109 to 2×109 MUL-ADD, the aver-

age accuracy of DDA(S7) is 10% and 5% higher than that

of ResNets and DenseNets using dynamic evaluation.
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Comparison to REDA. Once the model is allowed to al-

locate resources freely, DDA’s characteristic of having large

accuracy improvement in the final exit shows its advantage

against REDA. With the help of a powerful full-depth clas-

sifier to deal with hard target samples, DDA obtains an over-

all performance enhancement under dynamic evaluation.

In summary, we conclude that DDA successfully finds

the balance between adaptation performance and computa-

tional cost under this budgeted classification setting.

4.4. Insight Analysis

In this subsection, we carry out experiments to analyze

the effectiveness of DDA and further investigate the influ-

ence of each component. All the analytical experiments are

conducted on VisDA-2017 using MSDNet(S4) as backbone

and DANN as the adversarial objective.
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Figure 4. (a) Transferability analysis by conducting exclusive em-

ployment of DA at each exit. (b) Sensitivity analysis of α and β.

Transferability Analysis. In our proposed framework,

we deploy domain confusion loss on each exit of the back-

bone to improve the transferability. Therefore, a natural

question arises: why adopting DA method at all exits? Will

adopting DA method at the early stage of the network in-

fluence the feature learning in latter stage? To investigate

the impact on the performance by applying domain confu-

sion objective on classifier exits of DDA, we conduct exclu-

sive employment of DA, one exit at a time. (We only add

DA loss to one of the five exits.) Meanwhile, we consider

other variants including no-classifier DA (no DA) and all-

classifier DA (all DA) as reference. From the result shown

in Fig. 4(a), we find out that adopting DA on a particular

exit only improves the accuracy of that one while having

nearly no effect on the accuracy of others. Specifically,

when adopting exclusive DA on the nth exit, the accuracy

of it (this DA) reaches the all-DA level, while other four

exits remain an accuracy at the no-DA level. Thus, we can

verify the validation of multi-classifier domain adaptation.

Table 3. Confidence Score vs. Handcrafted Threshold.
Methods Threshold 1st exit 2nd exit 3rd exit 4th exit 5th exit

Handcrafted > 0.6 56.1 60.3 61.8 62.7 63.1

Handcrafted > 0.7 54.8 60.7 63.5 63.9 63.9

Handcrafted > 0.8 52.1 59.2 61.9 63.3 63.3

Handcrafted > 0.9 48.1 57.4 61.2 62.6 63.1

Confidence (Ours) – 64.1 65.2 67.5 68.4 69.4

Sensitivity Analysis. To show that DDA is robust to

hyperparameter choices, we vary the values of α and β on

VisDA-2017 and plot the results in Fig. 4(b). We can see

that DDA achieves stable accuracies in spite of the parame-

ter change. Actually, we find α = 1,β = 1 achieves satisfy-

ing results on all datasets with no need for special annealing.

Ablation Studies. To discuss the contribution of differ-

ent parts in DDA, we firstly study different loss combina-

tions of it. Moreover, to validate our proposed class-balance

strategy, we (1) remove the class balance (CB) and (2) sub-

stitute CB with the classical class-balance method [59] and

denote them as DDA (w/o CB) and DDA (w/ sub-CB). The

result is reported in Fig. 5(a).
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Figure 5. (a) Ablation studies of different DDA components. (b)

Visualization of target samples with different confidence scores.

Confidence Score vs. Handcrafted Threshold. Hand-

crafted threshold strategy, where samples with the predicted

probability higher than a specified threshold are selected, is

a classical method for single-exit self-training. Here we set

the threshold as {0.6−0.9} and compare them with our con-

fidence score learning strategy. The results in Table 3 show

that our DDA with confidence score generation achieves su-

perior performance than with handcrafted threshold in the

case of multi-exit self-training.

Visualization. To illustrate that DDA is able to generate

the pseudo labeled training set with less noise, we take some

samples of high & low confidence scores from two cate-

gories and show them in Fig. 5(b). We see that the samples

in class-balanced self-training set have distinctive features

and preferably single object. Such result verifies that DDA

can effectively select confident samples for self-training.

5. Conclusion

In this paper, we propose a Dynamic Domain Adapta-

tion (DDA) framework, which aims to solve the problem

of efficient inference in the context of domain adaptation

(DA). Our method introduces multi-exist adaptive architec-

ture into DA and applies domain confusion objectives. We

also design a novel self-training scheme based on confi-

dence score strategy and class-balanced self-training strat-

egy across classifiers. To preserve the diversity in network

predictions among exits, we randomly assign the pseudo-

labeled target samples to different exits for training. Ex-

tensive experiments on three benchmarks demonstrate that

DDA substantially outperforms baseline methods as well

as previous efficient DA inference models in both anytime

and budgeted predictions. This proves that DDA provides a

faster and better inference solution within DA.
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