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Abstract

Real-world training data usually exhibits long-tailed dis-

tribution, where several majority classes have a signifi-

cantly larger number of samples than the remaining mi-

nority classes. This imbalance degrades the performance

of typical supervised learning algorithms designed for bal-

anced training sets. In this paper, we address this issue by

augmenting minority classes with a recently proposed im-

plicit semantic data augmentation (ISDA) algorithm [37],

which produces diversified augmented samples by translat-

ing deep features along many semantically meaningful di-

rections. Importantly, given that ISDA estimates the class-

conditional statistics to obtain semantic directions, we find

it ineffective to do this on minority classes due to the insuf-

ficient training data. To this end, we propose a novel ap-

proach to learn transformed semantic directions with meta-

learning automatically. In specific, the augmentation strat-

egy during training is dynamically optimized, aiming to

minimize the loss on a small balanced validation set, which

is approximated via a meta update step. Extensive empirical

results on CIFAR-LT-10/100, ImageNet-LT, and iNaturalist

2017/2018 validate the effectiveness of our method.

1. Introduction

Deep convolutional neural networks (CNNs) have

achieved remarkable success in recent years [22, 15, 17].

Their state-of-the-art performance is typically demonstrated

on the benchmarks such as ImageNet [31] and MS COCO

[24]. While these datasets are established by ideally col-

lecting a similar and sufficient number of samples for each

class, real-world training data is usually imbalanced, as

shown in Fig. 1(a). For example, in automatic medical di-

agnosis, a few common diseases may dominate the training

set, with scarce cases for the remaining classes. This long-

tailed distribution, unfortunately, degrades the performance

of networks severely if using a standard training strategy

(e.g., supervised learning with the cross-entropy loss).

†C. Liu is the corresponding author.
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Figure 1. (a): In the data distribution of the real-world dataset iNat-

uralist 2018, a few majority classes account for the most samples,

while the minority classes are under-represented. (b): Motivation

of this work. Facilitating data augmentation for long-tailed prob-

lems to ameliorate the classifier performance. (c): Illustration of

traditional data augmentation and semantic data augmentation.

To address the issue of data imbalance, a natural solution

might be to augment the minority classes for more training

samples as shown in Fig. 1(b), e.g., by leveraging the data

augmentation technique [15, 17, 42, 27]. However, conven-

tional data augmentation techniques like cropping, mirror-

ing and mixup are typically performed on the inputs. As a

result, the diversity of augmented samples is inherently lim-

ited by the small amount of training data in minority classes.

Fortunately, this problem can potentially be solved by

a recently proposed implicit semantic data augmentation

(ISDA) technique [37]. ISDA performs class identity pre-

serving semantic transformation (e.g., changing the color
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of an object and changing the visual angles) by translat-

ing deep features towards certain meaningful semantic di-

rections as shown in Fig. 1(c). The deep feature space

extracted by CNNs tends to be linearized and has signifi-

cantly smaller complexity than the pixel space. Therefore,

the minority classes will be effectively augmented for more

diversity as long as proper semantic directions are found.

ISDA estimates class-wise covariance matrices from deep

features and sample semantic directions from a Gaussian

distribution. Nevertheless, we find that this leads to inferior

performance in the long-tailed scenario, since scarce data in

minority classes is insufficient to obtain reasonable covari-

ance matrices.

In this paper, we propose a meta semantic augmentation

(MetaSAug) approach, aiming to perform effective seman-

tic data augmentation for long-tailed problems via learning

more meaningful class-wise covariance. Our major insight

here is that if the appropriate covariance matrices are used

for semantic augmentation, the loss on a balanced valida-

tion set should be minimized. At every training iteration, we

perform validation on a small balanced validation set, and

update the class-wise covariance by minimizing the vali-

dation loss. Specifically, we first fulfill the augmentation

procedure using current class-wise covariance. Then, we

calculate the loss on the validation set with respect to the

class-wise covariance. By optimizing the validation loss,

we can obtain the updated class-wise covariance that con-

tains rich semantic directions. With it, we train the models

on the augmentation set with sufficient semantically aug-

mented samples. In addition, our method can be treated as

a plug-in module and be unified with previous methods. We

further improve the classification ability of focal loss [23]

and LDAM loss [7] by combining them with MetaSAug.

We conduct extensive experiments on several long-

tailed datasets, including the artificially long-tailed CIFAR-

10/100 [21, 9], ImageNet [31, 26], and the naturally long-

tailed dataset inaturalist 2017 and 2018 [36, 1]. The results

demonstrate the effectiveness of our method.

2. Related Work

In this section, we briefly review the works related to

ours.

Re-sampling. Researchers propose to achieve a more

balanced data distribution by over-sampling the minority

classes [32, 5, 6] or under-sampling the majority classes

[14, 19, 5]. Although being effective, over-sampling

might result in over-fitting of minority classes while under-

sampling may weaken the feature learning of majority

classes due to the absence of valuable instances [40, 7, 8, 9].

Chawla et al. [8] reveal that stronger augmentation for mi-

nority classes is beneficial to mitigate over-fitting, which

complies with the goal of our method.

Re-weighting. Also termed as cost-sensitive learning,

re-weighting aims to assign weights to training samples on

either class or instance level. A classic scheme is to re-

weight the classes with the weights that are inversely pro-

portional to their frequencies [16, 38]. Cui et al. [9] further

improve this scheme with proposed effective number. Re-

cently, meta-class-weight [18] exploits meta-learning to es-

timate precise class-wise weights, while Cao et al. [7] allo-

cate large margins to tail classes. Apart from above works,

Focal Loss [23], L2RW [30] and meta-weight-net [33] as-

sign weights to examples instance-wisely. Specifically, fo-

cal loss assigns weights according to the instance predic-

tions, while L2RW and meta-weight-net allot weights based

on the gradient directions. Instead of focusing on designing

different weights for classes, our method mainly aims to

augment the training set to overcome the imbalance issue.

In addition, for learning better representations, some ap-

proaches propose to seprate the training into two stages:

representation learning and classifier re-balancing learning

[7, 18, 10, 20]. BBN [43] further unifies the two stages to

form a cumulative learning strategy.

Meta-learning and head-to-tail knowledge transfer.

The recent development of meta-learning [11, 35, 3] in-

spires researchers to leverage meta-learning to handle class

imbalance. A typical series of approaches is to learn the

weights for samples with meta-learning [30, 18, 33]. An-

other pipeline of methods attempts to transfer the knowl-

edge from head to tail classes. Wang et al. [38] adopt a

meta learner to regress the network parameters. Liu et al.

[26] exploit a memory bank to transfer the features. Yin et

al. [41] and Liu et al. [25] propose to transfer intra-class

variance from head to tail. Different from these works, our

method attempt to automatically learn semantic directions

for augmenting the minority classes, ameliorating the clas-

sifier performance.

Data augmentation is a canonical technique, widely

adopted in CNNs for alleviating over-fitting. For exam-

ple, rotation and horizontal flipping are employed for main-

taining the prediction invariance of CNNs [15, 17, 34]. In

complementary to the traditional data augmentation, se-

mantic data augmentation that performs semantic altering is

also effective for enhancing classifier performance [4, 37].

ISDA [37] performs semantic augmentation with the class-

conditional statistics, but cannot estimate reasonable covari-

ance with the scarce data in minority classes. The major

difference between ours and ISDA is that MetaSAug uti-

lizes meta-learning to learn proper class-wise covariance for

achieving more meaningful augmentation results.

3. Method

Consider a training set D = {(xi, yi)}
N
i=1 with N train-

ing samples, where xi denotes i-th training sample and yi
denotes its corresponding label over C class. Let f denote

the classifier with parameter Θ and ai denote the feature of
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i-th sample extracted by classifier f . In the practical appli-

cations, the training set D is often imbalanced, resulting in

poor performance on the minority classes. Therefore, we

aim to perform semantic augmentation for minority classes,

ameliorating the learning of classifiers.

3.1. Implicit Semantic Data Augmentation

Here, we revisit the implicit semantic data augmenta-

tion (ISDA) [37] approach. For semantic augmentation,

ISDA statistically estimates the class-wise covariance ma-

trices Σ = {Σ1,Σ2, ...,ΣC} from deep features at each

iteration. Then, ISDA samples transformation directions

from the Gaussian distribution N (0, λΣyi
) to augment the

deep feature ai, where λ is a hyperparameter for tuning the

augmentation strength. Naturally, to explore all possible

meaningful directions in N (0, λΣyi
), one should sample a

tremendous number of directions. Take a step further, if

sampling infinite directions, ISDA derives the upper bound

of the cross-entropy loss on all the augmented features:

LISDA =

N∑

i=1

L∞(f(xi; Θ), yi;Σ) (1)

=

N∑

i=1

− log(
ez

yi
i

∑C

c=1 e
zc
i
+λ

2
∆w⊤

cyi
Σyi

∆wcyi

),

where zci is the c-th element of the logits output of xi,

∆wcyi
= (wc − wyi

) and wc is the c-th column of the

weight matrix of last fully connected layer. By optimizing

this upper bound LISDA, ISDA can fulfill the equivalent

semantic augmentation procedure efficiently.

However, the performance of ISDA relies on the cov-

airance matrices estimation. In the long-tailed scenario, we

find that ISDA has unsatisfactory performance, since scarce

data in minority classes is insufficient to achieve reasonable

covariance matrices.

3.2. Meta Semantic Augmentation

To address the issue of class imbalance, we propose to

augment the minority classes for more training samples. As

aforementioned, the scarcity of data limits the effectiveness

of semantic augmentation. Therefore, we attempt to learn

appropriate class-wise covariance matrices for augmenting,

leading to better performance on minority classes. The key

idea is that if the appropriate covariance matrices are used

for semantic augmentation, the loss on a balanced valida-

tion set should be minimized. In this work, we utilize meta-

learning to achieve this goal.

The meta-learning objective. Generally, by leveraging

L∞ in eq. (1), we can train the classifier and simultane-

ously fulfill the semantic augmentation procedure. How-

ever, in the context of class-imbalanced learning, the ma-

jority classes dominate the training set. And from eq. (1),

we can observe that the augmentation results depend on the

training data. If we directly apply eq. (1), we in fact mainly

augment the majority classes, which disobeys our goal.

Hence, to tackle this issue, we propose to unify the class-

conditional weights in [9] with eq. (1) for down-weighting

the losses of majority samples. The class-conditional

weights are defined as ǫc ≈ (1−β)/(1−βnc), where nc is

the number of data in c-th class and β is the hype-parameter

with a recommended value (N − 1)/N . To sum up, the

optimal parameters Θ∗ can be calculated with the weighted

loss on the training set:

Θ∗(Σ) = argmin
Θ

N∑

i=1

ǫiL∞(f(xi; Θ), yi;Σ) (2)

If we treat covariance matrices Σ as training hyperparame-

ters, we actually can search their optimal value on the val-

idation set as [30, 33, 3, 28, 29]. Specifically, consider a

small validation set Dv = {xv
i , y

v
i }

Nv

i=1, where Nv is the

amount of total samples and Nv ≪ N . The optimal class-

wise covariance can be obtained by minimizing the follow-

ing validation loss:

Σ
∗ = argmin

Σ

Nv∑

i=1

Lce(f(x
v
i ; Θ

∗(Σ)), yvi ), (3)

where Lce(·, ·) is the cross-entropy (CE) loss function.

Since the validation set is balanced, we adopt vanilla CE

loss to calculate the loss on validation set.

Online approximation. To obtain the optimal value of

Θ and Σ, we need to go through two nested loops, which

can be cost-expensive. Hence, we exploit an online strategy

to update Θ and Σ through one-step loops. Given current

step t, we can obtain current covariance matrices Σt accord-

ing to [37]. Next, we update the parameters of classifier Θ
with following objective:

Θ̃t+1(Σt)← Θt − α∇Θ

N∑

i=1

ǫiL∞(f(xi; Θ
t), yi;Σ

t),

(4)

where α is the step size for Θ. After executing this step

of backpropagation, we obtain the optimized parameters

Θ̃t+1(Σt). Then we can update the class-wise covariance

Σ using the gradient produced by eq. (3):

Σ
t+1 ← Σ

t − γ∇Σ

Nv∑

i=1

Lce(f(x
v
i ; Θ̃

t+1(Σt)), yvi ), (5)

where γ it the step size for Σ. With the learned class-wise

Σ, we can ameliorate the parameters Θ of classifier as:

Θt+1 ← Θt − α∇Θ

N∑

i=1

ǫiL∞(f(xi; Θ
t), yi;Σ

t+1). (6)
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Since the updated class-wise covariance matrices Σt+1 are

learned from balanced validation data, we could expect

Σ
t+1 help to learn better classifier parameters Θt+1. In

practice, we adopt the generally used technique SGD to im-

plement our algorithm. In addition, several previous works

have demonstrated that training the networks without re-

balancing strategy in the early stage learns better general-

izable representations [20, 7, 18]. Hence, we first train clas-

sifiers with vanilla CE loss, then with MetaSAug. The train-

ing algorithm is shown in Algorithm. 1.

3.3. Discussion

In this work, we utilize meta-learning to learn proper

covariance matrices for augmenting the minority classes.

Hence, it’s essential to find out what Σ have learned from

the validation data. To investigate this question, we conduct

singular value decomposition to extract the singular values

for the covariance matrix Σr of the most rare class r:

Σr = UMV
⊤, (7)

where each element in the diagonal of M is the singu-

lar value of Σr. Then, we illustrate the top-5 singular

values (max-normalized) of Σr learned by ISDA and our

MetaSAug. Principal component analysis demonstrates that

the eigenvector with larger singular value will contain more

information variations [39, 2]. From Fig. 2(a), we observe

that the largest singular value of Σr learned by ISDA on

imbalanced dataset is remarkably larger than other singular

values, while the information signals of other eigenvectors

with smaller singular values are suppressed. This sharp dis-

tribution of singular values implies that the Σr has less im-

portant principal components, which one may not be able to

sample diversified transformation vectors with the Σr. The

reason is that ISDA can not estimate appropriate Σr with

the scarce data of minority classes.

When MetaSAug applies the proposed meta-learning

method to learn Σr, the singular value distribution of Σr

becomes relatively balanced, as shown in Fig. 2(b). Apart

from the one with largest singular value, the other eigen-

vectors also contain great information variance. With the

Σr that has a balanced singular value distribution, one may

sample diverse transformation vectors, leading to better

augmentation results. In summary, with our proposed meta-

learning method, the learned covariance matrix Σr contains

more important principal components, implying that it may

contain more semantic directions. In addition, we further

experimentally verify that our meta-learning method can

help improve the performance of classifiers in Section 4.5.

4. Experiment

We evaluate our method on the following long-tailed

datasets: CIFAR-LT-10, CIFAR-LT-100, ImageNet-LT,

Algorithm 1 Leaning algorithm of MetaSAug

Input: Training set D; validation set Dv; ending steps T1

and T2;

Output: Learned classifier parameter Θ

1: for t ≤ T1 do

2: Sample a batch B = {(xi, yi)}
|B|
i=1 from D

3: Calculate loss LB = 1
|B|

∑|B|
i=1 Lce(f(xi; Θ), yi)

4: Update Θ← Θ− α∇ΘLB

5: for T1 < t ≤ T2 do

6: Sample a batch B = {(xi, yi)}
|B|
i=1 from D

7: Sample a batch Bv = {(xv
i , y

v
i )}

|Bv|
i=1 from Dv

8: Obtain current covariance matrices Σ

9: Compute LB =
∑|B|

i=1 ǫiL∞(f(xi; Θ), yi;Σ)

10: Update Θ̃(Σ)← Θ− α∇ΘLB

11: Compute LBv =
∑|Bv|

i=1 Lce(f(x
v
i ; Θ̃(Σ)), yvi )

12: Update Σ← Σ− γ∇ΣLBv

13: Calculate the loss with the updated Σ

L̃B =
∑|B|

i=1 ǫiL∞(f(xi; Θ), yi;Σ)

14: update Θ← Θ− α∇ΘL̃B

(a) ISDA (b) MetaSAug
Si
ng
ul
ar

Si
ng
ul
ar

Figure 2. The top-5 singular values (max normalized) of covari-

ance matrix Σr learned by ISDA and MetaSAug. (a): “Balanced”

refer to the covariance matrix estimated on balanced training set

(CIFAR-10), while “Imbalanced” implies the Σr estimated on im-

balanced training set (CIFAR-LT-10 with imbalance factor=200).

(b): Both experiments are conducted on the imbalanced set. The

red and blue lines denote the Σr learned by MetaSAug with and

without our meta-learning method, respectively.

iNaturalist 2017 and iNaturalist 2018. In addition, we re-

port the average result of 3 random experiments. For those

experiments conducted in the same settings, we directly

quote their results from original papers. Code is available at

https://github.com/BIT-DA/MetaSAug.

4.1. Datasets

Long-Tailed CIFAR is the long-tailed version of CIFAR

dataset. The original CIFAR-10 (CIFAR-100) dataset con-

sists of 50000 images drawn from 10 (100) classes with

even data distribution. In other words, CIFAR-10 (CIFAR-

100) has 5000 (500) images per class. Following [9],

we discard some training samples to construct imbalanced

datasets. We build 5 training sets by varying imbalance fac-

5215

https://github.com/BIT-DA/MetaSAug


tor µ ∈ {200, 100, 50, 20, 10}, where the µ denotes the im-

age amount ratio between largest and smallest classes. If let

ni denotes the sample amount of i-th class, we can define

µ = maxi(ni)
minj(nj)

. As for test sets, we use the original balanced

test sets. Following [18], we randomly select ten samples

per class from training set to construct validation set Dv .

ImageNet-LT: ImageNet [31] is a classic visual recogni-

tion dataset, which contains 1,281,167 training images and

50,000 validation images. Liu et al. [26] build the long-

tailed version of ImageNet, termed as ImageNet-LT. After

discarding some training examples, ImageNet-LT remains

115,846 training examples in 1,000 classes. The imbalance

factor is 1280/5. We adopt the original validation to test

methods. In addition, Liu et al. [26] also construct a small

balanced validation set with 20 images per class. Hence, we

adopt ten images per class from it to construct our validation

set Dv as [18].

iNaturalist 2017 and iNaturalist 2018. The iNatural-

ist datasets are large-scale datasets with images collected

from real-world, which have an extremely imbalanced class

distribution. The iNatualist 2017 [36] includes 579,184

training images in 5,089 classes with an imbalance factor

of 3919/9, while the iNaturalist 2018 [1] is composed of

435,713 images from 8,142 classes with an imbalance fac-

tor of 1000/2. We adopt the original validation set to test our

method. To construct the validation set Dv , we select five

and two images from the training sets of iNaturalist 2017

and iNaturalist 2018, respectively, following [18].

4.2. Visual Recognition on CIFAR­LT

We conduct comparison experiments on the long-tailed

datasets CIFAR-LT-10 and CIFAR-LT-100. Following [18,

9], we adopt the ResNet-32 [15] as the backbone network

in our experiments.

Implementation details. For the baselines LDAM and

LDAM-DRW, we reproduce them with the source code re-

leased by authors [7]. We train the ResNet-32 [15] with

standard stochastic gradient decent (SGD) with momentum

0.9 and weight decay of 5× 10−4 for all experiments. And

We train the models on a single GPU for 200 epochs. In

addition, we decay the learning rate by 0.01 at the 160th

and 180th epochs as [18]. For our method, we adopt the

initial learning rate 0.1. And we set the batch size as 100

for our experiments. The hyperparameter λ is selected from

{0.25, 0.5, 0.75, 1.0}.
Comparison methods. We compare our method with

the following methods:

• Cross-entropy training is the baseline method in

long-tailed visual recognition, which trains ResNet-32

using vanilla cross-entropy loss function.

• Class weighting methods. This type of method as-

signs weights to training examples in class level, which

includes class-balanced loss [9], meta-class-weight

[18] and LDAM-DRW [7]. Class-balanced loss pro-

poses effective number to measure the sample size of

each class and the class-wise weights. Class-balanced

focal loss and class-balanced cross-entropy loss re-

fer to applying class-balanced loss on focal loss and

cross-entropy loss, respectively. LDAM-DRW allo-

cates label-aware margins to the examples based on

the label distribution, and adopts deferred re-weighting

strategy for better performance on tail classes.

• Instance weighting methods assign weights to sam-

ples according to the instance characteristic [30, 33,

23]. For example, focal loss [23] determine the

weights for samples based on the sample difficulty.

Though focal loss is not specially designed for long-

tailed classification, it can penalize the samples of mi-

nority classes if the classifier overlooks the minority

classes during training.

• Meta-learning methods. In fact, these methods adopt

meta-learning to learn better class level or instance

level weights [18, 33, 30]. For saving space, we only

introduce them here. Meta-class-weight [18] exploits

meta-learning to model the condition distribution dif-

ference between training and testing data, leading to

better class level weights. While L2RW [30] and

meta-weight-net [33] adopt meta-learning to model the

instance-wise weights. L2RW directly optimizes the

weight variables, while meta-weight-net additionally

constructs a multilayer perceptron network to model

the weighting function. Note that both L2RW and

meta-weight-net can handle the learning with imbal-

anced label distribution and noisy labels.

• Two-stage methods. We also compared with methods

that adopt two-stage learning [18, 7, 10]. BBN [43]

unifies the representation and classifier learning stages

to form a cumulative learning strategy.

Results. The experimental results of long-tailed CIFAR-

10 with different imbalance factors are shown in Table 1,

which are organized into three groups according to the

adopted basic losses (i.e., cross-entropy, focal, and LDAM).

From the results, we can observe that re-weighting

strategies are effective for the long-tailed problems, since

several re-weighting methods (e.g., meta-class-weight) out-

perform the cross-entropy training by a large margin. We

evaluate our method with the three basic losses. The re-

sults reveal that our method can consistently improve the

performance of the basic losses significantly. Particularly,

MetaSAug notably surpasses mixup that conducts augmen-

tation on the inputs, manifesting that facilitating semantic

augmentation is more effective in long-tailed scenarios. In

addition, our method performs better than the re-weighting
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Table 1. Test top-1 errors (%) of ResNet-32 on CIFAR-LT-10 under different imbalance settings. * indicates results reported in original

paper. † indicates results reported in [18].

Imbalance factor 200 100 50 20 10

Cross-entropy training 34.13 29.86 25.06 17.56 13.82

Class-balanced cross-entropy loss [9] 31.23 27.32 21.87 15.44 13.10

Class-balanced fine-tuning† [10] 33.76 28.66 22.56 16.78 16.83

BBN∗ [43] - 20.18 17.82 - 11.68

Mixup [42] (results from [43]) - 26.94 22.18 - 12.90

L2RW† [30] 33.75 27.77 23.55 18.65 17.88

Meta-weight net† [33] 32.80 26.43 20.90 15.55 12.45

Meta-class-weight with cross-entropy loss† [18] 29.34 23.59 19.49 13.54 11.15

MetaSAug with cross-entropy loss 23.11 19.46 15.97 12.36 10.56

Focal loss† [23] 34.71 29.62 23.29 17.24 13.34

Class-balanced focal loss† [9] 31.85 25.43 20.78 16.22 12.52

Meta-class-weight with focal loss† [18] 25.57 21.10 17.12 13.90 11.63

MetaSAug with focal loss 22.73 19.36 15.96 12.84 10.74

LDAM loss[7] 33.25 26.45 21.17 16.11 12.68

LDAM-DRW [7] 25.26 21.88 18.73 15.10 11.63

Meta-class-weight with LDAM loss † [18] 22.77 20.00 17.77 15.63 12.60

MetaSAug with LDAM loss 22.65 19.34 15.66 11.90 10.32

Table 2. Test top-1 errors (%) of ResNet-32 on CIFAR-LT-100 under different imbalance settings. * indicates results reported in original

paper. † indicates results reported in [18].

Imbalance factor 200 100 50 20 10

Cross-entropy training 65.30 61.54 55.98 48.94 44.27

Class-balanced cross-entropy loss [9] 64.44 61.23 55.21 48.06 42.43

Class-balanced fine-tuning† [10] 61.34 58.50 53.78 47.70 42.43

BBN∗ [43] - 57.44 52.98 - 40.88

Mixup [42] (results from [43]) - 60.46 55.01 - 41.98

L2RW† [30] 67.00 61.10 56.83 49.25 47.88

Meta-weight net† [33] 63.38 58.39 54.34 46.96 41.09

Meta-class-weight with cross-entropy loss† [18] 60.69 56.65 51.47 44.38 40.42

MetaSAug with cross-entropy loss 60.06 53.13 48.10 42.15 38.27

Focal loss† [23] 64.38 61.59 55.68 48.05 44.22

Class-balanced focal loss† [9] 63.77 60.40 54.79 47.41 42.01

Meta-class-weight with focal loss† [18] 60.66 55.30 49.92 44.27 40.41

MetaSAug with focal loss 59.78 54.11 48.38 42.41 38.94

LDAM loss [7] 63.47 59.40 53.84 48.41 42.71

LDAM-DRW [7] 61.55 57.11 52.03 47.01 41.22

Meta-class-weight with LDAM loss† [18] 60.47 55.92 50.84 47.62 42.00

MetaSAug with LDAM loss 56.91 51.99 47.73 42.47 38.72

methods. This demonstrates that our augmentation strat-

egy indeed can ameliorate the performance of classifiers.

When the dataset is less imbalanced (implying imbalance

factor=10), our method can still stably achieve performance

gains, revealing that MetaSAug won’t damage the perfor-

mance of classifier under the relatively balanced setting.

Table 2 presents the classification error of dataset long-

tailed CIFAR-100, from which we can still observe that our

methods achieve the best results in each group. Particularly,

“MetaSAug with LDAM loss” exceeds the best competing

method “Meta-class-weight with LDAM loss” by 3.56%.

4.3. Visual Recognition on ImageNet­LT

We use ResNet-50 [15] as the backbone network in the

experiments on ImageNet-LT. And we train ResNet-50 with

batch size 64. We decay the learning rate by 0.1 at 60th

epoch and 80th epoch. In addition, for training efficiency,

we only finetune the last full-connected layer while fixing
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Original Restored Augmented Original Restored Augmented

Figure 3. Visualization of the augmented examples for the four rarest classes: frog, horse, ship and truck (frequent → rare). We adopt

WGAN-GP [13] generator to search the images corresponding to the augmented features. “Original” refers to the original training samples.

“Restored” and “Augmented” present the original and augmented images generated by the generator, respectively. Our method is able to

semantically alter the semantic of training images, e.g., changing color of objects, backgrounds, shapes of objects, etc.
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Figure 4. Illustration of confusion matrices of the vanilla cross-entropy training, meta-class-weight [18], and our method on dataset CIFAR-

LT-10. The imbalance factor is 200. Classes are ranked by the frequency, i.e., frequent (left) → rare (right).

the representations in the meta-learning stage. We repro-

duce the comparison methods based on the code released

by authors.

Results. The experimental results are shown in Table

3. Class-balanced cross-entropy performs better than cross-

entropy training and LDAM-DRW surpasses LDAM by a

large margin. These results imply that re-weighting strat-

egy is also effective for the dataset with a large number of

classes. Hence, MetaSAug also adopts this strategy to bet-

ter fulfill the semantic augmentation procedure. In addi-

tion, compared with the best competing method meta-class-

weight, MetaSAug can still yield better results, demonstrat-

ing that MetaSAug is able to perform data augmentation

useful for the classification learning of classifiers.

4.4. Visual Recognition on iNaturalist Datasets

For fair comparisons, we adopt ResNet-50 [15] as the

backbone network for iNaturalist 2017 and 2018. Follow-

ing [18], we pre-train the backbone network on ImageNet

for iNaturalist 2017. As for iNaturalist 2018, the network

is pre-trained on ImageNet and iNaturalist 2017. We use

Table 3. Test top-1 error rate (%) on ImageNet-LT of different

models. (CE=Cross-entropy)

Method Top-1 error

CE training 61.12

Class-balanced CE [9] 59.15

OLTR [26] 59.64

LDAM [7] 58.14

LDAM-DRW [7] 54.26

Meta-class-weight with CE loss [18] 55.08

MetaSAug with CE loss 52.61

stochastic gradient descent (SGD) with momentum to train

models. The batch size is set as 64 and the initial learning

rate is 0.01. In the meta-learning stage of our method, we

decay the learning rate to 0.0001 and only finetune the last

fully-connected layer for training efficiency.

Results. Table 4 presents the experimental results on

the naturally-skewed datasets iNaturalist 2017 and iNatu-

ralist 2018. MetaSAug and meta-class-weight both exploit

the CE loss as basic loss. Compared with the improvement

brought by class-balanced CE [9] to CE Loss, MetaSAug
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Table 4. Test top-1 error rate (%) on iNaturalist (iNat) 2017 and

2018 of different models. ∗results is quoted from original papers.

† indicates results reported in [18]. (CE=Cross-entropy)

Method iNat 2017 iNat 2018

CE 43.21 34.24

Class-balanced CE [9] 42.02 33.57

Class-balanced focal∗ [9] 41.92 38.88

cRT∗ [20] - 32.40

BBN∗ [43] 36.61 33.71

LDAM∗ [7] - 35.42

LDAM [7] 39.15 34.13

LDAM-DRW∗ [7] - 32.00

LDAM-DRW [7] 37.84 32.12

Meta-class-weight† [18] 40.62 32.45

MetaSAug 36.72 31.25

further enhances the performance of CE loss, implying that

performing effective data augmentation is also of impor-

tance for long-tailed classification. In addition, MetaSAug

yields the best results among these competitive methods

on iNat 2018 and is on par with the state-of-art method

BBN [43] on iNat 2017. These results demonstrate that our

method indeed can facilitate data augmentation useful for

classification in the deep feature space.

4.5. Analysis

Ablation study. To verify each component of

MetaSAug, we conduct ablation study (see Table 5). Re-

moving re-weighting or meta-learning causes performance

drop. This manifests 1) re-weighting is effective to con-

struct a proper meta-learning objective, and 2) our meta-

learning method can indeed learn covariance useful for

classification. Importantly, the latter is non-trivial since

MetaSAug achieves the notable accuracy gains as shown

in Table 5. While this cannot be reached by meta-weighting

methods with fixed ISDA (e.g., L2RW; Meta-weight net,

MWN; Meta-class-weight, MCW). Furthermore, we ob-

serve that ISDA can boost former long-tailed methods to

some extent, but the improvement is limited. This also val-

idate the importance of our meta-learning algorithm.

Adaptivity to deeper backbone networks. For a rea-

sonable comparison with baselines, we adopt the commonly

used ResNet-32 and ResNet-50 to evaluate our method on

CIFAR-LT and ImageNet-LT/iNaturalist datasets, respec-

tively. However, MetaSAug can be easily adapted to other

networks, and, as indicated in [37], deeper models may

even benefit our method more due to their stronger ability to

model complex semantic relationships. In Table 6, we show

the results of MetaSAug, MCW [18] and LDAM-DRW [7]

with different backbone networks. One can observe that

MetaSAug consistently outperforms other methods.

Confusion matrices. To find out whether our method

Table 5. Ablation study of MetaSAug using cross-entropy loss on

dataset CIFAR-LT-10. The results are top-1 errors (%).

Imbalance factor 100 50 20

MetaSAug w/o re-weighting 25.96 20.63 15.15

MetaSAug w/o meta-learning 21.68 17.43 13.08

MetaSAug 19.46 15.97 12.36

ISDA, L2RW [30] 25.16 20.78 16.53

ISDA, MWN [33] 24.69 20.42 14.71

ISDA, MCW [18] 20.78 17.12 12.93

ameliorates the performance on minority classes, we plot

the confusion matrices of cross-entropy (CE) training,

meta-class-weight [18], and our method on CIFAR-LT-10

with imbalance factor 200. From Fig.4, we can observe

that CE training can almost perfectly classify the samples

in majority classes, but suffers severe performance degen-

eration on the minority classes. Due to the proposed two-

component weighting, meta-classes-weight performs much

better than CE training on the minority classes. Since

MetaSAug inclines to augment the minority classes, it can

further enhance the performance on rare classes and reduce

the confusion between similar classes (implying automobile

& truck, and airplane & ship).

Visualization Results. To intuitively reveal that our

method can indeed alter the semantics of training exam-

ples and generate diverse meaningful augmented samples,

we carry out the visualization experiment (the detailed visu-

alization algorithm is presented in [37]). The visualization

results are shown in Fig. 3, from which we can observe that

MetaSAug is capable of semantically altering the seman-

tics of training examples while preserving the label identity.

Particularly, MetaSAug can still generate meaningful aug-

mented samples for the rarest class “truck”.

Table 6. Test top-1 errors (%) on ImageNet-LT of methods with

different backbone networks.
Network MCW [18] LDAM-DRW [7] MetaSAug

ResNet-50 55.08 54.26 52.61

ResNet-101 53.76 53.55 50.95

ResNet-152 53.18 52.86 49.97

5. Conclusion

In this paper, we delve into the long-tailed visual recog-

nition problem and propose to tackle it from a data aug-

mentation perspective, which has not been fully explored

yet. We present a meta semantic augmentation (MetaSAug)

approach that learn appropriate class-wise covariance ma-

trices for augmenting the minority classes, ameliorating the

learning of classifiers. In addition, MetaSAug is orthogo-

nal to several former long-tailed methods, e.g., LDAM and

focal loss. Extensive experiments on several benchmarks

validate the effectiveness and versatility of MetaSAug.
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