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Abstract

Temporal action segmentation approaches have been

very successful recently. However, annotating videos with

frame-wise labels to train such models is very expensive and

time consuming. While weakly supervised methods trained

using only ordered action lists require less annotation ef-

fort, the performance is still worse than fully supervised

approaches. In this paper, we propose to use timestamp su-

pervision for the temporal action segmentation task. Time-

stamps require a comparable annotation effort to weakly

supervised approaches, and yet provide a more supervisory

signal. To demonstrate the effectiveness of timestamp su-

pervision, we propose an approach to train a segmentation

model using only timestamps annotations. Our approach

uses the model output and the annotated timestamps to gen-

erate frame-wise labels by detecting the action changes. We

further introduce a confidence loss that forces the predicted

probabilities to monotonically decrease as the distance to

the timestamps increases. This ensures that all and not only

the most distinctive frames of an action are learned during

training. The evaluation on four datasets shows that mod-

els trained with timestamps annotations achieve compara-

ble performance to the fully supervised approaches.

1. Introduction

Analyzing and understanding video content is very im-

portant for many applications, such as surveillance or in-

telligent advertisement. Recently, several approaches have

been very successful in analyzing and segmenting activities

in videos [20, 24, 1, 29, 41]. Despite the success of the pre-

vious approaches, they rely on fully annotated videos where

the start and end frames of each action are annotated.

This level of supervision, however, is very time consum-

ing and hard to obtain. Furthermore, as the boundaries be-

tween action segments are usually ambiguous, this might

result in inconsistencies between annotations obtained from

different annotators. To alleviate these problems, many re-

searchers start exploring weaker levels of supervision in the

form of transcripts [3, 35, 25] or even sets [34, 11, 26]. For

Figure 1. For fully supervised action segmentation, each frame in

the training videos is annotated with an action label (top). This

process is time-consuming since it requires an accurate annotation

of the start and end frame of each action. To reduce the annotation

effort, we propose to use timestamps as supervision (bottom). In

this case, only one arbitrary frame needs to be annotated for each

action and the annotators do not need to search for the start and

end frames, which is the most time-consuming annotation part.

transcript-level supervision, the videos are annotated with

an ordered list of actions occurring in the video without the

starting and ending time of each action. Whereas for the

set-level supervision, only the set of actions are provided

without any information regarding the order or how many

times each action occurs in the videos.

While transcript-level and set-level supervision signifi-

cantly reduce the annotation effort, the performance is not

satisfying and there is still a gap compared to fully super-

vised approaches. In this paper, inspired by the recently in-

troduced timestamp supervision for action recognition [31],

we propose to use timestamp supervision for the action

segmentation task to address the limitations of the current

weakly supervised approaches. For timestamp supervision,

only one frame is annotated from each action segment as il-

lustrated in Fig. 1. Such timestamps annotations can be ob-

tained with comparable effort to transcripts, and yet it pro-

vides more supervision. Besides the ordered list of actions

occurring in the video, timestamps annotations give par-

tial information about the location of the action segments,

which can be utilized to further improve the performance.
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Given the timestamps annotations, the question is how to

train a segmentation model with such level of supervision.

A naive approach takes only the sparsely annotated frames

for training. This, however, ignores most of the informa-

tion in the video and does not achieve good results as we

will show in the experiments. Another strategy is to iter-

ate the process and consider frames with high confidence

scores near the annotations as additional annotated frames

and include them during training [31]. Furthermore, frames

that are far away from the annotations can be considered as

negative samples [28]. For temporal action segmentation,

which is comparable to semantic image segmentation, how-

ever, all frames need to be annotated and there are no large

parts of the video that can be used to sample negative exam-

ples. Furthermore, relying only on frames with high confi-

dence discards many of the video frames that occur during

an action and focuses only on the most distinctive frames of

an action, which can be sufficient for action recognition or

detection but not for action segmentation.

In this work, we therefore propose a different approach

where all frames of the videos are used. Instead of detecting

frames of high confidences, we aim to identify changes of

actions in order to divide the videos into segments. Since

for each action change the frames before the change should

be assigned to the previous timestamp and after the change

to the next timestamp, we find the action changes by mini-

mizing the variations of the features within each of the two

clusters of frames. While we can then train the model on

all frames by assigning the label of the timestamp to the

corresponding frames, it does not guarantee that all frames

of an action are effectively used. We therefore introduce a

loss function that enforces a monotonic decrease in the class

probabilities as the distance to the timestamps increases.

This loss encourages the model to predict higher probabili-

ties for low confident regions that are surrounded by high

confident frames and therefore to use all frames and not

only the most distinctive frames.

Our contribution is thus three folded.

1. We propose to use timestamp supervision for the tem-

poral action segmentation task, where the goal is to

predict frame-wise action labels for untrimmed videos.

2. We introduce an approach to train a temporal action

segmentation model from timestamp supervision. The

approach uses the model predictions and the annotated

timestamps for estimating action changes.

3. We propose a novel confidence loss that forces the

model confidence to decrease monotonically as the

distance to the timestamp increases.

We evaluate our approach on four datasets: 50Sal-

ads [38], Breakfast [16], BEOID [7], and Georgia Tech

Egocentric Activities (GTEA) [10]. We show that training

an action segmentation model is feasible with only time-

stamp supervision without compromising the performance

compared to the fully supervised approaches. On the 50Sal-

ads dataset, for instance, we achieve 97% of the accuracy

compared to fully supervised learning, but at a tiny fraction

of the annotation costs. 1

2. Related Work

We briefly discuss the related work for the temporal ac-

tion segmentation task at different levels of supervision.

Fully Supervised Action Segmentation. Temporal ac-

tion segmentation has received an increasing interest re-

cently. In contrast to action recognition where the goal

is to classify trimmed videos [36, 4, 12], temporal ac-

tion segmentation requires capturing long-range dependen-

cies to classify each frame in the input video. To achieve

this goal, many approaches combined frame-wise classi-

fiers with grammars [40, 32] or with hidden Markov mod-

els (HMMs) [21, 17, 19]. Despite the success of these ap-

proaches, their performance was limited and they were slow

both at training and inference time. Recent approaches,

therefore, utilized temporal convolutional networks to cap-

ture long-range dependencies for the temporal action seg-

mentation task [20, 24]. While such approaches man-

aged to generate accurate predictions, they suffer from an

over-segmentation problem. To alleviate this problem, cur-

rent state-of-the-art methods follow a multi-stage architec-

ture with dilated temporal convolutions [1, 41, 27, 15, 14].

These approaches rely on fully annotated datasets that are

expensive to obtain. On the contrary, we address the tem-

poral action segmentation task in a weakly supervised setup.

Weakly Supervised Action Segmentation. Weakly su-

pervised action segmentation has been an active research

area recently. Earlier approaches apply discriminative clus-

tering to detect actions using movie scripts [3, 9]. However,

these approaches ignored the action ordering information

and only focused on distinguishing action segments from

background, which is a common practice for the temporal

action localization task [22, 23]. Bojanowski et al. [3] ex-

tended these ideas to segment actions in videos using tran-

scripts in the form of an ordered list of actions as super-

vision. Recently, many researchers addressed the task by

aligning the video frames and the transcripts using con-

nectionist temporal classification [13], dynamic time warp-

ing [5], or energy-based learning [25]. Other approaches

generate pseudo ground truth labels for the training videos

and iteratively refine them [18, 33, 8, 19]. In [35], a frame-

wise loss function is combined with the Viterbi algorithm

1The source code for our model and the timestamps annota-

tions are publicly available at https://github.com/ZheLi2020/

TimestampActionSeg.
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to generate the target labels. While these approaches have

been very successful, they suffer from a slow inference time

as they iterate over all the training transcripts and select the

one with the highest score. Souri et al. [37] addressed this

issue by predicting the transcript besides the frame-wise

scores at inference time. While these approaches rely on

a cheap transcript supervision, their performance is much

worse than fully supervised approaches. In contrast to these

approaches, we propose a higher level of supervision in the

form of timestamps that can be obtained with comparable

effort to the transcript supervision, and yet reduces the gap

to the fully supervised approaches. There is another line of

research addressing the action segmentation task from set-

level supervision [34, 11, 26]. These approaches opt for a

weaker level of supervision at the cost of performance. In

contrast to these approaches, we propose a good compro-

mise between supervision level and performance.

Timestamp Supervision for Recognizing Activities.

Timestamp supervision has not yet received much atten-

tion from the action recognition community. Initial attempts

were inspired by the success of point supervision for se-

mantic segmentation [2]. Mettes et al. [30] apply multi-

ple instance learning for spatio-temporal action localiza-

tion using points annotation on a sparse subset of frames.

Chéron et al. [6] use discriminative clustering to integrate

different types of supervision for the spatio-temporal ac-

tion localization task. Recently, Moltisanti et al. [31] pro-

posed a sampling distribution based on a plateau function

centered around temporal timestamps annotations to train

a fine-grained action classifier. This approach relies on

the classifier response to sample frames around the anno-

tated timestamps and uses them for training. The method

was tested for classifying trimmed videos and also showed

promising results for temporal action localization. Ma et

al. [28] extended the action localization setup by mining

action frames and background frames for training.

3. Temporal Action Segmentation

Temporal action segmentation is the task of predicting

frame-wise action labels for a given input video. Formally,

given a sequence of video frames X = [x1, . . . , xT ], where

T is the number of frames, the goal is to predict a sequence

of frame-wise action labels [a1, . . . , aT ]. In contrast to the

fully supervised approaches, which assume that the frame-

wise labels are given at training time, we consider a weaker

level of supervision in the form of timestamps. In Sec-

tion 3.1 we introduce the timestamp supervision for the tem-

poral action segmentation task. Then, we describe the pro-

posed framework for learning from timestamp supervision

in Section 3.2. Finally, we provide the details of the loss

function in Section 3.3.

Figure 2. The framework of the proposed approach for training

with timestamp supervision. Given the output of the segmentation

model and the timestamps annotations, we generate action labels

for each frame in the input video by estimating where the action

labels change. A loss function is then computed between the pre-

dictions and the generated labels.

3.1. Timestamp Supervision

In a fully supervised setup, the frame-wise labels

[a1, . . . , aT ] of the training videos are available. On the

contrary, for timestamp supervision, only a single frame

for each action segment is annotated. Given a training

video X with T frames and N action segments, where

N << T , only N frames are annotated with labels

ATS = [at1 , . . . , atN ], where frame ti belongs to the i-th

action segment. To annotate timestamps, one can go fast

forward through a video and press a button when an ac-

tion occurs. This does not take more time than annotating

transcripts. Whereas annotating the start and end frames of

each action requires going slowly back and forth between

the frames. As reported in [28], annotators need 6 times

longer to annotate the start and end frame compared to an-

notating a single timestamp. While timestamps are much

easier to obtain compared to the full annotation of the video

frames, they provide much more information compared to

weaker forms of supervision such as transcripts. Fig. 1 il-

lustrates the difference between timestamp supervision and

full supervision.

3.2. Action Segmentation from Timestamp Super­
vision

Given an action segmentation model M and a set of

training videos with timestamps annotations, the goal is to

train the model M to predict action labels for each frame in

the input video. If the frame-wise labels are available dur-

ing the training, as in the fully supervised case, then it is

possible to apply a classification loss on the output of the

model M for each frame in the input video. However, in

timestamp supervision, only a sparse set of frames are an-

notated. To alleviate this problem, we propose to generate

frame-wise labels for the training videos, and use them as a

target for the loss function as illustrated in Fig. 2.
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Detecting Action Changes. Given the timestamps an-

notations ATS = [at1 , . . . , atN ] for a video X , we want

to generate frame-wise action labels Â = [â1, . . . , âT ] for

each frame in that video such that âti = ati for i ∈ [1, N ].
As for each action segment there is an annotated frame,

finding the frame-wise labels can be reduced to finding the

action change between each consecutive annotated time-

stamps. To this end, we pass the input video X to the

segmentation model M, which will be described in Sec-

tion 4.2, and use the output of the penultimate layer H com-

bined with the timestamps annotations to estimate where the

action labels change between the timestamps. To generate

the labels, all the frames that lie between an annotated time-

stamp and an estimated time of action change are assigned

with the same action label as the annotated timestamp as il-

lustrated in Fig. 3. To detect the action change between two

timestamps ti and ti+1, we find the time tbi that minimizes

the following stamp-to-stamp energy function

tbi = argmin
t̂

t̂
∑

t=ti

d(ht, ci) +

ti+1
∑

t=t̂+1

d(ht, ci+1),

s.t.

ci =
1

t̂− ti + 1

t̂
∑

t=ti

ht,

ci+1 =
1

ti+1 − t̂

ti+1
∑

t=t̂+1

ht,

ti ≤ t̂ < ti+1,

(1)

where d(., .) is the Euclidean distance, ht is the output of

the penultimate layer at time t, ci is the average of the out-

put between the first timestamp ti and the estimate t̂, and

ci+1 is the average of the output between the estimate t̂ and

the second timestamp ti+1. I.e., we find the time tbi that di-

vides the frames between two timestamps into two clusters

with the minimum distance between frames and the corre-

sponding cluster center.

Forward-Backward Action Change Detection. In (1),

the stamp-to-stamp energy function considers only the

frames between the annotated timestamps to estimate where

the actions change. Nonetheless, if we already have an es-

timate for tbi−1
, then we already know that frames between

the estimate tbi−1
and the next timestamp ti will be assigned

to action label ati . This information can be used to esti-

mate the time of action change for the next action segment

tbi . The same argument also holds if we start estimating the

boundaries in reverse order. I.e., if we already know tbi+1
,

then frames between ti+1 and tbi+1
can be used to estimate

tbi . We call the former estimate a forward estimate for the

i-th action change, whereas the later is called the backward

Figure 3. Given the timestamps annotations, we first estimate

where the actions change between consecutive timestamps. To

generate the frame-wise labels, all the frames that lie between an

annotated timestamp and an estimated time of action change are

assigned with the same action label as the annotated timestamp.

estimate. The final estimate for tbi is the average of these

two estimates. Formally

tbi =
tbi,FW + tbi,BW

2
s.t.

tbi,FW = argmin
t̂

t̂
∑

t=tbi−1

d(ht, ci) +

ti+1
∑

t=t̂+1

d(ht, ci+1),

tbi,BW = argmin
t̂

t̂
∑

t=ti

d(ht, ci) +

tbi+1
∑

t=t̂+1

d(ht, ci+1).

(2)

3.3. Loss Function

Recent fully supervised approaches for action segmenta-

tion use a combination of a classification loss and a smooth-

ing loss [1, 15, 41]. Besides these losses, we further intro-

duce a novel confidence loss for the timestamp supervision.

In the following, we describe in detail each loss function.

Classification Loss. We use a cross entropy loss be-

tween the predicted action probabilities and the correspond-

ing generated target label

Lcls =
1

T

∑

t

−log(ỹt,â), (3)

where ỹt,â is the predicted probability for the target label â

at time t.

Smoothing Loss. As the classification loss treats each

frame independently, it might result in an undesired over-

segmentation effect. To encourage a smooth transition be-

tween frames and reduce over-segmentation errors, we use

the truncated mean squared error [1] as a smoothing loss

LT−MSE =
1

TC

∑

t,a

∆̃2
t,a, (4)

∆̃t,a =

{

∆t,a : ∆t,a ≤ τ

τ : otherwise
, (5)

∆t,a = | log ỹt,a − log ỹt−1,a|, (6)
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Figure 4. The confidence loss penalizes increases in the model

confidence for label ati
as we move away from the annotated time-

stamp ti.

where T is the video length, C is the number of action

classes, and ỹt,a is the probability of action a at time t.

Confidence Loss. Our approach relies on the model out-

put to detect action changes. Nonetheless, as some frames

are more informative than others, the model confidence

might alternate between high and low values within the

same action segment. Such behavior might result in ignor-

ing regions with low confidence within the segments. To

alleviate this problem, we apply the following loss

Lconf =
1

T ′

∑

ati
∈ATS





ti+1
∑

t=ti−1

δati
,t



, (7)

δati
,t =

{

max(0, log ỹt,ati
− log ỹt−1,ati

) if t ≥ ti
max(0, log ỹt−1,ati

− log ỹt,ati
) if t < ti

,

(8)

where ỹt,ati
is the probability of action ati at time t, and

T ′ = 2(tN − t1) is the number of frames that contributed to

the loss. For the first and last timestamps, we set t0 = t1 and

tN+1 = tN . This loss penalizes an increase in confidence

as we deviate from the annotations as illustrated in Fig. 4.

Enforcing monotonicity on the model confidence has

two effects as shown in Fig. 6. First, it encourages the

model to predict higher probabilities for low confident re-

gions that are surrounded by regions with high confidence.

Second, it suppresses outlier frames with high confidence

that are far from the timestamps and not supported by high

confident regions.

The final loss function to train the segmentation model is

the sum of these three losses

Ltotal = Lcls + αLT−MSE + βLconf , (9)

where α and β are hyper-parameters to balance the contri-

bution of each loss.

4. Experiments

4.1. Datasets and Metrics

Datasets. We evaluate our approach on four datasets:

50Salads [38], Breakfast [16], BEOID [7], and Georgia

Tech Egocentric Activities (GTEA) [10].

The 50Salads dataset contains 50 videos with roughly

0.6M frames, where the frames are annotated with 17 action

classes. The videos show actors preparing different kind of

salads. We use five-fold cross validation for evaluation and

report the average.

The Breakfast dataset contains 1712 videos with

roughly 3.6M frames, where the frames are annotated with

48 action classes. All actions are related to breakfast prepa-

ration activities. We use the standard four splits for evalua-

tion and report the average.

The BEOID dataset contains 58 videos, where the

frames are annotated with 34 actions classes. For evalua-

tion, we use the same training-testing split as in [28].

The GTEA dataset contains 28 videos with roughly 32K

frames, where the frames are annotated with 11 action

classes. For evaluation, we report the average of four splits.

To generate the timestamps annotations, we randomly

select one frame from each action segment in the training

videos. We further evaluate our approach using human and

noisy annotations in Section 4.7. Additional settings are

evaluated in the supplementary material.

Metrics. We use the standard metrics for fully super-

vised action segmentation and report frame-wise accuracy

(Acc), segmental edit distance (Edit) and segmental F1

scores at overlapping thresholds 10%, 25% and 50%.

Baselines. We implement two baselines: a Naive and a

Uniform baseline. The Naive baseline computes the loss at

the annotated timestamps only and does not generate frame-

wise labels. Whereas the Uniform baseline generates the

frame-wise labels by assuming that action labels change at

the center frame between consecutive timestamps.

4.2. Implementation Details

We use a multi-stage temporal convolutional network [1]

as a segmentation model M. Following [39], we use two

parallel stages for the first stage with kernel size 5 and 3
and pass the sum of the outputs to next stages. We train our

model for 50 epochs with Adam optimizer. To minimize the

impact of initialization, only the annotated timestamps are

used for the classification loss in the first 30 epochs, and the

generated labels are used afterwards. The learning rate is

set to 0.0005 and the batch size is 8. For the loss function,

we set τ = 4, α = 0.15 as in [1] and set β = 0.075. As

input for our model, we use the same I3D [4] features that

were used in [1].

4.3. Comparison with the Baselines

In this section, we compare the proposed approach for

action segmentation from timestamp supervision with the

naive and uniform baselines. The results on the three

datasets are shown in Table 1. Our approach outperforms

these baselines with a large margin in all the evaluation met-

rics. While the naive baseline achieves a good frame-wise

accuracy, it suffers from a severe over-segmentation prob-

lem as indicated by the low F1 and Edit scores. This is
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(a)

(b)

(c)

Figure 5. Qualitative results on (a) 50Salads, (b) Breakfast, and (c) GTEA datasets. As the naive baseline only trains on the sparse

annotations, it suffers from an over-segmentation problem. While the uniform baseline reduces this problem by uniformly assigning labels

to the frames, the durations of the predicted segments are not accurate and the predictions tend towards a uniform segmentation of the

videos. On the contrary, our approach generates better predictions by utilizing the model output to detect where the action labels change.

because it only uses the sparse timestamps annotations for

training, which leaves a lot of ambiguity for frames without

annotations. Using the uniform baseline reduces the over-

segmentation by uniformly assigning a label for each frame.

However, this results in inferior frame-wise accuracy as the

uniform assignment generates many wrong labels. On the

contrary, our approach utilizes the model predictions to gen-

erate much better target labels, which is reflected in the per-

formance as illustrated in Fig. 5. We also compare the per-

formance of our approach to the fully supervised setup in

Table 1. Our approach achieves comparable performance to

the fully supervised case.

4.4. Impact of the Loss Function

The loss function to train our model consists of three

losses: a classification loss, a smoothing loss, and a con-

fidence loss. Table 2 shows the impact of each loss on

both the 50Salads and the Breakfast dataset. While ei-

ther of the smoothing loss and the confidence loss gives

an additional boost in performance, the best performance

is achieved when both of the losses are combined with the

F1@{10, 25, 50} Edit Acc

50Salads

Naive 47.9 43.3 34.0 37.2 69.6

Uniform 62.9 58.2 42.3 60.4 63.4

Ours 73.9 70.9 60.1 66.8 75.6

Full Supervision 70.8 67.7 58.6 63.8 77.8

Breakfast

Naive 34.1 29.1 20.1 37.4 56.8

Uniform 66.2 56.3 36.4 68.1 51.0

Ours 70.5 63.6 47.4 69.9 64.1

Full Supervision 69.9 64.2 51.5 69.4 68.0

GTEA

Naive 59.7 55.3 39.6 51.1 56.5

Uniform 78.9 72.5 50.9 73.1 56.5

Ours 78.9 73.0 55.4 72.3 66.4

Full Supervision 85.1 82.7 69.6 79.6 76.1

Table 1. Comparison with the baselines on the three datasets.

classification loss with a frame-wise accuracy improvement

of 2.8% and 3.9% on 50Salads and the Breakfast dataset

respectively, and roughly 10% on the F1 score at 50% over-

lapping threshold.

While the smoothing loss forces a smooth transition be-

tween consecutive frames, it does not take the annotations
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F1@{10, 25, 50} Edit Acc

50Salads

Lcls 65.7 62.6 50.7 57.7 72.8

Lcls + αLT−MSE 70.1 66.8 55.3 62.6 74.6

Lcls + βLconf 73.2 70.6 60.1 65.2 75.3

Lcls + αLT−MSE + βLconf 73.9 70.9 60.1 66.8 75.6

Breakfast

Lcls 60.3 52.8 36.7 64.2 60.2

Lcls + αLT−MSE 67.5 60.1 44.3 68.9 63.7

Lcls + βLconf 67.6 60.4 43.7 68.0 61.6

Lcls + αLT−MSE + βLconf 70.5 63.6 47.4 69.9 64.1

Table 2. Contribution of the different loss functions on the 50Sal-

ads and Breakfast datasets.

F1@{10, 25, 50} Edit Acc

β = 0 70.1 66.8 55.3 62.6 74.6

β = 0.025 70.9 68.8 57.4 63.4 76.2

β = 0.05 73.1 70.2 58.7 65.4 75.6

β = 0.075 73.9 70.9 60.1 66.8 75.6

β = 0.1 73.2 70.6 60.1 66.1 74.6

Table 3. Impact of β on the 50Salads dataset.

into account. On the contrary, the confidence loss forces

the predicted probabilities to monotonically decrease as the

distance to the timestamps increases. This encourages the

model to have a high confidence for all frames within an

action segment, and yet it suppresses outlier frames that are

far from the annotations and not supported by regions with

high confidence as illustrated in Fig. 6.

To balance the contribution of the different losses, we set

the weight of the smoothing loss to 0.15 as in [1], and the

weight of the confidence loss β = 0.075. In Table 3, we

study the impact of β on the performance on the 50Salads

dataset. As shown in the table, good results are achieved for

β between 0.05 and 0.1.

4.5. Impact of the Energy Function for Action
Change Detection

Our approach generates target labels by estimating

where the action labels change using the forward-backward

estimate as in (2). To analyze the impact of this estimate,

we train another model that directly uses the stamp-to-

stamp estimate (Stamp-to-Stamp (Features)) as in (1). As

shown in Table 4, our approach performs better. We also

tried another variant of the stamp-to-stamp energy function

that maximizes the average probabilities of the action seg-

ments (Stamp-to-Stamp (Prob.)) instead of minimizing the

distances to cluster centers. However, the performance is

worse than the proposed energy function.

4.6. Impact of the Segmentation Model M

In all experiments, we used a multi-stage temporal con-

volutional architecture based on [1] and [39]. In this sec-

tion we study the impact of the segmentation model on the

performance. To this end, we apply the proposed training

scheme on the original MS-TCN [1] and the recently intro-

duced MS-TCN++ [27]. As shown in Table 5, our approach

(a)

(b)
Figure 6. Impact of the confidence loss. Forcing monotonicity en-

courages the model to have a high confidence for all frames within

an action segment (a). It also suppresses outlier frames with high

confidence (b).

F1@{10, 25, 50} Edit Acc

50Salads

Stamp-to-Stamp (Prob.) 67.5 61.8 48.6 61.1 68.9

Stamp-to-Stamp (Features) 73.4 70.5 59.9 66.7 74.2

Ours 73.9 70.9 60.1 66.8 75.6

Breakfast

Stamp-to-Stamp (Prob.) 65.7 55.9 35.9 68.0 58.8

Stamp-to-Stamp (Features) 66.3 59.6 44.4 67.9 60.1

Ours 70.5 63.6 47.4 69.9 64.1

Table 4. Impact of the energy function for action change detection

on the 50Salads and Breakfast datasets.

Dataset Seg. Model M F1@{10, 25, 50} Edit Acc

50Salads MS-TCN [1] 71.7 68.7 57.0 64.0 74.7

MS-TCN++ [27] 75.0 71.1 55.8 67.2 72.9

Ours 73.9 70.9 60.1 66.8 75.6

GTEA MS-TCN [1] 79.8 73.3 47.7 76.3 59.3

MS-TCN++ [27] 78.3 72.2 49.1 74.5 62.2

Ours 78.9 73.0 55.4 72.3 66.4

Table 5. Impact of the segmentation model M on the 50Salads and

GTEA datasets.

is agnostic to the segmentation model and performs well

with all these models.

4.7. Comparison with the State­of­the­Art

In this section, we compare our approach with recent

state-of-the-art approaches for timestamp supervision. To

the best of our knowledge, timestamp supervision has not

been studied for the temporal action segmentation task. We,

therefore, compare with similar methods in the context of

action recognition [31] and action localization [28].

Since the approach of [31] assumes the testing videos

are trimmed and does not work for long untrimmed videos,

we replaced their backbone network with our segmentation

model for a fair comparison. To this end, we initialized the

plateau functions around the timestamps annotations of the

training videos and iteratively update their parameters based

on the segmentation model output as in [31]. Results for

the 50Salads, Breakfast, and GTEA datasets are shown in
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Supervision Method F1@{10, 25, 50} Edit Acc

Full MS-TCN [1] 76.3 74.0 64.5 67.9 80.7

MS-TCN++ [27] 80.7 78.5 70.1 74.3 83.7

BCN [41] 82.3 81.3 74.0 74.3 84.4

ASRF [15] 84.9 83.5 77.3 79.3 84.5

Timestamps Seg. Model M + plateau [31] 71.2 68.2 56.1 62.6 73.9

Ours 73.9 70.9 60.1 66.8 75.6

Transcripts CDFL [25] - - - - 54.7

NN-Viterbi [35] - - - - 49.4

HMM-RNN [33] - - - - 45.5

Table 6. Comparison with different levels of supervision on the

50Salads dataset.

Supervision Method F1@{10, 25, 50} Edit Acc

Full MS-TCN [1] 52.6 48.1 37.9 61.7 66.3

MS-TCN++ [27] 64.1 58.6 45.9 65.6 67.6

BCN [41] 68.7 65.5 55.0 66.2 70.4

ASRF [15] 74.3 68.9 56.1 72.4 67.6

Timestamps Seg. Model M + plateau [31] 65.5 59.1 43.2 65.9 63.5

Ours 70.5 63.6 47.4 69.9 64.1

Transcripts CDFL [25] - - - - 50.2

MuCon [37] - - - - 47.1

D3TW [5] - - - - 45.7

NN-Viterbi [35] - - - - 43.0

TCFPN [8] - - - - 38.4

HMM-RNN [33] - - - - 33.3

ECTC [13] - - - - 27.7

Sets SCT [11] - - - - 30.4

SCV [26] - - - - 30.2

Action Sets [34] - - - - 23.3

Table 7. Comparison with different levels of supervision on the

Breakfast dataset.

Supervision Method F1@{10, 25, 50} Edit Acc

Full MS-TCN [1] 85.8 83.4 69.8 79.0 76.3

MS-TCN++ [27] 88.8 85.7 76.0 83.5 80.1

BCN [41] 88.5 87.1 77.3 84.4 79.8

ASRF [15] 89.4 87.8 79.8 83.7 77.3

Timestamps Seg. Model M + plateau [31] 74.8 68.0 43.6 72.3 52.9

Ours 78.9 73.0 55.4 72.3 66.4

Table 8. Comparison with different levels of supervision on the

GTEA dataset.

Tables 6-8, respectively. Our approach outperforms [31] on

all datasets with a large margin of up to 13.5% frame-wise

accuracy and 11.8% for the F1 score with 50% overlapping

threshold on the GTEA dataset.

We also compare our approach for timestamp supervi-

sion with other levels of supervision for the temporal action

segmentation task. As shown in Tables 6-8, timestamp su-

pervision outperforms weaker levels of supervision in the

form of transcripts or sets with a large margin. Our ap-

proach provides a good compromise between annotation ef-

fort and performance, and further reduces the gap to fully

supervised approaches.

Timestamp supervision has recently been studied for ac-

tion localization in [28]. In their approach, they use the

model confidence to sample foreground action frames and

background frames for training. To compare with [28], we

use the same setup and the provided human annotations to

train our model and report mean average precision at differ-

ent overlapping thresholds. Table 9 shows the results on the

GTEA and BEOID [7] datasets. Our approach outperforms

mAP@IoU 0.1 0.3 0.5 0.7 Avg

GTEA

SF-Net [28] 58.0 37.9 19.3 11.9 31.0

Ours 60.2 44.7 28.8 12.2 36.4

BEOID

SF-Net [28] 62.9 40.6 16.7 3.5 30.1

Ours 71.5 40.3 20.3 5.5 34.4

Table 9. Comparison with SF-Net [28] for action localization with

timestamp supervision on the GTEA and BEOID datasets.

Fraction Method Acc

0.1 HMM-RNN [19] 60.9

Ours 68.4

0.01 HMM-RNN [19] 58.8

Ours 67.4

Table 10. Comparison with Kuehne et al. [19] on the Breakfast

dataset with semi-supervised setup.

Ma et al. [28] with a large margin of 5.4% average mAP on

GTEA and 4.3% on the BEOID dataset. In contrast to [28]

where only the frames with high confidence are used for

training, our approach detects action changes and generates

a target label for each frame in the training videos.

Finally, we compare our approach with the semi-

supervised setup on the Breakfast dataset proposed in

Kuehne et al. [19]. In this setup, the training videos are

annotated with the transcript of actions and a fraction of

the frames as well. Compared to the timestamp supervi-

sion, this setup provides annotations for much more frames.

Since the timestamps are randomly sampled from the video,

there are sometimes multiple timestamps for one action and

not all actions are annotated as reported in the supplemen-

tary material. As shown in Table 10, our approach outper-

forms [19] with a large margin. While the approach of [19]

relies on an expensive Viterbi decoding during inference,

our approach directly predicts the frame-wise labels.

5. Conclusion

In this paper, we proposed an approach to train a tempo-

ral action segmentation model using only timestamps anno-

tations. Our approach combines the model predictions with

the timestamps annotations for estimating where the action

labels change. We further introduced a confidence loss that

enforces monotonicity on the model confidence. The loss

encourages high confidence values for all frames within an

action segment and suppresses outlier frames. Results on

four datasets show that models trained with timestamp su-

pervision achieve comparable performance to the fully su-

pervised setup. The proposed approach is model agnostic

and can be applied to any segmentation model.
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