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Abstract

Aerial Image Segmentation is a particular semantic seg-

mentation problem and has several challenging character-

istics that general semantic segmentation does not have.

There are two critical issues: The one is an extremely

foreground-background imbalanced distribution, and the

other is multiple small objects along with the complex back-

ground. Such problems make the recent dense affinity con-

text modeling perform poorly even compared with base-

lines due to over-introduced background context. To handle

these problems, we propose a point-wise affinity propaga-

tion module based on the Feature Pyramid Network (FPN)

framework, named PointFlow. Rather than dense affin-

ity learning, a sparse affinity map is generated upon se-

lected points between the adjacent features, which reduces

the noise introduced by the background while keeping ef-

ficiency. In particular, we design a dual point matcher

to select points from the salient area and object bound-

aries, respectively. Experimental results on three differ-

ent aerial segmentation datasets suggest that the proposed

method is more effective and efficient than state-of-the-art

general semantic segmentation methods. Especially, our

methods achieve the best speed and accuracy trade-off on

three aerial benchmarks. Further experiments on three

general semantic segmentation datasets prove the general-

ity of our method. Code and models are made available

(https://github.com/lxtGH/PFSegNets).

1. Introduction

High spatial resolution (HSR) remote sensing images

contain various geospatial objects, including airplanes,

ships, vehicles, buildings, etc. Understanding these ob-

jects from HSR remote sensing imagery has great practical
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Figure 1: Illustration of an aerial image segmentation example

and our proposed module. The first row presents the input image

and ground truth with complex backgrounds and small objects.

The second row indicates the schematic diagram on dense affinity

propagation and our proposed point-based propagation module.

value for urban monitoring and management. Aerial Image

segmentation is an important task in remote sensing under-

standing that can provide semantic and localization infor-

mation cues for interest targets. It is a specific semantic

segmentation task that aims to assign a semantic category

to each image pixel.

However, besides the large scale variation problems in

most semantic segmentation datasets [12, 69, 39, 6], aerial

images have their own challenging problems including high

background complexity [68], background and foreground

imbalance [49], tiny foreground objects in high resolution

images. As shown in the first row of Fig.1, the red boxes

show the tiny objects in the scene while the yellow box

and blue box show the complex background context, includ-

ing houses and trees, receptively. Current general semantic
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segmentation methods mainly focus on scale variation in

the natural scene by building multi-scale feature representa-

tion [67, 8] or enhancing the object boundaries with specific

designed module [23, 44]. They fail to work well due to the

lack of explicit modeling for the foreground objects. For

example, several dense affinity-based methods [16, 58] also

obtain inferior results mainly because the imbalanced and

complex background will fool the affinity learning on small

objects. For example, both yellow boxes and blue boxes

have the same semantic meaning of background but with

a huge appearance change. Dense affinity learning forces

pixels on small objects to absorb such noisy context which

leads to inferior segmentation results. FarSeg [68] adopts

FPN-like [34] design and solves the background and fore-

ground imbalance problems by introducing a foreground-

aware relation module. However, for small objects, there

still exist some semantic gaps in different features in FPN.

Namely, the gap is between the high-resolution features

with low semantic information and low-resolution features

with high semantic information. As shown in Fig.1, tiny

objects like cars need more semantic information in lower

layers with high resolution.

In this paper, we propose a point-based information

propagation module to handle the previous problems stated

above. We propose PointFlow Module (PFM), a novel and

efficient module for specific semantic points propagation

between adjacent features. Our module is based on the

FPN framework [34, 22] to bridge the semantic gap. As

shown in the last row of Fig.1, rather than simple fusion

or dense affinity propagation on each point as the previous

work non-local module [47], PointFlow selects the several

representative points between any adjacent feature pyramid

levels. In particular, we design Dual Point Matcher by se-

lecting matched point features from the salient area and ob-

ject boundaries, receptively. The former is obtained from

explicit max pooling operation on the learned salient map.

The latter is conditioned on the predicted object boundaries

where we adopt a subtraction-based prediction. Then the

point-wise affinity is estimated according to the point fea-

tures that are sampled from both adjacent features. Finally,

the higher layer points are fused into lower layers according

to the affinity map. Our PFMs select and propagate points

on foreground objects and sampled background areas to si-

multaneously handle both the semantic gap and foreground-

background imbalance problem.

Then we carry out detailed studies and analysis on

PFM in the experiment part, where it improves the vari-

ous methods by a large margin with negligible GFlops in-

crease. Based on the FPN framework, by inserting PFMs

between feature pyramids, we propose the PFNet. In par-

ticular, PFNet surpasses the previous method FarSeg [68]

by 3.2% point on iSAID [49]. Moreover, we also bench-

mark the recent state-of-the-art general semantic segmen-

tation methods [46, 58, 31] on three aerial segmentation

datasets including iSAID, Vaihingen and Postdam for the

community. Benefited from efficient FPN design [22], our

PFNet also achieves the best speed and accuracy on three

benchmarks. Finally, we further verify the effectiveness

of PFM on general semantic segmentation benchmarks, in-

cluding Cityscapes [12], ADE-20k [69], and BDD [55] and

it achieves considerable results with previous work [8, 58]

with fewer GFLops. Our main contributions are three-fold:

1) We propose PointFlow Module (PFM), a novel and ef-

ficient module for poise-wised affinity learning, and we

design a Dual Point Matcher to select the matched sparse

points from salient areas and boundaries in a complemen-

tary manner. 2) We append PFM into the FPN architecture

and build a pyramid propagation network called PFNet. 3)

Extensive experiments and analysis indicate the efficacy of

PFM. We benchmark 15 state-of-the-art general segmen-

tation methods on three aerial benchmarks. Our PFNet

achieves state-of-the-art results on those benchmarks also

with the best speed and accuracy trade-off. We further prove

the generality of our method on three general semantic seg-

mentation datasets.

2. Related Work

General Semantic Segmentation The general seman-

tic segmentation has been eminently motivated by the

fully-convolutional networks (FCNs) [36]. The following

works [67, 7, 8, 9, 52, 46, 30] mainly exploit the spatial

context to overcome the limited receptive field of convo-

lution layer which leads to the multi-scale feature repre-

sentation. For example, ASPP [8] utilizes atrous convo-

lutions [56] with different atrous rate to extract features

with the different receptive field, while PPM [67] gener-

ates pyramidal feature maps via pyramid pooling. Several

work [42, 2, 50, 66, 4, 22, 25] use the encoder-decoder ar-

chitecture to refine the output details. Recent works [31,

58, 20, 61, 63, 71, 57, 10, 32, 64, 65, 26, 53, 28] propose

to use non-local-like operators or losses [45, 48, 24, 54]

to harvest the global context of input images. Meanwhile,

several works [23, 44, 59, 27] propose to refine the object

boundaries via specific designed processing. These general

semantic segmentation methods ignore the special issues in-

cluding imbalanced foreground-background pixels for mod-

eling the context and increased small foreground objects in

the Aerial Imagery. Thus these methods get inferior results

which will be shown in the next section.

Semantic Segmentation of Aerial Imagery Several ear-

lier works [21, 38, 37] focus on using multi-level features

on local patterns of images using deep CNN. Also, there

exist a lot of applications, such as land use [19], build-

ing or road extraction [14, 51, 3], agriculture vision [11].

They design specific methods based on existing semantic

segmentation methods for special application scenarios. In
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Method OS mIoU ∆

dialated FCN[36, 56](baseline) 8 59.0 -

DAnet[67] 8 30.3 28.7↓

OCnet(ASP-OC) [58] 8 40.2 18.8↓

DAnet+FPN [34] 8 59.3 0.3↑

DAnet+our PFNet decoder 8 65.6 6.6↑

SemanticFPN [22](baseline) 32 61.3 -

+dense affinity [60] 32 58.9 2.4↓

+our PFM 32 65.0 3.7↑

Table 1: Simple experiment results on iSAID validation dataset.

The dense affinity results in inferior results over various baselines.

Appending our proposed PointFlow module results in a significant

gain. OS: Output Stride in backbone.

particular, relation net [40] captures long-range spatial rela-

tionships between entities by proposing spatial and channel

relation modules. Recently, FarSeg [68] proposes relation-

based and optimization-based foreground modeling to han-

dle the foreground-background imbalance problems in re-

mote sensing imagery. However, the missing explicit ex-

ploration of semantics propagation between adjacent fea-

tures limits the performance on the segmentation of small

objects.

Multi Scale Feature Fusion Based on the FPN frame-

work [34], rather than simple top-down additional fusion,

several works propose to fuse feature through gates [15, 25],

neural architecture search [17], pixel-level alignment [29]

or adding bottom up path [35], dense affinity learning

propagation[60]. Such full fusion methods may emphasize

background objects like roads where the imbalance problem

exists widely in aerial images. Our proposed PFM follows

the design of FPN by propagating the semantics from the

top to down. In contrast, rather than full fusion like previ-

ous works, our methods are based on point-level which se-

lect the several representative points to overcome the pixel

imbalance problems in aerial imagery and lead to better re-

sults.

3. Method

In this section, we will first introduce some potential is-

sues on dense point affinity learning for aerial segmenta-

tion task. Then we will provide detailed descriptions of our

PointFlow module (PFM) to resolve the issues by selecting

key semantic points for propagation efficiently. Finally, we

will present our PFNet for aerial imagery segmentation.

3.1. Preliminary

Recent dense affinity based methods [47, 58, 16, 45, 60]

have shown progressive results for semantic segmentation.

The core idea of these methods is to model the pixel-wised

relationship to harvest the global context. As shown in

Equ. 1, in the view of self-attention [45], each pixel p in 2-

D input feature F ∈ R
C×H×W is connected to all the other

pixels to calculate the pixel-wised affinity where A is the

affinity function and it outputs affinity matrix ∈ R
HW×HW .

C, H , and W denote the channel dimension, height, and

width, respectively. Note that definitions of A can be differ-

ent; we use the same label for simplicity.

F r(p) = A(F (p), F (p))F (p) (1)

However, applying these methods directly on the iSAID

dataset leads to inferior results even compared with various

baseline methods, as shown in Tab. 1 whether such module

is appended after FCN backbone or is inserted into feature

pyramids. The reason has two folds: (1) There exist ex-

tremely imbalanced foreground-background objects in the

iSAID dataset. Explicit affinity modeling on complex back-

ground brings noise for outputs. (2) Too many small objects

exist on the iSAID dataset, which requires high resolution

and high semantic representation.

To solve the first problem, rather than dense affinity

modeling, we can use a point sampler β to select matched

representative points p̂ to balance the background context

ratio while keeping efficiency. For the second problem, to

fill the semantic gap on small objects, we adopt the FPN

framework and change the inputs of A by using adjacent

features in a top-down manner shown in Equ. 2:

F r(p̂) = A(β(Fl(p̂)), β(Fl−1(p̂)))β(Fl(p̂))) (2)

where Fl and Fl−1 are adjacent features in the FPN frame-

work and p̂ is sampled pixels for affinity modeling. We will

detail the β in the following part. As shown in Tab.1, our

method improves the baselines by a significant margin.

3.2. PointFlow Module

Motivation and Overview As the previous section shows

the limitation of dense affinity on aerial image segmenta-

tion, we argue that unnecessary background pixels context

may bring noises for foreground objects. Considering this,

we propose to propagate context information through se-

lective points, which can keep the efficiency in both speed

and memory. Meanwhile, the semantic gap problems can

also be fixed after propagation leading to high-resolution

feature representation with high semantics, which is why

we adopt FPN-framework design [34] in a top-down man-

ner. Since our framework works in a top-down manner, and

the semantics flow into low-level features through points,

we name our module PointFlow. Our PointFlow is built on

the FPN framework [34], where the feature map of each

level is compressed into the same channel depth through

two 1×1 convolution layers before entering the next level.

Our module takes two adjacent feature maps as inputs

Fl−1 ∈ R
C×H×W and Fl ∈ R

C×H/2×W/2 as the inputs

where l means the index of feature pyramid and output re-

fined F r
l−1 ∈ R

C×H×W . For modeling β, we propose the

4219



Dual Point Matcher to select the points, and then the point-

wise affinity can be calculated between adjacent points. Fi-

nally, the points with high-resolution and low semantics can

be enhanced by the points with low-resolution high seman-

tics according to the estimated affinity map. The process is

shown in Fig. 2(a).

Dual Point Matcher The critical issue is how to find the

corresponding points between two adjacent maps. We argue

that most salient areas can be represented as key points for

balanced pixel-level propagation due to the unbalanced pix-

els between the foreground and background. Meanwhile,

since there are many small objects in aerial scenes that

need more fine-grained location cues, the boundary areas

can also be considered the key points. Thus we design a

novel Dual Point Matcher to consider the most salient part

of inputs and object boundaries at the same time. The Dual

Point Matcher has two steps: (1) Generate the salient map.

(2) Generate sampled indexes from Dual Index Generator.

For the first step, we combine the input feature maps

where the high-resolution part Fl−1 is downsampled into

the same low resolution through bilinear interpolation. The

resized feature is denoted as F̃l−1. Then we perform one

3 × 3 convolution following with sigmoid function to gen-

erate the saliency map Ml. The process is shown as follows:

Ml = Sigmoid(convl(Concat(Fl, F̃l−1))), (3)

For the second step, we take Fl and Ml as the inputs of

the Dual Index Generator. We perform the adaptive max

pooling on such map to obtain the most salient points. To

highlight the salient part of foreground objects, we multiply

such map on Fl with residual design as attention map shown

in Equ. 4:

F s
l = MaxPool(Ml)× Fl + Fl, (4)

We simply choose the salient indexes from MaxPool(Ml).
K is the number of pooled points, and it equals to the prod-

uct of adaptive pooling kernels. We denote the salient in-

dexes as I(s) for short.

For boundary point selection, rather than simply using

the binary supervision on the input feature Fl or Fl−1 for

boundary prediction, we propose to adopt residual predic-

tion on the Fl. Our method is motivated by Laplacian pyra-

mids in image processing [1, 5]. In Laplacian pyramids, the

edge part of original images can be obtained by subtract-

ing the smoothed upsampled images. Motivated by that,

we use the average pooling on saliency map Ml and multi-

ply the pooled map on Fl for smoothing inner content, then

we subtract the such smoothed part from Fl to generate the

sharpened feature F̃ b
l for boundary prediction. The process

is shown in Equ. 5:

F̃ b
l = Fl −AvgPool(Ml)× Fl, (5)

After the boundary prediction using F̃ b
l , we obtain the

boundary map Bl. Following the previous step, we simply

sample Top-K points from the edge maps (K=128 by ex-

periment) according to their confidence scores. We denote

the boundary indexes I(b) for short. In total, the Dual In-

dex Generator samples the key points in an orthogonal way

by selecting points from specific regions according to the

salient map Ml. The total process of Dual Index Generator

is shown in Fig. 2(b).

Dual Region Propagation After the point matcher, we ob-

tain the indexes I(s) and I(b), respectively. Then we sam-

ple the points from map from salient feature F s
l and original

input feature Fl−1. For each selected point, a point-wise

feature representation is extracted on both adjacent input

features. Note that features f for a real-value point are com-

puted by bilinear interpolation of 4 nearest neighbors that

are on the regular grid. We use normalized girds during the

implementation. We denote fs
l and f b

l as sampled feature

point at stage l for salient part and boundary part. We prop-

agate those sampled points independently. For each sam-

pled point p̂, the top-down propagation process is shown in

Equ 6.

fl−1(p̂)
r =

∑

i∈{I(b),I(s)}

A(f i
l−1(p̂), f

i
l (p̂))f

i
l (p̂)+ f i

l−1(p̂),

(6)

where A is affinity function, i means the indexes whether

from I(s) or I(b). For A, we use the point-wise matrix

multiplication along with softmax function for normaliza-

tion. Following the previous work [18], we adopt the resid-

ual design for easier training. We calculate the sampled high

semantic points through point-wise affinity according to the

semantic similarity on sampled points with low semantics,

which avoids the redundant background information in the

aerial scene. Since we propagate semantics two times in-

dependently, we term two flows as salient point flow and

boundary point flow, respectively. Finally, the refined fea-

ture F r
l−1 is obtained by scattering the fr

l−1 into Fl−1 ac-

cording to the indexes I(s) and I(b).

3.3. Network Architecture

Overview Fig. 2 illustrates the our network architecture,

which contains a bottom-up pathway as the encoder and a

top-down pathway as the decoder. The encoder is back-

bone network with multiple feature pyramid outputs while

the decoder is a lightweight FPN equipped with our PFMs.

Network Architecture The encoder uses the ImageNet pre-

trained backbone with OS 32 rather dilation stragety with

OS 8 for efficient inference. We additionally adopt the Pyra-

mid Pooling Module (PPM) [67] for its superior efficiency

and effectiveness to capture contextual information. In our

setting, the output of PPM has the same resolution as that of

the last stage. PFNet decoder takes feature maps from the

encoder and uses the refined feature pyramid for final aerial
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the bottom and finally scattered into the low level features point-wisely. (b), The detailed operation on proposed Dual Index

Generator. (c), We design the PF Network Architecture by inserting PF modules into FPN-like framework.

segmentation according to previous work design [68, 22].

By simply replacing normal bilinear up-sampling with our

PF module in top-down pathway of FPN, the PFNet de-

coder finally concatenates all the refined F r
l (where l ranges

from 2 to 5) by upsampling the inputs to the same resolu-

tion (1/4 resolution of input) and perform prediction. Note

that our module can also be integrated into other architec-

tures including Deeplabv3 [8] with a slight modification by

appending such decoder after its head. More details can be

found in the experiment part.

Loss Function For edge prediction in each PFM, we adopt

binary BCE loss Lbce. For final segmentation prediction, we

adopt the cross-entropy loss. The two losses are weighted

to 1 by default.

4. Experiments

Overview: We will firstly perform ablation studies on

iSAID dataset and give detailed analysis and comparison

on PFM. Then we benchmark several recent works on Vai-

hingen and Potsdam datasets. Finally, we prove the gener-

alizability of our module on general segmentation datasets.

4.1. Aerial Image Segmentation

DataSets: We use iSAID [49] dataset for ablation studies

and report results on remaining datasets. iSAID [49] con-

sists of 2,806 HSR images. The iSAID dataset provides

655,451 instances annotations over 15 categories of the ob-

ject and it is the largest dataset for instance segmentation in

the HSR remote sensing imagery. We also use Vaihingen

and Postdam datasets1 for benchmarking.

Implementation detail and Metrics: We adopt ResNet-

50 [18] by default. Following the same setting [68], for all

1https://www2.isprs.org/commissions/comm2/wg4/benchmark/

the experiments, these models are trained with 16 epoch on

cropped images. For data augmentation, horizontal and ver-

tical flip, rotation of 90 · k (k = 1, 2, 3) degree were adopted

during training. For data preprocessing, we crop the image

into a fixed size of (896, 896) using a sliding window strid-

ing 512 pixels. We use the mean intersection over union

(mIoU) as the main metric for object segmentation to eval-

uate the proposed method if not specified. The baseline for

ablation studies is Semantic-FPN [22] with OS 32.

Effectiveness on baseline models: In Tab. 2(a), adopting

our PFMs leads to better results than appending PPM [67]

shown in both 2nd and 3rd rows with about 1.2 % gap. Af-

ter applying both PPM and PFM, there is a significant gain

over the baseline models shown in the last row. Only ap-

plying boundary flow is slightly better than applying salient

point flow which indicates the small object problems are

more severe than foreground-background imbalance prob-

lems in this dataset. In Tab. 2 (b), we explore the effect on

insertion position with our PFMs. From the first three rows,

PF improves all stages and gets the greatest improvement at

the first stage, which shows that the semantic gap is more

severe for small objects in lower layers. After appending all

FPMs, we achieve the best result shown in the last row.

Comparison with feature fusion methods: Tab. 2(c) gives

several feature fusion methods [13, 29, 60] used on scene

understanding tasks. For all the methods, we replace these

modules into the same position on PFnet decoder as in

Fig 2(c) for fair comparison. Compared with DCN-like

methods [13, 70, 29], our method leads to significant gain

over them since our method can better handle the fore-

ground semantics propagation.

Ablation on design choices: We give more detailed de-

sign studies in the second row of Tab. 2. Tab. 2(d) explores

several sampling methods for salient points sampling. At-
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+PPM +salient point flow + boundary point flow mIoU(%)

- - - 61.3

X - - 63.8

X X 65.0

X X - 64.8

X - X 66.2

X X X 66.9

(a) Effect of dual flow propagation on baseline.

Method F̂3 F̂4 F̂5 mIoU(%)

Baseline+PPM 63.8

X 65.8

X 65.6

X 65.5

X X 66.5

X X X 66.9

(b) Effect of Insertion Position. F̂l means

the position between Fl and Fl − 1.

Settings mIoU(%)

baseline+PPM 63.8

+DCNv1 [13] 65.2

+DCNv2 [70] 65.6

+desne affinity flow [48] 62.0

+FAM [29] 65.7

+ Ours 66.9

(c) Comparison with Other Propaga-

tion Methods.

Sampling Method mIoU(%)

baseline+PPM 63.8

uniform random 64.0

attention based 64.2

Our max pooling 64.8

(d) Effect of salient point sam-

pling in Dual Index Generator.

Settings mIoU(%)

baseline + PPM 63.8

top-down(td) 66.9

bottom-up(bu) 47.3

td then bu 54.5

(e) Effect of propagation

direction.

Settings mIoU(%)

baseline+PPM 63.8

direct prediction 65.7

addition prediction 65.5

Our subtraction based 66.2

(f) Effect of edge generation

module in Dual Index Gener-

ator.

Network Backbone mIoU(%) GFlops

Deeplabv3 [8] ResNet50 60.4 168.4

Deeplabv3 [8] ResNet101 61.5 264.1

+FPN ResNet50 62.3 183.4

+PF decoder ResNet50 65.6 185.2

CCNet [20] ResNet50 58.3 206.5

+FPN ResNet50 60.2 220.8

+PF decoder ResNet50 65.3 223.2

(g) Application on Other Architectures.

Table 2: Ablation studies. We first verify the effect of each module and comparison results in the first row. Then we verify

several design choices and generality of our module in the second row.
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Effect of Sampling Points Effect of Max Pooing Size

Figure 3: Ablation studies on the number of sampled point for

both point flows. Best view it in color and zoom in.

tention based method is directly selecting top-K (K=128)

points from Ml while uniform random sample is done by

randomly selecting one pixels from 7 × 7 neighbor region

of Ml (We report average result of 10 times experiments).

Our max pooling based methods work the best among them.

Tab. 2(e) shows the propagation direction of PFM. Adding

bottom-up fusing leads to bad results mainly because more

background context is introduced into the head which ver-

ifies our motivation of flowing semantics into the bottom.

Tab. 2 (f) shows the effect results on edge prediction. Our

subtraction based prediction has better results mainly due to

better boundary prediction. This is also verified in Tab. 3.

Ablation on Number of Sampled Points: We first ver-

ify the best number of sampled points on boundary point

flow in Fig. 3(a) by increasing the number of sampled

pixels where we find the best number is 128. Sampling

more points leads to inferior results which indicates miss-

ing background context is also important. Appending the

boundary flow as the strong baseline, we explore the kernel

size of salient point flow where we find the best kernel size

14 × 14 (256 points in total) in Fig. 3(b). After selecting

more points (24×24, 576 points in total), the performance

drops a lot since the imbalance problems exist. This veri-

fies the same conclusion that the dense affinity leads to bad

Method mIoU F1(12px) F(9px) F1(5px) F1(3px)

baseline+PPM 63.8 88.2 86.2 85.6 84.3

+salient point flow: 64.8 88.9 88.1 87.0 85.4

+boundary point flow 66.2 93.2 91.2 89.0 88.4

+both 66.9 94.2 93.2 90.2 89.0

direct prediction 65.7 89.6 87.5 86.4 85.8

subtraction prediction 66.2 93.2 91.2 89.0 88.4

Table 3: Ablation study on semantic boundaries where we

adopt 4 different thresholds for evaluation.

results.

Application on Various Methods: Our PFM can be eas-

ily adopted into several existing networks by extending

PFNet decoder (shown in Fig. 2(c) yellow box) after their

heads. More details can be referred to supplementary. In

Tab. 2(g), we verify two works including Deeplabv3[8] and

CCNet [20] where we obtain significant gains over these

baselines. This proves the generalization of our methods.

Our method outperforms ResNet101-based models which

indicates the improvement is not obtained by extra parame-

ters introduced by PFM.

Effectiveness on Segmentation Boundaries: We further

verify the boundary improvements using F1-score met-

ric [41] with different pixel thresholds in Tab. 3. Appending

boundary point flow leads to more significant improvements

than salient point flow due to the explicit supervision and

propagation on boundary pixels. Adopting both flows leads

to the best results and it indicates the complemented prop-

erty of our approach. Moreover, as shown in the last row of

Tab. 3, our subtraction based edge prediction results are bet-

ter than direct prediction where it has better mask boundary.

We include boundary prediction results in supplementary.

Balanced foreground-background Points: We analyze

the ratio of sampled points on fore-ground parts over to-
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Figure 4: Visualization of sampled points for both point flows.

Top: Salient Flow points. Bottom: Boundary Flow points. Best

view it on screen.

tal sampled points by adding all three PFMs using valida-

tion images. Compared with baseline unbalanced points

with 2.89% computed by ground truth mask, our method

improves the ratio on foreground to 7.83% during the in-

ference which resolves the problems of imbalanced points

aggregation.

Visualization of Sampled Points: In Fig. 4, we show sev-

eral visual examples on sampled points on the original im-

ages. The first row gives the salient point results while the

second row shows the boundary point results. We visual-

ize the points from the PFM in the last stage. As shown in

Fig. 4, the salient points uniformly locate around the fore-

ground objects and several of them are on the background

sparsely. The boundary points are mainly on the bound-

ary of large foreground objects and the inner regions on

small objects because the downsampled feature representa-

tion makes it hard to predict small object boundaries. More

visual examples can be found in supplementary.

Benchmarking recent works on aerial images datasets:

Recent work FarSeg [68] reports results of several segmen-

tation methods [67, 22, 8] on iSAID datasets. We extend

more representative work [20, 16, 31, 23] on iSAID, Vai-

hingen and Postdam datasets under the same experiment

setting. Note that, for all methods, we use ResNet50 as

backbone for fair comparison except for HRNet [46]. The

work [40] also reports results on Vaihingen and Postdam us-

ing weak VGG-backbone [43]. Due to the lack of compar-

ison with recent work, we re-implement this method using

ResNet50 backbone and trained on larger cropped images

and report mIoU as metric. All the methods use the single

scale inference on cropped images for testing.

Comparison with the state-of-the-arts on iSAID: We first

benchmark more results on iSAID dataset in Tab. 4 and

then compare our PFNet with previous work. Our PFNet

achieves the state-of-the-art results among all previous work

by a large margin. Our method outperforms previous state-

of-the-art FarSeg [68] by 3.2%.

Experiments on Vaihingen and Potsdam: Rather than the

previous work [40] that crops the images into small patches,

Method Backbone mIoU OS

DenseASPP [52] RenNet50 57.3 8

Deeplabv3+ [9] ResNet50 61.2 8

RefineNet [33] ResNet50 60.2 32

PSPNet [67] ResNet50 60.3 8

OCNet-(ASP-OC) [58] ResNet50 40.2 8

EMANet [31] ResNet50 55.4 8

CCNet [20] ResNet50 58.3 8

EncodingNet [62] ResNet50 58.9 8

SemanticFPN [22] ResNet50 62.1 32

UPerNet [22] ResNet50 63.8 32

HRNet[50] HRNetW18 61.5 4

SFNet[29] ResNet50 64.3 32

GSCNN[44] ResNe50 63.4 8

RANet[40] ResNet50 62.1 8

FarSeg [68] ResNet50 63.7 32

PFNet ResNet50 66.9 32

Table 4: Comparison with the state-of-the-art results on iSAID

dataset.

Method mIoU mean-F1 mIoU mean-F1

PSPNet [67] 65.1 76.8 73.9 83.9

FCN [36] 64.2 75.9 73.1 83.1

OCnet(ASP-OC) [58] 65.7 77.4 74.2 84.1

Deeplabv3+ [9] 64.3 76.0 74.1 83.9

DAnet [16] 65.3 77.1 74.0 83.9

CCnet[20] 64.3 75.9 73.8 83.8

SemanticFPN [22] 66.3 77.6 74.3 84.0

UPerNet [50] 66.9 78.7 74.3 84.0

PointRend [23] 65.9 78.1 72.0 82.7

HRNet-W18 [46] 66.9 78.2 73.4 83.4

GSCNN [44] 67.7 79.5 73.4 84.1

SFNet [29] 67.6 78.6 74.3 84.0

EMANet [31] 65.6 77.7 72.9 83.1

RANet [40] 66.1 78.2 73.8 83.9

EncodingNet [62] 65.5 77.4 73.4 83.5

Denseaspp [52] 64.7 76.4 73.9 83.9

PFNet 70.4 81.9 75.4 84.8

Table 5: Comparison with the state-of-the-art results on Vahihi-

gen(left) and Potsdam(right) datasets.

we adopt large patches as the iSAID dataset and use more

validation images for testing. That makes the segmentation

more challenging. The details of train and validation split-

ting can be found in the supplementary. For the Vaihingen

dataset, we preprocess the images by cropping into 768×

768 patches. We adopt the same training setting with iSAID

dataset except for 200 epochs and larger learning rate with

0.01. For the experiments on the Potsdam dataset, the im-

ages are cropped into 896×896 patches. The total training

epoch is set to 80 with the initial learning rate of 0.01. As

shown in Tab. 5, we benchmark recent segmentation meth-

ods with two metrics including mIoU and mean-F1. Our

PFNet achieves state-of-the-art results on two benchmarks.

Efficiency Comparison: In Fig. 5, we further bench-

mark the speed and parameters of our methods on above

datasets. Compared with previous work, PFNet achieves

the best speed and accuracy trade-off on those three bench-

marks with fewer parameters without bells and whistles.

Note that PFNet can also run in real-time setting and also

achieves a significant margin compared with previous real-

time methods[22, 29, 68].

Visual Results Comparison: In Fig. 6, we compare our

method results with several state-of-the-art methods [9, 23,
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Figure 5: Speed (Inference Time) versus Accuracy (mIoU) on three aerial segmentation datasets. The radius of circles represents the

number of parameters. All the methods are tested with one V-100 GPU card for fair comparison. Our PFNet achieves the best speed and

accuracy trade-off on three benchmark. Real time is within 50ms. Best view it on screen and Zoom in.

Images Ground truth PSPNet Deeplabv3+ PointRendSemantic FPN PFNet

Figure 6: Visual results on iSAID validation set. Compared with previous works, our method obtains better segmentation results. Best

view on the screen. More visual results can be found in supplementary.

Method Cityscapes ADE20k BDD Param(M) GFlops(G)

PSPNet [67] 78.0 41.3 61.3 31.1 120.4

OCNet [58] 79.2 41.8 62.1 64.7 290.4

Deeplabv3+ [9] 79.4 42.0 61.0 40.5 189.8

baseline +PPM 78.8 40.9 61.1 32.9 83.1

Our PFnet 80.3 42.4 62.7 33.0 85.8

Table 6: Experiment results on general datasets including

Cityscapes, ADE20k, BDD validation datasets. All the methods

are trained under the same training setting and the results are re-

ported with single scale inputs. The GFlops is calculated with

512× 512 as input. All the methods use the ResNet50 backbone.

22] on the iSAID validation set. Our PFNet has better seg-

mentation results on handling false positives of small ob-

jects and has more fine-grain object mask boundaries.

4.2. Results on general segmentation benchmarks:

We further verify our approach on general segmentation

benchmarks including Cityscapes [12], ADE-20k [69] and

BDD [55] for only verification purpose. We only report the

results due to the limited space. More implementation de-

tails and visual results can be found in the supplementary

file. We train both our baseline model and PFnet model on

train datasets and report results on validation datasets under

the same setting.

Comparison with the Baseline Methods: As shown in the

last two rows of Tab. 6, our method improves the baseline

model on various datasets about 1% mIoU with fewer pa-

rameters and GFlops increase. Compared with the previous

work [67, 58, 9], our method achieves better results with

much less computation cost.

5. Conclusion

In this paper, we propose PointFlow Module to solve

both imbalanced foreground-background objects and se-

mantic gaps between feature pyramids problems for aerial

image segmentation. We design a novel Dual Point Matcher

to sampled the matched points from salient areas and

boundaries accordingly. Extensive experiments have shown

that our PF module can improve various baselines signifi-

cantly on aerial benchmark. Our proposed PFNet achieves

the best speed and accuracy trade-off on three public aerial

benchmarks. Further experiments on three general segmen-

tation datasets also prove the generality of our method.
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