
NPAS: A Compiler-aware Framework of Unified Network Pruning and

Architecture Search for Beyond Real-Time Mobile Acceleration

Zhengang Li⋆1, Geng Yuan⋆1, Wei Niu⋆2, Pu Zhao⋆1*, Yanyu Li1, Yuxuan Cai1, Xuan Shen1, Zheng Zhan1,

Zhenglun Kong1, Qing Jin1, Zhiyu Chen3, Sijia Liu4, Kaiyuan Yang3, Bin Ren2, Yanzhi Wang1, Xue Lin1

1Northeastern University, 2College of William and Mary,
3Rice University, 4Michigan State University

1{li.zhen, yuan.geng, zhao.pu, li.yanyu, cai.yuxu, shen.xu, zhan.zhe, kong.zhe,

jinqingking, yanz.wang, xue.lin}@northeastern.edu
2
wniu@email.wm.edu, bren@cs.wm.edu, 3{zc37, kyang}@rice.edu, 4

liusiji5@msu.edu

Abstract

With the increasing demand to efficiently deploy DNNs

on mobile edge devices, it becomes much more important

to reduce unnecessary computation and increase the exe-

cution speed. Prior methods towards this goal, including

model compression and network architecture search (NAS),

are largely performed independently, and do not fully con-

sider compiler-level optimizations which is a must-do for

mobile acceleration. In this work, we first propose (i) a gen-

eral category of fine-grained structured pruning applicable

to various DNN layers, and (ii) a comprehensive, compiler

automatic code generation framework supporting different

DNNs and different pruning schemes, which bridge the gap

of model compression and NAS. We further propose NPAS,

a compiler-aware unified network pruning and architec-

ture search. To deal with large search space, we propose

a meta-modeling procedure based on reinforcement learn-

ing with fast evaluation and Bayesian optimization, ensur-

ing the total number of training epochs comparable with

representative NAS frameworks. Our framework achieves

6.7ms, 5.9ms, and 3.9ms ImageNet inference times with

78.2%, 75% (MobileNet-V3 level), and 71% (MobileNet-V2

level) Top-1 accuracy respectively on an off-the-shelf mo-

bile phone, consistently outperforming prior work.

1. Introduction

The growing popularity of mobile AI applications and

the demand for real-time Deep Neural Network (DNN) ex-

ecutions raise significant challenges for DNN accelerations.

However, the ever-growing size of DNN models causes in-

tensive computation and memory cost, which impedes the

*⋆These authors contributed equally.

deployment on resource limited mobile devices.

DNN weight pruning [71, 21, 54, 27, 28] has

been proved as an effective model compression technique

that can remove redundant weights of the DNN models,

thereby reducing storage and computation costs simultane-

ously. Existing work mainly focus on unstructured pruning

scheme [24, 21, 46] where arbitrary weight can be removed,

and (coarse-grained) structured pruning scheme [54, 85, 84,

50, 82, 45] to eliminate whole filters/channels. The former

results in high accuracy but limited hardware parallelism

(and acceleration), while the latter is the opposite. Another

active research area is the Neural Architecture Search

(NAS) [86], which designs more efficient DNN architec-

tures using automatic searching algorithms. EfficientNet

[69] and MobileNetV3 [30] are representative lightweight

networks obtained by using NAS approaches. Recently,

hardware-aware NAS [68, 73, 8, 33] has been investigated

targeting acceleration on actual hardware platforms.

Different from the prior work on coarse-grained pruning

and NAS that find a smaller, yet regular, DNN structure,

recent work [48, 58, 16] propose to prune the weights in a

more fine-grained manner, e.g., assigning potentially differ-

ent patterns to kernels. Higher accuracy can be achieved

as a result of the intra-kernel flexibility, while high hard-

ware parallelism (and mobile inference acceleration) can be

achieved with the assist of compiler-level code generation

techniques [58]. This work reveals a new dimension of opti-

mization: With the aid of advanced compiler optimizations,

it is possible to achieve high accuracy and high acceleration

simultaneously by injecting a proper degree of fine gran-

ularity in weight pruning. Despite the promising results,

pattern-based pruning [48, 58] is only applied to 3×3 con-

volutional (CONV) layers, which limits the applicability.

As the first contribution, we propose a general cate-

gory of fine-grained structured pruning schemes that can be

14255

applied to various DNN layers, i.e., block-punched prun-

ing for CONV layers with different kernel sizes, and block-

based pruning for FC layers. We develop a comprehen-

sive, compiler-based automatic code generation framework

supporting the proposed pruning schemes in a unified man-

ner, supporting other types of pruning schemes, and differ-

ent schemes for different layers. We show (i) the advan-

tage of the proposed fine-grained structured pruning in both

accuracy and mobile acceleration, and (ii) the superior end-

to-end acceleration performance of our compiler framework

on both dense (before pruning) and sparse DNN models.

While our compiler optimizations provide notable mo-

bile acceleration and support of various sparsity schemes, it

introduces a much larger model optimization space: Differ-

ent kernel sizes (1×1, 3×3, etc.) result in different accel-

eration performances under compiler optimizations, so do

different sparsity schemes. Thus, it is desirable to perform

a compiler aware, joint network pruning and architecture

search, determining the filter type and size, as well as prun-

ing scheme and rate, for each individual layer. The objec-

tive is to maximize accuracy satisfying a DNN latency con-

straint on the target mobile device. The DNN latency will

be actually measured on the target mobile device, thanks to

the fast auto-tuning capability of our compiler for efficient

inference on different mobile devices.

We develop the compiler-aware NPAS framework to ful-

fill the above goal. It consists of three phases: (1) replace-

ment of mobile-unfriendly operations, (2) the core search

process, and (3) pruning algorithm search. The overall la-

tency constraint is satisfied through the synergic efforts of

(i) incorporating the overall DNN latency constraint into the

automatic search in Phase 2, and (ii) the effective search of

pruning algorithm and performing weight training/pruning

accordingly. As Phase 2 exhibits a larger search space than

prior NAS work, to perform efficient search, we propose a

meta-modeling procedure based on reinforcement learning

(RL) with fast evaluation and Bayesian optimization. This

will ensure the total number of training epochs comparable

with representative NAS frameworks.

Our key contributions include:

• We propose a general category of fine-grained struc-

tured pruning applicable to various DNN layers, and a

comprehensive, compiler code generation framework

supporting different pruning schemes. We bridge the

gap between model compression and NAS.

• We develop a compiler-aware framework of joint net-

work pruning and architecture search, maximizing ac-

curacy while satisfying inference latency constraint.

• We design a systematic search acceleration strategy,

integrating pre-trained starting points, fast accuracy

and latency evaluations, and Bayesian optimization.

• Our NPAS framework achieves by far the best mobile

acceleration: 6.7ms, 5.9ms, and 3.9ms ImageNet infer-

ence times with 78.2%, 75%, and 71% Top-1 accuracy,

respectively, on an off-the-shelf mobile phone.

2. Related Works

2.1. Network Pruning

Existing weight pruning research can be categorized ac-

cording to pruning schemes and pruning algorithms.

Pruning Scheme: Previous weight pruning work can

be categorized into multiple major groups according to the

pruning scheme: unstructured pruning [24, 21, 51], coarse-

grained structured pruning [71, 29, 47, 79, 46, 26, 81, 39,

17], and pattern-based pruning [48, 58, 49].

Unstructured pruning (Fig. 1 (a) and (b)) removes

weights at arbitrary position. Though it can significantly

decrease the number of weights in DNN model as a fine-

grained pruning scheme, the resulted sparse and irregular

weight matrix with indices damages the parallel implemen-

tations and results in limited acceleration on hardware.

To overcome the limitation in unstructured, irregular

weight pruning, many work [71, 29, 46, 26, 81, 39, 17, 47,

79, 44] studied the coarse-grained structured pruning at the

level of filters and channels as shown in Fig. 1 (c) and (d).

With the elimination of filters or channels, the pruned model

still maintains the network structure with high regularity

which can be parallelized on hardware. The downside of

coarse-grained structured pruning is the obvious accuracy

degradation by removing the whole filters/channels, which

limits model compression rate.

Fig. 1 (e) shows the pattern-based pruning [48, 58, 49] as

a representative fine-grained structured pruning scheme. It

assigns a pattern (from a predefined library) to each CONV

kernel, maintaining a fixed number of weights in each ker-

nel. As shown in the figure, each kernel reserves 4 non-zero

weights (on a pattern) out of the original 3×3 kernels. Be-

sides being assigned a pattern, a kernel can be completely

removed to achieve higher compression rate. Pattern-based

pruning can simultaneously achieve high accuracy (thanks

to the structural flexibility) and high inference acceleration

with the aid of compiler-based executable code generation.

Note that compiler support [58] is necessary for pattern-

based pruning to deliver its promise on mobile acceleration.

A limitation is that pattern-based pruning is limited to

3×3 CONV layers in current work: 5×5 or larger kernel

size results in a large number of pattern types, which incurs

notable computation overheads in compiler-generated exe-

cutable codes. 1×1 CONV layers and FC layers leave no

space of designing different patterns for a kernel.

Pruning Algorithm: Two main categories exist:

heuristic pruning algorithm [23, 21, 17, 47, 79] and

regularization-based pruning algorithm [80, 71, 46, 29, 26,

14256

ch (n-1)

flt 1

Unstructured
pruning

Coarse-grained

structured

pruning

Filter
pruning

Channel
pruning

flt 2

flt m

2-D Weight Matrix Format4-D Weight Tensor Format

(a) (b)

ch 1 ch 2 ch n

ch 1 ch 2 ch n

flt 1
flt 2

flt m

ch 1 ch 2 ch n

pruned
weight

flt 2

flt m

flt 1

flt 1
flt 2

flt m

ch 1 ch 2 ch n

CONV Layer FC Layer

2-D Weight Matrix Format

Pattern-based
pruning

(Only for 3x3

CONV Layer)

flt 2

flt m

ch 1 ch 2 ch n

flt 1

flt 1
flt 2

flt m

ch 1 ch 2 ch n

Block-punched
pruning

(Proposed)

ch 1 ch 2 ch n
flt 1

flt 2

flt 3

(c) (d)

flt 2
flt 3

flt 1

ch 1 ch 2 ch (n-1) ch n

Input

Output

Input

Output

Output

Row
pruning

Column
pruning

Unsupported

Block-based

pruning

(Proposed)
flt 4 flt 4

block

(e)

(f) (g)

block

Figure 1. Different weight pruning schemes for CONV and FC layers using 4D tensor and 2D matrix representation.

81, 39, 28]. Heuristic pruning was firstly performed in an

iterative, magnitude-based manner on unstructured prun-

ing [23], and gets improved in later work [21]. Heuris-

tic pruning has also been incorporated into coarse-grained

structured pruning [47, 79, 17].

Regularization-based algorithm uses mathematics-

oriented method to deal with the pruning problem. Early

work [71, 29] incorporates ℓ1 or ℓ2 regularization in loss

function to solve filter/channel pruning problems. Later

work [26] makes the regularization penalty “softer” which

allows the pruned filters to be updated during the training

procedure. In [81, 39], an advanced optimization solution

framework ADMM (Alternating Direction Methods of

Multipliers) is utilized to achieve dynamic regularization

penalty which significantly reduces accuracy loss. In [28],

Geometric Median is proposed to conduct filter pruning.

2.2. Neural Architecture Search (NAS)

In general, NAS can be classified into the following cat-

egories by its searching strategy. Reinforcement Learning

(RL) methods [86, 83, 87, 3, 41, 7, 59] employ Recur-

rent Neural Network (RNN) as predictor, with parameters

updated by the accuracy of child network validated over

a proxy dataset. Evolution methods [62, 18, 61, 53, 74,

42, 74] develop a pipeline of parent initialization, popu-

lation updating, generation and elimination of offsprings.

One-shot NAS [6, 4, 78, 22, 12] trains a large one-shot

model containing all operations and shares the weight pa-

rameters to all candidate models. Gradient-based methods

[43, 8, 10, 76, 73, 13, 19] propose a differentiable algorithm

distinct from prior discrete search, reducing searching cost

while still getting comparable results. Bayesian optimiza-

tion [5, 15, 52, 34, 63, 72] uses optimal transport program

to compute the distance of network architectures.

Some recent work realize the importance of hardware

co-design and incorporate the inference latency into NAS,

which is more accurate than the intuitive volume estimation

like Multiply–Accumulate operations (MACs) [68, 73, 8].

MnasNet [68] utilizes latency on mobile device as the re-

ward to perform RL search, where gradient-based NAS

work FBNet [73] and ProxylessNAS [8] add a latency term

to the loss function. However, none of these hardware-

targeting work fully exploit the potential of compiler op-

timizations or satisfy an overall latency requirement, not to

mention accounting for compiler-supported sparse models.

This motivates us to investigate another dimension of model

optimization, that is, compiler-aware, latency-constrained,

architecture and pruning co-search.

2.3. Compiler­assisted DNN Frameworks on Mobile

Recently, mobile-based, compiler-assisted DNN ex-

ecution frameworks [37, 38, 75, 32, 77, 25] have

drawn broad attention from both industry and academia.

TensorFlow-Lite (TFLite) [1], Alibaba Mobile Neural Net-

work (MNN) [2], and TVM [9] are representative state-of-

the-art DNN inference frameworks. Various optimization

techniques, such as varied computation graph optimizations

and half-float support, have been employed to accelerate the

14257

DNN inference on mobile devices (mobile CPU and GPU).

Recent work PatDNN [58] and PCONV [48] employ

a set of compiler-based optimizations to support specific

pattern-based sparse DNN models to accelerate the end-

to-end inference on mobile devices. However, the lack of

support for different types of layers (e.g., 1×1 CONV, 5×5

CONV, and FC) limits the versatility of such framework.

3. Proposed Fine-Grained Structured Pruning

Pattern-based pruning scheme [48, 58, 49], as mentioned

in Section 2.1, reveals a new optimization dimension of

fine-grained structured pruning that can achieve high ac-

curacy and high inference acceleration simultaneously with

the assist of compiler optimizations. As pattern-based prun-

ing is only applicable to 3 × 3 CONV layers, we pro-

pose a general category of fine-grained structured pruning

scheme that can be applied to various DNN layers: block-

based pruning for FC layers and block-punched pruning for

CONV layers with different kernel sizes.

Block-based Pruning: Fig. 1 (g) shows the block-based

pruning scheme in 2D weight matrix format for FC lay-

ers. The entire weight matrix is divided into a number of

equal-sized blocks, then the entire column(s) and/or row(s)

of weights are pruned within each block. Compared to

the coarse-grained structured pruning, block-based pruning

provides a finer pruning granularity to better preserve the

DNN model accuracy. With an appropriate block size se-

lected, the remaining computation within a block can still

be parallelized on mobile device with the help of compiler.

As a result, block-based pruning can achieve comparable

hardware (inference) performance as coarse-grained struc-

tured pruning, under the same overall pruning rate.

Block-punched Pruning: The CONV layers prefer the

tensor-based computation rather than matrix-based compu-

tation used for FC layers. Inspired by block-based prun-

ing, we develop block-punched pruning scheme tailored for

CONV layers, which can be accelerated using the same

compiler optimizations. As shown in Fig. 1 (f), block-

punched pruning requires pruning a group of weights at the

same location of all filters and all channels within a block

to leverage hardware parallelism from both memory and

computation perspectives. With effective compiler-level ex-

ecutable code generation, high hardware parallelism (and

inference acceleration on mobile) can also be achieved.

Compiler Optimizations: We develop a comprehen-

sive, compiler-based automatic code generation frame-

work supporting the proposed (block-punched/block-based)

pruning schemes in a unified manner. It also supports other

pruning schemes such as unstructured, coarse-grained,

pattern-based pruning. In fact, unstructured and coarse-

grained structured pruning schemes are just special cases of

block-punched pruning, the former with block size 1×1 and

the latter with block size of the whole weight tensor/matrix.

A novel layer fusion technique is developed, which is criti-

cal to the efficient implementation of super-deep networks.

Fast auto-tuning capability is incorporated for efficient end-

to-end inference on different mobile CPU/GPU.

71

72

73

74

75

76

77

10 15 20 25 30 35

To
p

-1
 A

cc
u

ra
cy

 (
%

)

Latency (ms)

unstructured

8x4

8x8

16x4

32x4

Figure 2. Accuracy vs. Latency with different block sizes on Ima-

geNet using ResNet-50 under uniform 6× pruning rate.

Sample Results and Block Size Determination: Fig. 2

shows example results of the accuracy vs. latency when ap-

plying block-punched pruning on ResNet-50 with different

block sizes. A uniform pruning rate (i.e., 6×) and block

size are adopted through all layers. Under the same pruning

rate, unstructured pruning (i.e., 1×1 block size) preserves

the highest accuracy but has the worst performance in la-

tency. On the contrary, coarse-grained structured pruning

(i.e., whole weight matrix as a block) achieves the lowest

latency but with a severe accuracy degradation. The results

of block-punched pruning show high accuracy and high in-

ference speed (low latency) simultaneously.

The reason is that the maximum hardware parallelism

is limited by computation resources. Thus, even when di-

viding weights into blocks, each block’s remaining weights

are still sufficient to fulfill on-device hardware parallelism,

especially on resource-limited mobile devices. One reason-

able block size determination strategy is to let the number

of channels contained in each block match the length of the

vector register (e.g., 4) on target mobile CPU/GPU to ensure

high parallelism. Then determine the number of filters to be

contained (e.g., 8) by considering the given design targets.

4. Motivation of Compiler-Aware Unified Op-

timization Framework

Our compiler optimizations provide notable acceleration

of different filter types, and support for various sparsity

schemes. A key observation is that different filter types and

sparsity schemes have different acceleration performance

under compiler optimizations (when computation (MACs)

is the same). The following are measured on mobile CPU

(Qualcomm Kryo 485) of a Samsung Galaxy S10 phone.

Different Filter Types (Kernel Sizes): Fig. 3 (a) shows

the latency vs. computation (MACs) of a CONV layer

with different kernel sizes. We fix the input feature map to

56×56 and change the number of filters. Under the same

computation, 3×3 kernels achieve the best performance,

where the 1×1 kernels are the second. Because 3×3 kernels

14258

can be accelerated using Winograd algorithm, and makes it

the most compiler-friendly; while 1×1 kernels result in no

input redundancy in GEMM computation, which also re-

lieves the burden on compiler optimizations.

Different Pruning Schemes: Fig. 3 (b) shows the com-

putation speedup vs. pruning rate of a 3×3 CONV layer

with different pruning schemes. We choose the input fea-

ture map size of 56×56 and 256 input and output chan-

nels. We can observe that, with compiler optimizations,

fine-grained pruning schemes (i.e., pattern-based and block-

punched pruning) consistently outperform the unstructured

pruning and achieve comparable acceleration compared to

the coarse-grained structured pruning below 5× pruning.

Since, under reasonable pruning rate of fine-grained struc-

tured pruning schemes, the remaining weights in each layer

are still sufficient to fully utilize hardware parallelism.

Impact of Number of Layers: The number of computa-

tion layers is another critical factor that affects inference la-

tency. To show the impact, we make a narrower-but-deeper

version of ResNet-50 by doubling the number of layers,

while keeping computation MACs the same as the original

ResNet-50. And the inference speed of the narrower-but-

deeper version is 1.22× slower than the original one using

mobile GPU (44ms vs. 36ms). The main reason is that a

larger number of layers introduce more intermediate results

and hence more frequent data access to the main memory.

And the mobile CPU/GPU cannot be fully utilized due to a

large number of memory-intensive layers.

Based on the above observations, it is desirable to per-

form a compiler-aware network pruning and architecture

search, determining the filter type and size, as well as prun-

ing scheme and rate for each individual layer. The objective

is to maximize DNN accuracy satisfying an inference la-

tency constraint when actually executing on the target mo-

bile device, accounting for compiler optimizations.

5. Proposed Unified Network Pruning and Ar-

chitecture Search (NPAS) Algorithm

5.1. Overview of NPAS Framework

Fig. 4 shows the proposed NPAS framework. To take

advantage of recent NAS results and accelerate the NPAS

process, we start from a pre-trained DNN model, and go

0

1

2

3

4

5

6

7

1 3 5 7 9

S
p

ee
d

u
p

 (
ti

m
es

)

Conv3x3 Pruning Rate (times)

unstructured

structured

pa�ern
block-punched

0
5
10
15
20
25
30
35
40

0 50 100 150 200

L
a

te
n

cy
 (

m
s)

Computation (MMACs)

1x1 3x3

5x5 1--3--1

(a)

0
0

1

1

0

2

3

4

5

6

7

3 5 7 9

5
10
15
20
25
30
35
40

50 100 150 200

(b)

Figure 3. (a) Latency vs. Computation with different filter types,

(b) speedup vs. pruning rate with different pruning schemes.

Pretrained
DNN Model

Phase 1: Mobile-unfriendly

Operation Replacement

DNN Model with

Replaced Operations

Phase 2: NPAS

Scheme Search

Phase 3: Pruning
Algorithm Search

Desirable

NPAS Scheme

Final DNN
Model

Compiler

Generated Code

NPAS

Agent

Candidate

NPAS Scheme

Per-layer Filter Type

Per-layer Pruning Rate

Per-layer Pruning Scheme

Fast Evaluation

Compiler Optimized Code Generation

Fast Retraining

Accuracy

Reward

Compiler-

aware

Latency

Reward

In parallel

Deploy

Figure 4. Overview of the proposed NPAS framework.

through three phases as shown in the figure.

Phase 1: Replacement of Mobile-Unfriendly Opera-

tions: Certain operators are inefficient to execute on mobile

devices (mobile CPU and GPU). For instance, certain acti-

vation functions, such as sigmoid, swish, require exponen-

tial computation, and can become latency bottleneck on mo-

bile inference. These unfriendly operations will be replaced

by compiler-friendly alternatives such as hard-sigmoid and

hard-swish, with negligible effect on accuracy.

Phase 2: NPAS Scheme Search: This phase generates

and evaluates candidate NPAS schemes, defined by the col-

lection of per-layer filter types, per-layer pruning schemes

and rates, and finally chooses the best-suited one. As per-

layer pruning schemes and rates are being searched, Phase 2

exhibits a much larger search space than prior NAS, which

renders representative NAS algorithms like RL-based ones

ineffective. To accelerate such search, we present a meta-

modeling procedure based on RL with Bayesian Optimiza-

tion (BO), with details in Section 5.2. A fast accuracy eval-

uation method is developed, tailored to NPAS framework.

Moreover, we incorporate the overall DNN latency con-

straint effectively in the reward function of NPAS scheme

search, ensuring that such constraint can be satisfied at the

search outcome. The overall DNN latency is actually mea-

sured on the target mobile CPU/GPU based on the candidate

NPAS scheme currently under evaluation. We rely on ac-

tual measurement instead of per-layer latency modeling as

many prior NAS work. This is because our advanced com-

piler optimizations incorporate a strong layer fusion beyond

prior compiler work, which is critical for efficient imple-

mentation of super-deep networks, and will make per-layer

latency modeling less accurate.

Phase 3: Pruning Algorithm Search: The previous

phase has already determined the per-layer pruning schemes

and rates, so that the compiler-generated codes can sat-

isfy the overall latency constraint. The remaining task of

14259

this phase is to search for the most desirable pruning al-

gorithm to perform actual pruning and train the remaining

weights1. As the per-layer pruning rates are already deter-

mined, the candidate pruning algorithms to select from are

limited to those with pre-defined per-layer pruning rates, in-

cluding magnitude-based ones [23, 20], ADMM-based al-

gorithm [81, 39], etc. As an extension over prior work,

we generalize these algorithms to achieve different spar-

sity schemes with the help of group-Lasso regularization

[35, 71] In Phase 3, we compare the resulted DNN accuracy

from the candidate pruning algorithms in a few epochs, se-

lect the one with the highest accuracy, and continue a best-

effort algorithm execution to derive the final DNN model

and compiled codes.

5.2. Details of Phase 2: NPAS Scheme Search

5.2.1 Search Space of NPAS in Phase 2

Table 1. NPAS search space for each DNN layer

Filter

type

{1×1, 3×3, 3×3 DW & 1×1,

1×1 & 3×3 DW & 1×1, skipping} 1

Pruning

scheme

{Filter [85], Pattern-based [58],

Block-punched/block-based}

Pruning rate { 1×, 2×, 2.5×, 3×, 5×, 7×, 10× }

1 & denotes cascade connection.

Per-layer filter types: As different filter types (kernel

sizes) have different acceleration performance under com-

piler optimizations, the NPAS search space includes replac-

ing the original filter type with 1×1, 3×3, a cascade of 3×3

depth-wise (DW) and 1×1 convolutions, a cascade of 1×1

and 3×3 DW and 1×1 convolutions, or directly skipping the

entire layer. The first two are most preferable with compiler

optimizations (please refer to Section 4), and the cascade

connection is shown in prior work [31, 64] to provide the

same accuracy with less computation.

Per-layer pruning schemes: The NPAS agent can

choose from filter (channel) pruning [85], pattern-based

pruning [58] and block-punched/based pruning for each

layer. As different layers may have different compatible

pruning schemes, we allow the NPAS the flexibility to

choose different pruning schemes for different layers. This

is well supported by our compiler code generation.

Per-layer pruning rate: We can choose from the list

{1×, 2×, 2.5×, 3×, 5×, 7×, 10×} (1× means no pruning).

5.2.2 Q-Learning Training Procedure

As per-layer pruning scheme and rate is integrated in NPAS

scheme search, the search space is beyond that of conven-

tional NAS. To ensure fast search, we employ the RL al-

gorithm Q-learning as the base technique, assisted by fast

1The above process cannot be accomplished by the fast accuracy eval-

uation in Phase 2 as we need to limit the number of training epochs.

evaluation (Section 5.2.3) and Bayesian optimization (BO)

(Section 5.2.4) for search speedup. The Q-learning algo-

rithm consists of an NPAS agent, states and a set of actions.

For the state of the i-th layer in a given DNN, it is defined

as a tuple of filter type, pruning scheme, and pruning rate

i.e., {filter typei, pruning schemei, pruning ratei},

and each can be selected from the corresponding search

space. We add the layer depth to the state space to constrict

the action space such that the state-action graph is directed

and acyclic (DAG).

For action space, we allow transitions for a state with

layer depth i to a state with layer depth i+ 1, ensuring that

there are no loops in the graph. This constraint ensures that

the state-action graph is always a DAG. When layer depth

reaches the maximum layer depth, the transition terminates.

Based on above-defined state s ∈ S and action a ∈ A,

we adopt Q-learning procedure [70] to update Q-values. We

specify final and intermediate rewards as follows:

rT = V − α ·max(0, h−H), rt =
rT

T
, (1)

where V is the validation accuracy of the model, h is the

model inference speed or latency (actually measured on a

mobile device), and H is the threshold for the latency re-

quirement. Generally, rT is high when the model satisfies

the real-time requirement (h < H) with high evaluation ac-

curacy. Otherwise the final reward is small, especially when

the latency requirement is violated. For the intermediate re-

ward rt which is usually ignored by setting it to zero [3]

as it cannot be explicitly measured, the reward shaping [57]

is employed as shown above to speed up the convergence.

Setting rt = 0 could make the Q-value of sT much larger

than others in the early stage of training, leading to an early

stop of searching for the agent.

We adopt the ǫ-greedy strategy [55] to choose actions.

In addition, as the exploration space is large, the experience

replay technique is adopted for faster convergence [40].

5.2.3 Fast Evaluation Methods

We develop and adopt multiple tailored acceleration strate-

gies to facilitate fast evaluation in NPAS scheme search.

Unidirectional Filter Type Replacement: The NPAS

scheme search needs to satisfy a pre-defined DNN latency

constraint. Thus, we follow the principle of not increasing

kernel size to search per-layer filter type, which can effec-

tively reduce search space. For example, we will no longer

search the filter type for 1×1 layers in the original model.

Weight Initialization for Filter Type Candidates: The

weights of the filter type candidate operators in each layer

can be pre-trained before NPAS scheme search (Phase 2)

very quickly using reconstruction error, which can make

them act similarly to the original operations. Thus, the ac-

curacy evaluation process can be significantly accelerated.

14260

One-shot Pruning and Early Stopping for Fast Accu-

racy Evaluation: During the accuracy evaluation process,

we follow the pruning scheme and rate (for a specific layer)

in a candidate NPAS scheme, and conduct a one-shot prun-

ing (on the target layer) based on weight magnitude. This

straightforward pruning will result in accuracy degradation.

But after a couple of epochs of retraining, it can distinguish

the relative accuracy of different NPAS schemes.

Overlapping Compiler Optimization and Accuracy

Evaluation: We use compiler code generation and actual

on-device latency measurement because of (i) higher ac-

curacy than per-layer latency modeling due to layer fusion

mechanism , and (ii) the fast auto-tuning capability of com-

piler to different mobile devices. Please note that the com-

piler code generation and latency measurement do not need

the absolute weight values. Compiler code generation is

much faster than DNN training (even a single epoch), and

can be performed in parallel with accuracy evaluation (as

accurate weight values are not needed). As a result, it will

not incur extra time consumption to NPAS.

5.2.4 Bayesian Predictor for Reducing Evaluations

As performing evaluation on a large amount of sampled

NPAS schemes is time-consuming, we build a predictor

with BO [67, 36, 11]. The NPAS agent generates a pool

of NPAS schemes. We first use BO to select a small num-

ber of NPAS schemes with potentially high rewards from

the pool. Then the selected NPAS schemes are evaluated

to derive more accurate rewards. We reduce the evaluation

of NPAS schemes with possibly weak performance, thereby

reducing the overall scheme evaluation effort.

We build a predictor combining Gaussian process (GP)

with a Weisfeiler-Lehman subtree (WL) graph kernel [56,

66] to handle the graph-like NPAS schemes. The WL ker-

nel compares two directed graphs in iterations. In the m-

th WL iteration, it first obtains the histogram of graph fea-

tures φm(s) and φm(s′) for two graphs. Then it compares

the two graphs with kbase
(

φm(s), φm(s′)
)

where kbase is a

base kernel and we employ dot product here. The iterative

procedure stops until m = M and resultant WL kernel is

kM
WL

(s, s′) =

M
∑

m=0

wmkbase
(

φm(s), φm(s′)
)

. (2)

where wm contains the weights for each WL iteration m,

which is set to equal for all m following [66]. The Expected

Improvement [60] is employed as the acquisition function

in the work. Algorithm 1 provides a summary.

6. Results and Evaluation

6.1. Experimental Setup

In this section, we use the image classification task and

ImageNet dataset [14] to show the effectiveness of our

framework. All training processes use the SGD optimizer

Algorithm 1 Q-learning with Bayesian Predictor Algorithm

Input: Observation data D, BO batch size B, BO acquisition

function α(·)
Output: The best NPAS scheme s

for steps do

Generate a pool of candidate NPAS schemes Sc;

Select {ŝi}Bi=1 = argmaxs∈Sc
α(s|D);

Evaluate the scheme and obtain reward {ri}Bi=1 of {ŝi}Bi=1;

Update Q values based on Q-learning with reward;

D ← D ∪ ({si}Bi=1, {r
i}Bi=1);

Update GP of BO with D;

end for

with a 0.9 momentum rate and a 0.0005 weight decay and

use the batch size of 2048 per node. The starting learning

rate is set to 0.001, and the cosine learning rate scheduler

is used if not specified in our paper. For Phase 1, we con-

duct a fast fine-tuning with 5 training epochs after replacing

the mobile-unfriendly operations (only once for the entire

NPAS process). In Phase 2, 40 Nvidia Titan RTX GPUs are

used to conduct the fast accuracy evaluation for candidate

NPAS schemes concurrently. Since we start from a well-

trained model, we retrain 2 epochs for each candidate one-

shot pruned model for fast evaluation. For each candidate

model, we measure 100 runs of inference on target mobile

devices and use the average value as end-to-end latency. In

Phase 3, we search the most desirable pruning algorithm

including magnitude-based algorithm, ADMM-based algo-

rithm [81, 39] and geometric median-based algorithm [28]

(only for filter pruning). We adopt 100 epochs for weight

pruning and 100 epochs on remaining weights fine-tuning

with knowledge distillation [65].

The overall GPU days are varied based on pre-trained

network and are reduced thanks to our fast evaluation and

BO. For example, using EfficientNet-B0 as starting point,

the overall searching time is 15 days, where Phase 1 only

takes 5 epochs, and Phase 3 takes 1.5 days.

6.2. Evaluation Results

In Fig. 5 and 6, we compare our accuracy and latency re-

sults with representative DNN inference acceleration frame-

work MNN, PyTorch Mobile, and TFLite. Four dense DNN

models are used for the comparisons, which are MobileNet-

V3, EfficientNet-B0, shrunk versions of EfficientNet-B0 to

70% original computation and 50% original computation.

The results are tested on a Samsung Galaxy S10 smartphone

using mobile CPU (Qualcomm Kryo 485) or mobile GPU

(Qualcomm Adreno 640). PyTorch Mobile does not support

mobile GPU, so no corresponding results. EfficientNet-B0

is used as our pretrained model.

First, without incorporating NPAS, one can observe that

our compiler optimizations can effectively speed up the

same DNN inference, up to 46% and 141% (on MobileNet-

14261

Table 2. Comparison results of NPAS and representative lightweight networks.

A. / P. Search Params CONV MACs Accuracy (Top-1/5) Latency (CPU/GPU) Device

MobileNet-V1 [31] N./N. 4.2M 575M 70.6 / 89.5 - / - -

MobileNet-V2 [64] N./N. 3.4M 300M 72.0 / 91.0 - / - -

MobileNet-V3 [30] Y./N. 5.4M 227M 75.2 / 92.2 - / - -

NAS-Net-A [87] Y./N. 5.3M 564M 74.0 / 91.3 183ms / NA Google Pixel 1

AmoebaNet-A [62] Y./N. 5.1M 555M 74.5 / 92.0 190ms / NA Google Pixel 1

MnasNet-A1 [68] Y./N. 3.9M 312M 75.2 / 92.5 78ms / NA Google Pixel 1

ProxylessNas-R [8] Y./N. NA NA 74.6 / 92.2 78ms / NA Google Pixel 1

NPAS (ours) Y./N. 5.3M 385M 78.2 / 93.9 11.8ms / 6.7ms Galaxy S10

NPAS (ours) Y./Y. 3.5M 201M 75.0 / 92.0 9.8ms / 5.9ms Galaxy S10

NPAS (ours) Y./Y. 3.0M 147M 70.9 / 90.5 6.9ms / 3.9ms Galaxy S10

NPAS (ours) Y./Y. 2.8M 98M 68.3 / 89.4 5.6ms / 3.3ms Galaxy S10

V3), compared with the currently best framework MNN on

mobile CPU and GPU, respectively. The red star shapes

in the figures represent the NPAS generated results un-

der different latency constraints. Our NPAS results con-

sistently outperform the representative DNN models, and

achieve the Pareto optimality in terms of accuracy and in-

ference latency. For the starting models that have already

met the latency constraint, we replace the mobile-unfriendly

operations and maintain the original architecture. With

MobileNet-V3 level accuracy (75% Top-1), our inference

time (201M MACs) is 9.8ms and 5.9ms, respectively. With

MobileNet-V2 level accuracy (71% Top-1), the inference

time of NPAS solution (147M MACs) is 6.9ms and 3.9ms,

respectively. To the best of our knowledge, this is never ac-

complished by any existing NAS or weight pruning work.

Table 2 shows the model details, with representative

handcrafted and hardware-aware NAS models as refer-

ences. One can observe the computation (MACs) reduc-

tion under the same accuracy compared with the prior ref-

erences, thanks to the joint network pruning and search.

One can also observe the huge gap in latency compared

with these prior work, as neither of compiler optimizations

nor compiler-aware optimizations are accounted for. This

gap is the reason we believe that compiler optimizations

and awareness will contribute significantly to DNN accel-

erations.

4 6 8 10 12 14 16 18 20 22 24 26 28 30

80

79

78

77

76

75

74

73

72

71

70

69

68

MobileNet-V3:

 MNN

 PyTorch

 TF-Lite

 Our Compiler

EfficientNet-B0 :

 MNN

 PyTorch

 TF-Lite

 Our Compiler

EfficientNet-B0 (x0.7) :

 MNN

 PyTorch

 TF-Lite

 Our Compiler

EfficientNet-B0 (x0.5) :

 MNN

 PyTorch

 TF-Lite

 Our Compiler

 NPAS (Ours)

(11.9, 71.5) (15.4, 71.5)

(18.4, 71.5)

(12.3, 75.2)

(22.0, 75.2)

(18.0, 75.2)

(18.0, 77.1)

(22.3, 77.1)

(21.1, 77.1)

(11.8, 78.2)
(MACs=385M)

(9.8, 75.0)
(MACs=201M)

(MACs=147M)

(MACs=99M)

(12.3, 68.1)
(14.2, 68.1)

(11.9, 68.1)

(8.4, 68.1)

(16.0, 75.2)

Mobile CPU Latency (ms)

T
o
p
-1

 A
c
c
u
ra

c
y
 (

%
)

(5.6, 68.3)

(6.9, 70.9)

(20.0, 77.1)

(14.1, 71.5)

Figure 5. Accuracy vs. Latency comparison on mobile CPU.

T
o

p
-1

 A
c
c
u

ra
c
y
 (

%
)

Mobile GPU Latency (ms)
3 4 5 6 7 8 9 10 11 12 13 14 15 16

80

79

78

77

76

75

74

73

72

71

70

69

68

MobileNet-V3:

 MNN

 TF-Lite

 Our Compiler

EfficientNet-B0 :

 MNN

 TF-Lite

 Our Compiler

EfficientNet-B0 (x0.7) :

 MNN

 TF-Lite

 Our Compiler

EfficientNet-B0 (x0.5) :

 MNN

 TF-Lite

 Our Compiler

 NPAS (Ours)

(7.4, 71.5) (12.1, 71.5)

(7.9, 75.2)

(16.0, 75.2)

(11.0, 77.1)

(13.7, 77.1)

 (6.7, 78.2)
(MACs=385M)

(5.9, 75.0)
(MACs=201M)

(MACs=147M)

(MACs=99M)

(9.6, 68.1) (11.2, 68.1)(6.1, 68.1)

(3.9, 70.9)

(3.3, 68.3)

(15.1, 75.2)

(12.9, 71.5)

17 18 19

(15.0, 77.1)

Figure 6. Accuracy vs. Latency comparison on mobile GPU.

7. Conclusion

In this work, we propose (i) a fine-grained structured

pruning applicable to various DNN layers, and (ii) a com-

piler automatic code generation framework supporting dif-

ferent DNNs and different pruning schemes, which bridge

the gap of model compression and NAS. We further propose

NPAS, a compiler-aware unified network pruning and archi-

tecture search, and several techniques are used to accelerate

the searching process.

8. Acknowledgements

This research is partially funded by National Sci-

ence Foundation CCF-1901378, CCF-1919117, and CCF-

1937500, Army Research Office/Army Research Labora-

tory via grant W911NF-20-1-0167 (YIP) to Northeastern

University, a grant from Semiconductor Research Corpora-

tion (SRC), and a grant from Jeffress Trust Awards in In-

terdisciplinary Research. Any opinions, findings, and con-

clusions or recommendations in this material are those of

the authors and do not necessarily reflect the views of NSF,

ARO, SRC, or Thomas F. and Kate Miller Jeffress Memo-

rial Trust.

14262

References

[1] https://www.tensorflow.org/mobile/tflite/. 3

[2] https://github.com/alibaba/MNN. 3

[3] Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh

Raskar. Designing neural network architectures using rein-

forcement learning. In International Conference on Learning

Representations (ICLR), 2017. 3, 6

[4] Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay

Vasudevan, and Quoc Le. Understanding and simplifying

one-shot architecture search. In International Conference on

Machine Learning, pages 550–559, 2018. 3

[5] James Bergstra, Daniel Yamins, and David Cox. Making

a science of model search: Hyperparameter optimization in

hundreds of dimensions for vision architectures. In Inter-

national conference on machine learning, pages 115–123,

2013. 3

[6] Andrew Brock, Theodore Lim, James M Ritchie, and Nick

Weston. Smash: one-shot model architecture search through

hypernetworks. arXiv preprint arXiv:1708.05344, 2017. 3

[7] Han Cai, Tianyao Chen, Weinan Zhang, Yong Yu, and Jun

Wang. Efficient architecture search by network transforma-

tion. arXiv preprint arXiv:1707.04873, 2017. 3

[8] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct

neural architecture search on target task and hardware. arXiv

preprint arXiv:1812.00332, 2018. 1, 3, 8

[9] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng,

Eddie Yan, Haichen Shen, Meghan Cowan, Leyuan Wang,

Yuwei Hu, Luis Ceze, Carlos Guestrin, and Arvind Krishna-

murthy. Tvm: An automated end-to-end optimizing compiler

for deep learning. In 13th USENIX Symposium on Operat-

ing Systems Design and Implementation (OSDI 18), pages

578–594, 2018. 3

[10] Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. Progressive

darts: Bridging the optimization gap for nas in the wild. In-

ternational Journal of Computer Vision, pages 1–18, 2020.

3

[11] Yutian Chen, Aja Huang, Ziyu Wang, Ioannis Antonoglou,

Julian Schrittwieser, David Silver, and Nando de Fre-

itas. Bayesian optimization in alphago. arXiv preprint

arXiv:1812.06855, 2018. 7

[12] Xiangxiang Chu, Bo Zhang, Ruijun Xu, and Jixiang Li. Fair-

nas: Rethinking evaluation fairness of weight sharing neural

architecture search. arXiv preprint arXiv:1907.01845, 2019.

3

[13] Xiangxiang Chu, Tianbao Zhou, Bo Zhang, and Jixiang Li.

Fair darts: Eliminating unfair advantages in differentiable ar-

chitecture search. arXiv preprint arXiv:1911.12126, 2019. 3

[14] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical im-

age database. In Computer Vision and Pattern Recognition,

2009. CVPR 2009. IEEE Conference on, pages 248–255.

IEEE, 2009. 7

[15] Tobias Domhan, Jost Tobias Springenberg, and Frank Hut-

ter. Speeding up automatic hyperparameter optimization of

deep neural networks by extrapolation of learning curves. In

Twenty-Fourth International Joint Conference on Artificial

Intelligence, 2015. 3

[16] Peiyan Dong, Siyue Wang, Wei Niu, Chengming Zhang,

Sheng Lin, Zhengang Li, Yifan Gong, Bin Ren, Xue Lin,

Yanzhi Wang, et al. Rtmobile: Beyond real-time mobile

acceleration of rnns for speech recognition. arXiv preprint

arXiv:2002.11474, 2020. 1

[17] Xuanyi Dong and Yi Yang. Network pruning via trans-

formable architecture search. In Advances in Neural In-

formation Processing Systems (NeurIPS), pages 759–770,

2019. 2, 3

[18] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Ef-

ficient multi-objective neural architecture search via lamar-

ckian evolution. arXiv preprint arXiv:1804.09081, 2018. 3

[19] Jiemin Fang, Yuzhu Sun, Qian Zhang, Yuan Li, Wenyu Liu,

and Xinggang Wang. Densely connected search space for

more flexible neural architecture search. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 10628–10637, 2020. 3

[20] Jonathan Frankle and Michael Carbin. The lottery ticket hy-

pothesis: Finding sparse, trainable neural networks. ICLR,

2018. 6

[21] Yiwen Guo, Anbang Yao, and Yurong Chen. Dynamic net-

work surgery for efficient dnns. In Advances in neural in-

formation processing systems (NeurIPS), pages 1379–1387,

2016. 1, 2, 3

[22] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng,

Zechun Liu, Yichen Wei, and Jian Sun. Single path one-

shot neural architecture search with uniform sampling. In

European Conference on Computer Vision, pages 544–560.

Springer, 2020. 3

[23] Song Han, Huizi Mao, and William J. Dally. Deep com-

pression: Compressing deep neural networks with pruning,

trained quantization and huffman coding. In International

Conference on Learning Representations (ICLR), 2016. 2, 3,

6

[24] Song Han, Jeff Pool, John Tran, and William Dally. Learn-

ing both weights and connections for efficient neural net-

work. In Advances in neural information processing systems

(NeurIPS), pages 1135–1143, 2015. 1, 2

[25] Seungyeop Han, Haichen Shen, Matthai Philipose, Sharad

Agarwal, Alec Wolman, and Arvind Krishnamurthy. Mcdnn:

An approximation-based execution framework for deep

stream processing under resource constraints. In Proceed-

ings of the 14th Annual International Conference on Mobile

Systems, Applications, and Services (MobiSys), pages 123–

136. ACM, 2016. 3

[26] Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and Yi

Yang. Soft filter pruning for accelerating deep convolutional

neural networks. In International Joint Conference on Arti-

ficial Intelligence (IJCAI), 2018. 2, 3

[27] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and

Song Han. Amc: Automl for model compression and ac-

celeration on mobile devices. In Proceedings of the Euro-

pean Conference on Computer Vision (ECCV), pages 784–

800, 2018. 1

[28] Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang.

Filter pruning via geometric median for deep convolutional

neural networks acceleration. In Proceedings of the IEEE

14263

Conference on Computer Vision and Pattern Recognition

(CVPR), pages 4340–4349, 2019. 1, 3, 7

[29] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning

for accelerating very deep neural networks. In Proceedings

of the IEEE International Conference on Computer Vision

(ICCV), pages 1389–1397, 2017. 2, 3

[30] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh

Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu,

Ruoming Pang, Vijay Vasudevan, et al. Searching for mo-

bilenetv3. In Proceedings of the IEEE International Confer-

ence on Computer Vision, pages 1314–1324, 2019. 1, 8

[31] Andrew Howard, Menglong Zhu, Bo Chen, Dmitry

Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-

dreetto, and Hartwig Adam. Mobilenets: Efficient con-

volutional neural networks for mobile vision applications.

arXiv:1704.04861, 2017. 6, 8

[32] Loc N Huynh, Youngki Lee, and Rajesh Krishna Balan.

Deepmon: Mobile gpu-based deep learning framework for

continuous vision applications. In Proceedings of the 15th

Annual International Conference on Mobile Systems, Appli-

cations, and Services (MobiSys), pages 82–95. ACM, 2017.

3

[33] Weiwen Jiang, Xinyi Zhang, Edwin H-M Sha, Lei Yang,

Qingfeng Zhuge, Yiyu Shi, and Jingtong Hu. Accuracy

vs. efficiency: Achieving both through fpga-implementation

aware neural architecture search. In Proceedings of the 56th

Annual Design Automation Conference 2019, pages 1–6,

2019. 1

[34] Kirthevasan Kandasamy, Willie Neiswanger, Jeff Schneider,

Barnabas Poczos, and Eric P Xing. Neural architecture

search with bayesian optimisation and optimal transport. In

Advances in neural information processing systems, pages

2016–2025, 2018. 3

[35] Seyoung Kim and Eric P. Xing. Tree-guided group lasso for

multi-response regression with structured sparsity, with an

application to eqtl mapping. The Annals of Applied Statistics,

6(3):1095–1117, Sep 2012. 6

[36] Aaron Klein, Stefan Falkner, Simon Bartels, Philipp Hennig,

and Frank Hutter. Fast bayesian optimization of machine

learning hyperparameters on large datasets. In Artificial In-

telligence and Statistics, pages 528–536. PMLR, 2017. 7

[37] Nicholas D Lane, Sourav Bhattacharya, Petko Georgiev,

Claudio Forlivesi, Lei Jiao, Lorena Qendro, and Fahim

Kawsar. Deepx: A software accelerator for low-power deep

learning inference on mobile devices. In Proceedings of the

15th International Conference on Information Processing in

Sensor Networks, page 23. IEEE Press, 2016. 3

[38] Nicholas D Lane, Petko Georgiev, and Lorena Qendro.

Deepear: robust smartphone audio sensing in unconstrained

acoustic environments using deep learning. In Proceedings

of the 2015 ACM International Joint Conference on Per-

vasive and Ubiquitous Computing, pages 283–294. ACM,

2015. 3

[39] Tuanhui Li, Baoyuan Wu, Yujiu Yang, Yanbo Fan, Yong

Zhang, and Wei Liu. Compressing convolutional neural net-

works via factorized convolutional filters. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 3977–3986, 2019. 2, 3, 6, 7

[40] Long-Ji Lin. Reinforcement Learning for Robots Using Neu-

ral Networks. PhD thesis, USA, 1992. 6

[41] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon

Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille, Jonathan

Huang, and Kevin Murphy. Progressive neural architecture

search. In Proceedings of the European Conference on Com-

puter Vision (ECCV), pages 19–34, 2018. 3

[42] Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha

Fernando, and Koray Kavukcuoglu. Hierarchical repre-

sentations for efficient architecture search. arXiv preprint

arXiv:1711.00436, 2017. 3

[43] Hanxiao Liu, Karen Simonyan, and Yiming Yang.

Darts: Differentiable architecture search. arXiv preprint

arXiv:1806.09055, 2018. 3

[44] Ning Liu, Xiaolong Ma, Zhiyuan Xu, Yanzhi Wang, Jian

Tang, and Jieping Ye. Autocompress: An automatic dnn

structured pruning framework for ultra-high compression

rates. arXiv preprint arXiv:1907.03141, 2019. 2

[45] Ning Liu, Xiaolong Ma, Zhiyuan Xu, Yanzhi Wang, Jian

Tang, and Jieping Ye. Autocompress: An automatic dnn

structured pruning framework for ultra-high compression

rates. In AAAI, 2020. 1

[46] Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and

Trevor Darrell. Rethinking the value of network pruning.

arXiv preprint arXiv:1810.05270, 2018. 1, 2, 3

[47] Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter

level pruning method for deep neural network compression.

In Proceedings of the IEEE international conference on com-

puter vision (ICCV), pages 5058–5066, 2017. 2, 3

[48] Xiaolong Ma, Fu-Ming Guo, Wei Niu, Xue Lin, Jian Tang,

Kaisheng Ma, Bin Ren, and Yanzhi Wang. Pconv: The miss-

ing but desirable sparsity in dnn weight pruning for real-time

execution on mobile devices. In Thirty-Four AAAI Confer-

ence on Artificial Intelligence, 2020. 1, 2, 4

[49] Xiaolong Ma, Wei Niu, Tianyun Zhang, Sijia Liu, Fu-

Ming Guo, Sheng Lin, Hongjia Li, Xiang Chen, Jian Tang,

Kaisheng Ma, et al. An image enhancing pattern-based spar-

sity for real-time inference on mobile devices. arXiv preprint

arXiv:2001.07710, 2020. 2, 4

[50] Xiaolong Ma, Geng Yuan, Sheng Lin, Caiwen Ding, Fuxun

Yu, Tao Liu, Wujie Wen, Xiang Chen, and Yanzhi Wang.

Tiny but accurate: A pruned, quantized and optimized mem-

ristor crossbar framework for ultra efficient dnn implemen-

tation. In ASP-DAC, 2020. 1

[51] Huizi Mao, Song Han, Jeff Pool, Wenshuo Li, Xingyu Liu,

Yu Wang, and William J Dally. Exploring the regularity

of sparse structure in convolutional neural networks. arXiv

preprint arXiv:1705.08922, 2017. 2

[52] Hector Mendoza, Aaron Klein, Matthias Feurer, Jost Tobias

Springenberg, and Frank Hutter. Towards automatically-

tuned neural networks. In Workshop on Automatic Machine

Learning, pages 58–65, 2016. 3

[53] Risto Miikkulainen, Jason Liang, Elliot Meyerson, Aditya

Rawal, Daniel Fink, Olivier Francon, Bala Raju, Hormoz

Shahrzad, Arshak Navruzyan, Nigel Duffy, et al. Evolving

deep neural networks. In Artificial Intelligence in the Age

of Neural Networks and Brain Computing, pages 293–312.

Elsevier, 2019. 3

14264

[54] Chuhan Min, Aosen Wang, Yiran Chen, Wenyao Xu, and

Xin Chen. 2pfpce: Two-phase filter pruning based on condi-

tional entropy. arXiv preprint arXiv:1809.02220, 2018. 1

[55] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, An-

drei A Rusu, Joel Veness, Marc G Bellemare, Alex Graves,

Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski,

et al. Human-level control through deep reinforcement learn-

ing. nature, 518(7540):529–533, 2015. 6

[56] Christopher Morris, Kristian Kersting, and Petra Mutzel.

Glocalized weisfeiler-lehman graph kernels: Global-local

feature maps of graphs. In 2017 IEEE International Confer-

ence on Data Mining (ICDM), pages 327–336. IEEE, 2017.

7

[57] Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy in-

variance under reward transformations: Theory and applica-

tion to reward shaping. In ICML, volume 99, pages 278–287,

1999. 6

[58] Wei Niu, Xiaolong Ma, Sheng Lin, Shihao Wang, Xuehai

Qian, Xue Lin, Yanzhi Wang, and Bin Ren. Patdnn: Achiev-

ing real-time dnn execution on mobile devices with pattern-

based weight pruning. arXiv preprint arXiv:2001.00138,

2020. 1, 2, 4, 6

[59] Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V Le, and

Jeff Dean. Efficient neural architecture search via parameter

sharing. arXiv preprint arXiv:1802.03268, 2018. 3

[60] Chao Qin, Diego Klabjan, and Daniel Russo. Improving the

expected improvement algorithm. In Advances in Neural In-

formation Processing Systems, pages 5381–5391, 2017. 7

[61] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V

Le. Aging evolution for image classifier architecture search.

In AAAI Conference on Artificial Intelligence, 2019. 3

[62] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V

Le. Regularized evolution for image classifier architecture

search. In Proceedings of the aaai conference on artificial

intelligence, volume 33, pages 4780–4789, 2019. 3, 8

[63] Binxin Ru, Xingchen Wan, Xiaowen Dong, and Michael

Osborne. Neural architecture search using bayesian op-

timisation with weisfeiler-lehman kernel. arXiv preprint

arXiv:2006.07556, 2020. 3

[64] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-

moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted

residuals and linear bottlenecks. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 4510–4520, 2018. 6, 8

[65] Zhiqiang Shen and Marios Savvides. Meal v2: Boosting

vanilla resnet-50 to 80%+ top-1 accuracy on imagenet with-

out tricks. arXiv preprint arXiv:2009.08453, 2020. 7

[66] Nino Shervashidze, Pascal Schweitzer, Erik Jan van

Leeuwen, Kurt Mehlhorn, and Karsten M. Borgwardt.

Weisfeiler-lehman graph kernels. Journal of Machine Learn-

ing Research, 12(77):2539–2561, 2011. 7

[67] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Prac-

tical bayesian optimization of machine learning algorithms.

In Advances in neural information processing systems, pages

2951–2959, 2012. 7

[68] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,

Mark Sandler, Andrew Howard, and Quoc V Le. Mnas-

net: Platform-aware neural architecture search for mobile.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pages 2820–2828, 2019.

1, 3, 8

[69] Mingxing Tan and Quoc V Le. Efficientnet: Rethinking

model scaling for convolutional neural networks. arXiv

preprint arXiv:1905.11946, 2019. 1

[70] Christopher John Cornish Hellaby Watkins. Learning from

delayed rewards. 1989. 6

[71] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and

Hai Li. Learning structured sparsity in deep neural net-

works. In Advances in neural information processing sys-

tems (NeurIPS), pages 2074–2082, 2016. 1, 2, 3, 6

[72] Colin White, RealityEngines AI, Willie Neiswanger, and

Yash Savani. Deep uncertainty estimation for model-based

neural architecture search. 3

[73] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang,

Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda, Yangqing

Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient con-

vnet design via differentiable neural architecture search. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pages 10734–10742, 2019.

1, 3

[74] Lingxi Xie and Alan Yuille. Genetic cnn. In Proceedings of

the IEEE international conference on computer vision, pages

1379–1388, 2017. 3

[75] Mengwei Xu, Mengze Zhu, Yunxin Liu, Felix Xiaozhu Lin,

and Xuanzhe Liu. Deepcache: Principled cache for mobile

deep vision. In Proceedings of the 24th Annual International

Conference on Mobile Computing and Networking, pages

129–144. ACM, 2018. 3

[76] Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun

Qi, Qi Tian, and Hongkai Xiong. Pc-darts: Partial channel

connections for memory-efficient differentiable architecture

search. arXiv preprint arXiv:1907.05737, 2019. 3

[77] Shuochao Yao, Shaohan Hu, Yiran Zhao, Aston Zhang, and

Tarek Abdelzaher. Deepsense: A unified deep learning

framework for time-series mobile sensing data processing. In

Proceedings of the 26th International Conference on World

Wide Web, pages 351–360, 2017. 3

[78] Shan You, Tao Huang, Mingmin Yang, Fei Wang, Chen

Qian, and Changshui Zhang. Greedynas: Towards fast

one-shot nas with greedy supernet. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 1999–2008, 2020. 3

[79] Ruichi Yu, Ang Li, Chun-Fu Chen, Jui-Hsin Lai, Vlad I

Morariu, Xintong Han, Mingfei Gao, Ching-Yung Lin, and

Larry S Davis. Nisp: Pruning networks using neuron impor-

tance score propagation. In Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

pages 9194–9203, 2018. 2, 3

[80] Ming Yuan and Yi Lin. Model selection and estimation in re-

gression with grouped variables. Journal of the Royal Statis-

tical Society: Series B (Statistical Methodology), 68(1):49–

67, 2006. 3

[81] Tianyun Zhang, Shaokai Ye, Yipeng Zhang, Yanzhi Wang,

and Makan Fardad. Systematic weight pruning of dnns using

alternating direction method of multipliers. arXiv preprint

arXiv:1802.05747, 2018. 2, 3, 6, 7

14265

[82] Chenglong Zhao, Bingbing Ni, Jian Zhang, Qiwei Zhao,

Wenjun Zhang, and Qi Tian. Variational convolutional neu-

ral network pruning. In CVPR, pages 2780–2789, 2019. 1

[83] Zhao Zhong, Junjie Yan, Wei Wu, Jing Shao, and Cheng-Lin

Liu. Practical block-wise neural network architecture gener-

ation. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 2423–2432, 2018. 3

[84] Xiaotian Zhu, Wengang Zhou, and Houqiang Li. Improving

deep neural network sparsity through decorrelation regular-

ization. In IJCAI, 2018. 1

[85] Zhuangwei Zhuang, Mingkui Tan, Bohan Zhuang, Jing Liu,

Yong Guo, Qingyao Wu, Junzhou Huang, and Jinhui Zhu.

Discrimination-aware channel pruning for deep neural net-

works. In Advances in Neural Information Processing Sys-

tems (NeurIPS), pages 875–886, 2018. 1, 6

[86] Barret Zoph and Quoc V. Le. Neural architecture search

with reinforcement learning. In International Conference on

Learning Representations (ICLR), 2017. 1, 3

[87] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V

Le. Learning transferable architectures for scalable image

recognition. In Proceedings of the IEEE conference on com-

puter vision and pattern recognition (CVPR), pages 8697–

8710, 2018. 3, 8

14266

