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Abstract

We propose SelfDoc, a task-agnostic pre-training frame-

work for document image understanding. Because docu-

ments are multimodal and are intended for sequential read-

ing, our framework exploits the positional, textual, and vi-

sual information of every semantically meaningful compo-

nent in a document, and it models the contextualization

between each block of content. Unlike existing document

pre-training models, our model is coarse-grained instead

of treating individual words as input, therefore avoiding an

overly fine-grained with excessive contextualization. Be-

yond that, we introduce cross-modal learning in the model

pre-training phase to fully leverage multimodal informa-

tion from unlabeled documents. For downstream usage,

we propose a novel modality-adaptive attention mecha-

nism for multimodal feature fusion by adaptively empha-

sizing language and vision signals. Our framework benefits

from self-supervised pre-training on documents without re-

quiring annotations by a feature masking training strategy.

It achieves superior performance on multiple downstream

tasks with significantly fewer document images used in the

pre-training stage compared to previous works.

1. Introduction

Documents, such as business forms, scholarly and news

articles, invoices, letters, and text-based emails, encode and

convey information through language, visual content, and

layout structure. Automated document understanding is

a crucial research area for business and academic values.

It can significantly reduce labor-intensive document work-

flows through automated entity recognition, document clas-

sification, semantic extraction, document completion, etc.

Many works have been proposed applying machine

learning for document analysis [13, 15, 37, 36, 15, 18].

However, parsing a document remains non-trivial and poses

*This work was done during the author’s internship at Adobe Research.

multiple challenges. One challenge is modeling and under-

standing contextual information when interpreting content.

For example, since information in documents is organized

for sequential reading, the interpretation of a piece of con-

tent relies heavily on its surrounding context. Similarly, a

heading can indicate and summarize the meaning of sub-

sequent blocks of text, and a caption could be useful for

understanding a related figure. Another challenge is effec-

tively incorporating the cues from multiple data modalities.

In contrast to other data formats like images or plain text,

documents combine textual and visual information, and

both of the two modalities are complemented by the doc-

ument layout. Additionally, from a practical perspective,

many tasks related to document understanding are label-

scarce. A framework that can learn from unlabeled docu-

ments (i.e., pre-training) and perform model fine-tuning for

specific downstream applications is more preferred than the

one that requires fully-annotated training data.

In this work, we develop a task-agnostic representation

learning framework for document images. Our model fully

exploits the textual, visual, and positional information of

every semantically meaningful component in a document,

e.g., text block, heading, and figure. To model the internal

relationships among components in documents, we adopt

the contextualized attention mechanism from natural lan-

guage processing (NLP) [32] and employ it at the com-

ponent level. We design two branches separately for tex-

tual and visual representation learning, and later encourage

cross-modal learning with the proposed cross-modality en-

coder. In order to seek a better modality fusion for down-

stream usage, we propose a modality-adaptive attention

mechanism to fuse the language and vision features adap-

tively. Moreover, our framework learns a generic represen-

tation from a collection of unlabeled documents via self-

supervised learning, and afterward, it will be fine-tuned on

various document-related downstream applications.

There are two major differences between our SelfDoc

and LayoutLM [36], which also introduces a task-agnostic

document pre-training framework by applying 2D posi-
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tional encoding to BERT model [9]. 1) Instead of using

word as the basic unit for model input, we adopt semanti-

cally meaningful components (e.g., text block, heading, fig-

ure) as the model input. In a document, a single word can be

understood within the local context where it is found, and

does not always require analyzing the entire page for every

word. For instance, an answer in a questionnaire tends to be

a complete sentence and already delivers semantics. Intro-

ducing the contextualization between every single word in

documents may be redundant and also ignore localized con-

text; 2) We advance the interaction between language and

vision modality in the model’s pre-training stage, therefore

our model can efficiently leverage the multimodal informa-

tion from unlabeled data. Comparatively, LayoutLM only

considers a single modality in the pre-training stage and in-

corporates the visual clues during the fine-tuning phase.

We evaluate our model on three downstream tasks: doc-

ument entity recognition, document classification, and doc-

ument clustering. With the help of our pre-training method,

we achieve leading performance on these applications over

other pre-training and task-specific models. In short, our

work contributes to the advancement of document analysis

and intelligence by 1) introducing SelfDoc, a novel task-

agnostic self-supervised learning framework for document

data. Our model establishes the contextualization over a

block of content and involves multimodal information; 2)

modeling information from multiple modalities via cross-

modal learning in the pre-training stage, and proposing a

modality-adaptive attention mechanism to fuse language

and vision features for downstream usages; 3) demonstrat-

ing superior performance by using fewer samples for pre-

training. SelfDoc achieves surpassing performance on mul-

tiple downstream tasks comparing to other methods.

2. Related Work

Document Image Understanding. Artificial neural net-

works have been extensively applied to document analy-

sis and recognition tasks like page segmentation, text lo-

cation detection, and region labeling. Marinai et al. [22]

survey connectionist-based approaches on document image

processing. Moreover, Michael et al. [29] propose a gram-

matical model for hierarchical document segmentation and

labeling, while Hao et al. [33] utilize some statistical ma-

chine learning approaches to detect physical structures from

historical documents. Recently, with deep learning show-

ing great performance in many domains such as computer

vision and NLP, some researchers have applied deep learn-

ing to document analysis [15, 18, 37, 13, 7]. By utilizing

the graphical property of documents, Katti et al. [15] em-

ploy convolutional neural networks to recognize the bound-

ing box and semantic segmentation in a document. De-

spite working with visual clues only, Yang et al. [37] use

both convolutional neural networks and traditional textual

embedding techniques to learn scanned documents by self-

reconstruction. On handling the inner connections between

text segments in invoices, Liu et al. [18] apply graph neural

networks and manually build edges by similarity to model

the inner-relations in documents. Jain and Wigington [13]

propose a multimodal ensemble approach combining lan-

guage and vision models for document classification. These

pioneering attempts toward applying machine learning to

document data, though exciting and motivating, are heavily

task-specific in their model design and require exhaustive

annotations for document image representation learning.

Self-Supervised Learning. Pre-training models in NLP

have shown great success in producing generic language

representation that learns from a large scale of the unla-

beled corpus. BERT [9], which stands for bidirectional

encoder representations from Transformers [32], and other

pre-training models [24, 19, 26, 11] have delivered promis-

ing performance on a series of downstream linguistic tasks

such as question answering, sentence classification, and

named entity recognition. The core idea of BERT is to

learn a contextualized representation from corpus intrinsi-

cally via two self-supervised strategies. Given its success

in NLP, some works extend the Transformer framework

and model pre-training to vision-language learning [21, 31].

These works focus on natural images and corresponding

textual descriptions, learning the cross-modality alignment

between visual and linguistic information, and can be ap-

plied to visual question answering [31], referring expression

(localize an object with the given referring expression) [21],

and image retrieval [11]. Although the cross-modality de-

sign in vision-language learning is used as an inspiration

for document representation learning, it cannot be directly

adapted for document data due to the great differences be-

tween document data and natural image data.

Document Pre-training. Most recently, some works have

started pre-training models on document images [36, 25].

The first one, LayoutLM [36], inherits the main idea from

BERT while receiving the extra positional information for

text in documents, and additionally includes image embed-

dings in the fine-tuning phase. Pramanik et al. [25] use

Longformer [6] for heavily-word documents and extend the

pre-training strategies to multi-page document pre-training.

In [7], they introduce a document pre-training method by

solving jigsaw puzzles and doing multimodal learning via

topic modeling. Although they employ both image and text

modalities during the training process, only image infor-

mation is used when tested. In contrast to these works,

we establish our representation learning at the semantic-

component level instead of the single word or character

level in documents. By learning feature embedding on doc-

ument components, we avoid the excessive contextualized

learning between every word in a document but exploit the

relations between each component. Beyond that, we intro-

5653



Figure 1. Overview of the proposed document representation learning framework. Extracted language and vision features with correspond-

ing positional encoding are fed into a textual encoder, a visual encoder, and a cross-modal encoder to manipulate the contextual clues and

multimodal information within documents. The produced features can be used for document analysis tasks.

duce cross-modality learning in the pre-training phase for

contextualized comprehension on document components

across language and vision, and leverage multimodal infor-

mation from document images without annotation.

3. Methodology

Fig. 1 shows an overview of our SelfDoc representation

learning framework. It takes document object proposals

from a document object detector, and extracts features from

both textual and visual modalities with positional encoding

to serve as input. For each modality, we employ a single-

modality encoder for contextual learning, and later perform

learning over the two modalities using the proposed cross-

modality encoder. The generated representation can be fur-

ther utilized for downstream document understanding tasks,

such as entity recognition or document classification.

3.1. Pre­processing and Feature Extraction

To begin with, we train a document object detector us-

ing Faster R-CNN [28] on public document datasets[38, 23]

with bounding box annotations on semantically meaningful

components, and localize significant components (i.e., doc-

ument object proposals) of a document. In our current im-

plementation, we detect the following categories: text block,

title, list, table, and figure. We deem the detected proposals

as the basic input unit of our framework. Next, we apply an

Optical Character Recognition (OCR) engine [16] to pro-

cess each cropped proposal from the original document and

get the detected text in a default word order.

We then extract the textual and visual features for each

proposal. For textual features, we embed plain text con-

tained in a proposal into a feature vector using the pre-

trained Sentence-BERT model [27]: a sentence and sequen-

tial word learning model that demonstrates superior perfor-

mance on semantic textual similarity and sentence classi-

fication tasks. We extract visual features from Regions-

of-Interest (RoI) heads in Faster R-CNN model for every

detected proposal. The RoI head uses an adaptive pooling

function to output a fixed size vector for proposals of arbi-

trary sizes. Formally, a document D = {p1, . . . , pN} con-

sists of N document object proposals, where each object

proposal pi = {xi
pos ∈ R

4, xi

visn ∈ R
dvisn , xi

lang ∈ R
dlang} is

represented by its 2D coordinate xpos, its RoI feature xvisn,

and sentence embedding for text xlang, with corresponding

feature dimensions dlang and dvisn respectively.

Compared to word-level input, the component-level for-

mulation can reduce the input sequence length for a docu-

ment, especially for text-heavy documents such as schol-

arly articles. Therefore it decreases the amount of time

needed for training and inference since the time complexity

for a fully contextualized attention operation (that will be

described later) scales quadratically with the input length.

3.2. Input Modeling

Inspired by BERT [9], we mark the beginning of a sen-

tence sequence with a special [LANG] token and an RoI re-

gion sequence with [VISN] token (shown in Fig. 1), which

are respectively calculated by averaging the sentence fea-

tures and RoI features. Also, we manually set the posi-

tional coordinate of these special proposals to cover the

whole document page. The input sequence is then zero-

padded to match with its batch-peer for batch training.

Then, to incorporate positional information, the input fea-

tures are mapped to hidden states H0
T
= {h1

T
, . . . , hN

T
} and

H
0
V
= {h1

V
, . . . , hN

V
} by a linear mapping as follows:

hi

T = WTx
i

lang+WPx
i

pos, h
i

V = WV x
i

visn+WPx
i

pos, (1)

where matrices WT ∈ R
dh×dlang , WV ∈ R

dh×dvisn , WP ∈
R

dh×4 project features into hidden-state in dh dimension.
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Figure 2. Schematic illustrations of (A): cross-modality encoder with different cross-attention functions inserted sequentially, and (B):

modality-adaptive attention used in the fine-tuning phase for adaptively fusing features from language and vision.

3.3. Single­Modality Encoder

Then, the language and vision features are separately

passed through the textual and visual encoder. These two

encoders follow the same design of a basic module in BERT,

but their parameters are not shared. This module contains

multi-head attention, feed-forward (FF) layers, residual

connection, and layer normalization (LN) [5]. In the multi-

layer single-modality encoder, let H l = {h1, . . . , hN} be

the encoded features at the l-th layer. H
0 is the vector of

the input features given in Sec. 3.2. Features output by the

next layer H l+1 can be obtained via:

H
l

att = LN(fSelfAtt(H
l) +H

l), (2)

H
l+1 = LN(fFF(H

l

att) +H
l

att), (3)

where fSelfAtt(·) is the self-attention function defined as

fSelfAtt(H
l) = softmax

(

q(H l)k(H l)⊤√
dk

)

v(H l), (4)

where q(·), k(·), and v(·) are linear transformation layers

applied to features of proposals and they are the query, key,

and value, respectively. dk is the number of attention heads

for normalization. For technical details on multi-head atten-

tion please refer to [32]. Finally, H l+1 can be obtained by

H
l
att via a feed-forward sub-layer composed of two fully-

connected layers of function fFF(·). Hierarchically stacked

layers form the textual and visual encoders.

The textual and visual encoders produce contextually

embedded features for each proposal using the features

from surrounding proposals in their respective modality.

The vector multiplication between query and key explores

similar patterns in sequential proposals and emphasizes the

shared part. The outputs of the textual and visual encoder

are subsequently fed into the cross-modal encoder described

below, which is more focused on cross-modality learning to

bridge the multimodal information in language and vision.

3.4. Cross­Modality Encoder

We encourage cross-modality learning by introducing

two interactive cross-attention functions. The structure of

the cross-modal encoder is similar to the textual or vi-

sual encoder, but we substitute the self-attention function

fSelfAtt(·) in Eq. (2) with fCrossAtt-1(·) or fCrossAtt-2(·) as elab-

orated in what follows. We add subscripts T and V to de-

note the modality in H
l

T and H
l

V which are the intermediate

textual and visual representations, respectively.

The first attention function identifies the agreement be-

tween language and vision information. At a high level, if

the font size or character style in a proposal is confirmed by

the semantic meaning of language features, these features

should be amplified. Formally, we have

fCrossAtt-1(H
l

T) = softmax

(

q(H l

T)k(H
l

V)
⊤

√
dk

)

v(H l

T),

(5)

fCrossAtt-1(H
l

V) = softmax

(

q(H l

V)k(H
l

T)
⊤

√
dk

)

v(H l

V).

(6)

The second attention function serves as the operation to

discover inner-relationships from one modality to another.

Since documents are naturally composed of two modalities,

we have the same number of proposals in language and vi-

sion branches, and the input sequences of these two modal-

ities are identically ordered1 in our input. Based on this, the

contextual clues can be propagated between modalities, for

instance, the similarity in font style can enhance the under-

standing of semantic meaning between proposals. We have

fCrossAtt-2(H
l

T) = softmax

(

q(H l

V)k(H
l

V)
⊤

√
dk

)

v(H l

T),

(7)

fCrossAtt-2(H
l

V) = softmax

(

q(H l

T)k(H
l

T)
⊤

√
dk

)

v(H l

V).

(8)

1Identically ordered means the two modalities have the same input or-

der, e.g., the first index of textual and visual input corresponds to the same

proposal.
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Note that we do not distinguish the linear transformation

query, key, and value for notational simplicity, but they are

not shared and are specific for a certain attention function

in implementation. We build the cross-modality encoder

by alternatively inserting these two types of cross-attention

layer and a self-attention layer. A schematic illustration for

a cross-modality encoder is presented in Fig. 2(A).

3.5. Pre­training

Our learning framework can benefit from documents

without annotations via a self-supervised training strat-

egy. In the pre-training stage, we have a masking function

fMask(·) that randomly mask selected proposals in a docu-

ment in language or vision branch with a pre-defined prob-

ability that can 1) set the language or vision feature to ze-

ros, or 2) replace the feature with a random proposal in the

same modality from the pre-training corpus, or 3) keep the

original feature unchanged. In the pre-training stage, we

minimize the pre-training objective function as follows:

L =E
D

lang

Mask

L1(x
i

lang − fSelfDoc(fMask(x
i

lang)|D))

+EDvisn
Mask

L1(x
i

visn − fSelfDoc(fMask(x
i

visn)|D)),
(9)

where Dlang
Mask and Dvisn

Mask are the distributions for masked

proposals on language and vision branches, respectively.

fSelfDoc(·) denotes our whole model which outputs a fea-

ture embedding for each proposal. L1 represents Smooth

L1 loss [10]. D represents the document and, in this con-

text, can be viewed as the surrounding features of proposals

of the masked features from the two modalities.

The proposal selection and masking function are applied

independently to language and vision features. The pre-

training objective function working with modality interac-

tion not only infers the masked features from surrounding

proposals in the same modality, but can also absorb features

from another modality and encourage cross-modal learning.

3.6. Modality­Adaptive Attention

In the fine-tuning phase and downstream usage, we

fuse the output features for each proposal from both lan-

guage and vision modalities. Most previous multimodal

works [13, 36] use a simple linear additive operation for

fusion. Considering the diverse variety of document im-

ages, we propose a modality-adaptive attention (M-AA) for

a better feature fusion. The general idea is to apply sample-

dependent attention weights to the two modalities and em-

phasize or diminish the intensity of language or vision fea-

tures adaptively for different documents. Intuitively, this

input-dependent attention can be helpful on some samples

in raw documents such as: 1) ones that contain handwriting

that is not recognizable by OCR algorithms, in which case

a stronger emphasis on visual clue is needed; 2) documents

that already contain abundant linguistic information such as

scholarly articles, in which case a stronger emphasis on the

semantic meaning of language is more helpful.

We summarize the pipeline for this module in Fig. 2(B).

To be specific, we concatenate the output features of each

proposal from language and vision branches, and feed it

to a non-linear mapping network R
2×dh → R

2 (dh is the

dimension of output features in either language or vision

branch), then split the output weights into wlang ∈ R
1 and

wvisn ∈ R
1, and return the weights separately to its respec-

tive modality to perform element-wise product. We mul-

tiply the language and vision features with their modality-

specific attention weight, then after a residual connection,

features from two modalities are fused by a linear additive

function. In our implementation, we employ a two-layer

neural network that ends with a sigmoid activation function

to achieve non-linear mapping.

4. Experiments

4.1. Implementation

Dataset. We use the PubLayNet dataset [38] and DocVQA

dataset [23] to train the document object detector. Pub-

LayNet includes 340K scholarly articles with bounding box

on text block, heading, figure, list, and table, and DocVQA

has 12K forms with a bounding box annotated for each text

block. We use the official OCR results provided by the

DocVQA website as the bounding boxes for text blocks to

train the detector. We pre-train SelfDoc on the RVL-CDIP

dataset [12], a document classification dataset containing

320K documents for training, 40K for validation, and 40K

for testing. Pre-training is only conducted on the training

set. Fig. 3 shows some image samples in document object

detection, entity recognition, and document classification.

Document pre-processing. We train the document object

detector using Detectron2 [34] with the ResNeXt-101 [35]

backbone model. We apply rotations on images as data aug-

mentation to improve the detection of the potential vertical

text in documents. After obtaining the detection results, we

use Tesseract OCR [16], a public OCR engine, to extract the

plain text from each proposal given by detector. We crop the

proposals from the original document images, and expand

the bounding box by a factor of 1.1 and apply 2× image

magnification to better recognize the characters close to the

edge and the overall word recognition. We convert detected

OCR results into lower case, and convert digits to words.

Common contractions are expanded before tokenization.

For sentence embedding, we use the pre-trained sentence

encoder (bert-large-nli-mean-tokens)2. For vi-

sual feature extraction, we concatenate the feature from the

last and P2 layers (second to last convolutional layer) in RoI

heads. We have dvisn = 2048 and dlang = 1024.

2https://github.com/UKPLab/sentence-transformers
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Table 1. Experimental results and comparison on document entity recognition in FUNSD dataset and document classification in RVL-CDIP

dataset. The symbol ‡ implies feature fusing with global visual features on the whole document images from VGG-16. We re-implement

LayoutLM on document classification and denote the result as ‘our impl.’, while the better results denote as ♯ is achieved using another

data source. Please refer to the paragraph document classification in Sec. 4.2 for explanation on ‘our impl.’ and ♯.

Method # Pre-training Data Modality Architecture Entity Recognition Classification

VGG-16 - Vision - - 0.9031

ResNet-50 - Vision - - 0.8866

Multimodal Ensemble [8] - Language + Vision MLP + VGG-16 - 0.9303

Jain and Wigington [13] - Language + Vision MLP + VGG-16 - 0.9360

Sentence-BERT [27] - Language - 0.6947 -

BERTBASE [9] - Language - 0.6062 0.8610

RoBERTaBASE [19] - Language - 0.6648 0.8682

Pramanik et al. [25] 110K Language + Vision + Layout - 0.7744 0.9172

LayoutLMBASE [36] 500K Language + Layout - 0.6985 0.9125

LayoutLMBASE [36] 1M Language + Layout - 0.7299 0.9148

LayoutLMBASE [36] 2M Language + Layout - 0.7592 0.9165

LayoutLMBASE [36] 11M Language + Layout - 0.7866 0.9178

LayoutLMLARGE [36] 1M Language + Layout - 0.7585 0.9188

LayoutLMLARGE [36] 11M Language + Layout - 0.7789 0.9190

LayoutLMBASE [36] 1M Language + Vision + Layout - 0.7441 0.9431♯

LayoutLMBASE [36] 11M Language + Vision + Layout - 0.7927 0.9442♯

LayoutLMBASE (our impl.) 11M Language + Layout - 0.7887 0.8857

LayoutLMBASE (our impl.) 11M Language + Vision + Layout - 0.7993 0.9169‡

SelfDoc Scratch Language + Vision + Layout w/o M-AA 0.7607 0.9049

SelfDoc 320K Language + Vision + Layout w/o M-AA 0.8263 0.9263/0.9364‡

SelfDoc 320K Language + Vision + Layout with M-AA 0.8336 0.9281/0.9381‡

Pre-training. Due to their variety, the number of proposals

in documents may vary significantly. This variance could

cause some input sequences to be heavily padded to en-

sure that all sequences are as long as the longest sequence

in batch-wise training, therefore slowing down the training

speed. To deal with this issue, we do not only set a maxi-

mum length of input sequences, but also apply batch thresh-

olding to avoid excessive padding for some documents and

reduce some batches in the sequence length when feasible.

Every batch contains documents that have the number of

proposals concurrently below or beyond the threshold. We

set the maximum length of proposals to 50, and the group

threshold to 30. When proposals exceed the maximum limi-

tation, we randomly sample the proposals in this document.

The input sentence sequence and RoI sequence are ended

with the special token [SEP], respectively. For the model

architecture, we assign 4 layers to each of the textual and

visual encoders, and continue with 2 cross-modality lay-

ers. The total number of layers for each branch is 12 and

is equivalent to BERTBASE. We keep other specific archi-

tectural configurations and masking probability the same as

in BERTBASE. In the pre-training phase, we set the batch

size to 768, learning rate to 1e-4 in AdamW optimizer [20]

with a linear warm-up ratio to 0.05 and linear decay. We

do not initialize our model before pre-training with param-

eters from pre-trained BERT or any variants. We conduct

Figure 3. Example outputs. First row: examples of document ob-

ject detection. Second row: examples of document entity recogni-

tion with different colors indicating different entity categories (the

left two), and document classification with labels (the right two).

pre-training for 72K iterations on 8 Tesla V-100 GPUs and

it takes around 21 hours to complete the pre-training.

4.2. Applications

Document entity recognition. The first downstream task

for evaluation is document entity recognition. We adopt the

FUNSD dataset [14] instead of SROIE [1] since FUNSD is

an in-domain dataset. It contains 149 forms with 7,441 en-
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Table 2. Experimental results on document clustering over different number of cluster centroids and samples.

Method
# Cluster = 4 # Cluster = 6 # Cluster = 8 # Cluster = 10 # Cluster = 12

Acc. NMI Acc. NMI Acc. NMI Acc. NMI Acc. NMI

BERTBASE [9] 0.4190 0.1589 0.3743 0.1568 0.3400 0.1670 0.3903 0.2752 0.3021 0.2378

LayoutLMBASE [36] 0.4380 0.2107 0.4147 0.2111 0.3612 0.1821 0.3237 0.2213 0.2646 0.1979

Input Embedding 0.4700 0.1946 0.3937 0.1723 0.3898 0.2636 0.3457 0.2549 0.3033 0.2315

SelfDoc 0.6970 0.4155 0.4550 0.3025 0.4476 0.3473 0.4010 0.3612 0.3614 0.3173

tities for fine-tuning, and 50 forms with 2,332 entities for

testing. Semantic entities are classified into four categories:

‘header’, ‘question’, ‘answer’, or ‘other’. The bounding

box and plain text are given for each block of text as well for

every single word, but we only make use of the positional

and textual information for text blocks. We extract visual

features from the RoI head in detector using the given box

coordinates for each block, and extract the language embed-

ding using the plain text as described previously. Micro av-

eraged F1 score is used as the evaluative metric. We train a

linear classifier on the output of our pre-trained model in the

fine-tuning phase, with parameters in the pre-trained model

fixed. The fine-tuning phase takes 60 epochs with a learning

rate of 5e-5 and batch size of 16. Note that the experiment

of FUNSD in LayoutLM [36] considers the prediction of

word positions (begin, intermediate, end). Since our model

considers the whole block of text, the word position is ob-

vious and results remain the same in that setting.

Document classification. We use the RVL-CDIP [12]

dataset to evaluate the performance of document classifi-

cation, using the training set for fine-tuning and the testing

set for evaluation. It consists of 400k images in 16 classes.

We take the encoder outputs on the special tokens [LANG]

and [VISN] from the modality-adaptive attention module as

holistic representations of the textual and visual inputs. The

addition of two features is used as the input to the classifier.

The whole fine-tuning takes 20K iterations with a batch size

of 768 and a learning rate of 5e-5.

Several technical issues related to the baseline model

LayoutLM [36] in this task, drive us to re-implement this

model to make a fair comparison. 1) In their experiments,

LayoutLM does not use document images from RVL-CDIP,

instead, they retrieve the corresponding images from IIT-

CDIP test collection 1.0 [17], which is a superset of RVL-

CDIP but contains high-quality document images. The

most obvious advantage is on the detected results of OCR,

where the text is cleaner and more informative. Unfor-

tunately, we had issues [2] accessing IIT-CDIP; 2) Lay-

outLM [36] uses an image embedding from a detector over

the whole document image on this task, and jointly trains

the detector during fine-tuning. However, the released

code does not contain the jointly fine-tuned detector model.

Given these two technical issues, we built our implementa-

tion using the released pre-trained models LayoutLMBASE

and fine-tuning protocols to make the result a fair compar-

ison, and denote it as ‘our impl.’. We also tried to fine-

tune the released LayoutLMLARGE model but faced a con-

vergence issue due to the need to restrict the batch size for

computational reasons.

We hereby provide our model and LayoutLM with the

same source of data, and also provide the results fusing with

the same image embedding from VGG-16 [30] that trained

on RVL-CDIP. We choose the embedding from VGG-16

instead of other sophisticated models since some previous

work [8, 13] use VGG-16 on document classification.

Document clustering. We also investigate models in the

scenario where there is no annotation available. We con-

sider document clustering on RVL-CDIP [12] testing set.

We randomly sample from the testing set and create five ex-

perimental scenarios, with {3, 5, 7, 10, 12} clusters. The

corresponding numbers of samples are {1k, 3k, 5k, 7k, 9k}.

In this task, we also include the input embedding (sentence

embedding and visual features with the layout) of our model

for comparison. Since all models do not have a supervi-

sion or pre-training objective function at the document im-

age level, we take the average of input proposal sequence

or word sequence as a representation of the document, and

conduct K-means [3] clustering over all the document rep-

resentations. The model for pre-trained LayoutLMBASE is

directly used. We use metrics clustering accuracy (Acc.)

and normalized mutual information (NMI) for evaluation.

4.3. Result and Discussion

Quantitative results are listed in Table 1 & 2, and an ab-

lation study on SelfDoc is presented in Table 3. We discuss

our observations from the experiments as follows.

Baselines. We include five task-specific baselines in Ta-

ble 1. These include two standard convolutional neural net-

works VGG-16 and ResNet-50, two multimodal ensemble

approaches [13, 8] using VGG-16 and a neural network for

text encoding, plus the Sentence-BERT embedding. We

have four task-agnostic learning methods, including two

pre-trained language models [9, 19], the approach proposed

by Pramanik et al. [25] pre-trained on arXiv dataset [4], and

LayoutLM [36] pre-trained on IIT-CDIP dataset [17].

SelfDoc outperforms baselines. Table 1 & 2 show that

SelfDoc outperforms baselines on document entity recogni-

tion, document classification and clustering. The only result
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Table 3. Ablation studies on SelfDoc on multimodal information, pre-training data, and cross-modality attention.

Setting Modality Parameter Entity Recognition Classification

Scratch, remove layout Language + Vision 137M 0.7579 0.9070

Scratch, remove language Vision + Layout 60M 0.6209 0.8447

Scratch, remove vision Language + Layout 60M 0.7491 0.8895

Pre-train with 40K data Language + Vision + Layout 137M 0.7886 0.9119

Pre-trained w/o CrossAtt-1&2 Language + Vision + Layout 146M 0.7911 0.9189

Pre-trained w/o CrossAtt-1 Language + Vision + Layout 137M 0.8152 0.9224

Pre-trained w/o CrossAtt-2 Language + Vision + Layout 137M 0.8130 0.9229

we cannot outperform is the reported number by LayoutLM

which uses a cleaner data source and jointly fine-tunes with

a deeper CNN model, as we discussed in Sec. 4.2. Other

than that, SelfDoc demonstrates a good performance on all

three evaluative downstream tasks with significantly fewer

data for pre-training. We deem the effective usage of pre-

training documents as a superior advantage of our model

since documents often contain sensitive information, thus

the legal and privacy issues may limit the feasibility to build

large scale high-quality document datasets for pre-training.

A proposal is richer than a single word. From the docu-

ment clustering results in Table 2, we observe that our input

embedding is able to deliver a more informative represen-

tation than BERT and LayoutLM. This indicates that our

pre-trained model can further improve the discriminability

in features without fine-tuning. Experiments on clustering

suggest that on the representation of the whole document

image, exploring information from proposals can be more

helpful than collecting features from each word. In ad-

dition, well-designed modeling on feature embedding can

also bring informative representation.

Multimodal modeling is beneficial. In the first three rows

of our ablation study in Table 3, we consider the scenario

where removal happens on the three input components of

SelfDoc: textual input, visual input, and structural layout,

one at a time. We observe a significant drop in performance

when removing textual or visual input on both entity recog-

nition and classification, confirming the necessity for learn-

ing on two modalities. The structural layout has a smaller

effect but it still contributes to the classification.

Effectiveness of cross-modal learning. In the last three

rows of Table 3, we investigate the effectiveness of cross-

modal learning in our model. Note that we do not shrink

the number of model parameters when removing a cross-

modality attention function. When removing a single at-

tention function (denoted as w/o CrossAtt-1/2), we fill the

space with the remaining attention function. When totally

removing the cross-attention encoder, we deepen the single

modality encoder to maintain the size of the model. The re-

sults demonstrate the importance of both cross-modal learn-

ing and the mixture of two cross-attention functions.

A complementary global visual feature is helpful. A fea-

ture embedding from convolutional neural networks on the

Table 4. Fine-tuning with fewer data in document classification.

w/o VGG-16 with VGG-16

LayoutLMBASE (our impl.) 0.8544 0.8712

SelfDoc 0.8929 0.9150

whole image can improve our result by around 1% in docu-

ment classification. The improvement comes from 1) some-

times document object detector gives an empty detection on

low-quality pages, making an all-zero input for our model,

so the model learns to exploit global visual feature, and 2)

some texts in the proposals are obscured, thus OCR might

deliver a random result, making the language embedding

uninformative, so an external feature is beneficial.

Fewer data for fine-tuning. We also provide a scenario

where fewer available labels can be accessed in document

classification in Table 4. To do so, we fine-tune our model

and LayoutLM on the validation set of the RVL-CDIP

dataset, resulting in an 8 times reduction of fine-tuning data.

The VGG-16 model used for fusing is also trained with

fewer data. The quantitative results show that our model

surpasses LayoutLM by a larger margin compared to fine-

tuning with much more data. The observation confirms that

our model is also effective when fine-tuning labels are rare.

5. Conclusion

We proposed a task-agnostic framework for representa-

tion learning and pre-training on document images. Our

framework was defined at the semantic components level

(rather than words), fully considers the presented prop-

erty of document data, and includes linguistic, visual, and

structural layout information. We employed contextualized

learning on the sequential proposals, and encouraged cross-

modal learning across language and vision by the proposed

cross-modal encoder. We used modality-adaptive attention

to emphasize features in language and vision for multi-

modal fusion. With significantly fewer data for pre-training,

we achieved superior performance on multiple tasks.
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