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Abstract

Channel pruning and tensor decomposition have re-

ceived extensive attention in convolutional neural network

compression. However, these two techniques are tradition-

ally deployed in an isolated manner, leading to significant

accuracy drop when pursuing high compression rates. In

this paper, we propose a Collaborative Compression (CC)

scheme, which joints channel pruning and tensor decom-

position to compress CNN models by simultaneously learn-

ing the model sparsity and low-rankness. Specifically, we

first investigate the compression sensitivity of each layer

in the network, and then propose a Global Compression

Rate Optimization that transforms the decision problem of

compression rate into an optimization problem. After that,

we propose multi-step heuristic compression to remove re-

dundant compression units step-by-step, which fully con-

siders the effect of the remaining compression space (i.e.,

unremoved compression units). Our method demonstrates

superior performance gains over previous ones on vari-

ous datasets and backbone architectures. For example, we

achieve 52.9% FLOPs reduction by removing 48.4% pa-

rameters on ResNet-50 with only a Top-1 accuracy drop of

0.56% on ImageNet 2012.

1. Introduction

Remarkable achievements have been attained by convo-

lutional neural networks (CNNs), such as object classifica-

tion [16, 36, 7], detection [34, 33] and segmentation [1].

*Equal contribution.
†Corresponding author.

However, the explosive growth of parameters and computa-

tional cost in CNN models has restricted their deployment

on resource-limited devices, such as mobile or wearable de-

vices. To this end, extensive efforts have been made for

CNN compression and acceleration, including but not lim-

ited to, parameter pruning [40, 28, 19], tensor decomposi-

tion [17, 22, 41] and quantization [13, 45].

Parameter pruning and tensor decomposition are two

widespread directions in CNN compression, which both

aim to remove intrinsic redundancy in parameters with dif-

ferent removing strategies. Parameter pruning removes

correlated weight connections [5, 6] or structured neurons

[28, 10, 24] based on importance measurement methods,

resulting in sparse weight structures. In contrast, tensor de-

composition approximates weights of low-rank filters based

on the intrinsic low-rankness of parameters [44, 41, 22, 14].

It is thus a natural thought to combine these two compres-

sion strategies, which might lead to the significant accu-

racy drop when pursuing high compression rate. For in-

stance, Dubey et al. [4] proposed to compress the weights

by sequentially employing pruning and tensor decomposi-

tion, which assumes that they are complementary without

any mutual influence. However, as demonstrated in pre-

vious work [43], although the pruning and decomposition

explore different redundancy in parameters, they are not

completely orthogonal. Thus, the above method [4] does

not exploit the complementary nature of pruning and de-

composition, which is sub-optimal as exploring only within

each sub-task (i.e., each compression method), not from the

global compression scope.

To leverage the benefits of both compression operations,

training-aware methods [43, 29, 20] use two regulariza-

tions to separately handle the sparsity on channel pruning
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Figure 1: The framework of our method. We first compute the group values between information loss and compression

rate in each layer and then obtain the compression rate of each layer by solving a global compression rate optimization

problem based on them. After that, we compress each layer independently by removing the less important compression units

step-by-step based on the removed units and the exploration of remaining compression space.

and the low-rankness on tensor decomposition, which are

jointly minimized the regularization loss during training.

They show that simultaneously handle sparsity and low-

rankness in weights can explore the richer structure infor-

mation of parameters. However, these methods are diffi-

cult to control the compression rate, which needs to adjust

hyper-parameters by trial-and-error to achieve the trade-off

between compression rate and model accuracy.

In this paper, we propose a novel unified compression

framework, named collaborative compression (CC), to si-

multaneously deal with the sparsity and low-rankness in

weights, with an essential innovation in automatic compres-

sion rate control. Our method is a post-training compres-

sion algorithm that simultaneously explores the sparsity and

low-rankness in pre-trained networks, which is easier to ap-

ply than the training-aware methods. As shown in Fig. 1,

towards a fast and practical compression, we first determine

the compression rate of each layer by global compression

rate optimization and then compress each layer indepen-

dently by multi-step heuristic compression. It avoids deter-

mining the compression rate and the compression strategy

(i.e., which compression units should be removed) simul-

taneously. In particular, the global compression rate opti-

mization analyzes the compression sensitivity of each layer

by constructing the relationship between the proposed in-

formation loss and the compression rate. We find that this

relationship can be fitted well by an exponential function,

and the compression sensitivity can be viewed as the first-

order derivative of this exponential function. Based on the

exponential model, we construct an optimization process to

search the best compression rate of each layer. After deter-

mining the compression rate, we compress each layer syn-

chronously and independently. Considering that removing

units will affect the importance of the remaining compres-

sion units, we propose a multi-step heuristic compression

method, which removes less important units step-by-step.

At each step, the importance calculation of each unit fully

considers the effect of removed compression units and the

remaining compression space.

In experiments, we demonstrate the effectiveness of

the proposed CC framework using four widely-used net-

works (VGGNet, GoogleNet, ResNet and DenseNet) on

two datasets (CIFAR-10 and ImageNet 2012). Compared

to the state-of-the-art methods, CC achieves superior per-

formance. For example, we obtain 52.9% FLOPs reduction

by removing 48.4% parameters, with only a Top-1 accu-

racy drop of 0.56% on ResNet-50. Meanwhile, the com-

pressed MobileNet-V2 obtained by our method achieves

performance gains over the state-of-the-art pruning meth-

ods based on AutoML.

2. Related Work

Pruning can be categorized into either unstructured or

structured pruning. Unstructured pruning [5, 6] aims to re-

move unimportant weights independently, while structured

pruning removes structured parts (e.g., filters, channels or

layers) that are well supported by various off-the-shelf deep

learning libraries. Structured pruning, especially filter prun-

ing, removes redundant filters by different importance mea-

surements, such as ℓ1-norm on filters [19, 8], sparsity of

output feature maps [11], sparsity regularization [40, 2, 23]

and loss drop w.r.t. filter removal [30, 28]. Similar to filter

pruning, channel pruning [26, 12] targets at removing input

channels, which can avoid the dimensional mismatch in var-

ious multi-branch networks, e.g., ResNets and DenseNets.

Apart from this, layer pruning has been proposed for data-

dependent inference [38, 39] or static block removal [25].

Tensor decomposition [41, 18, 22, 14] aims to reduce

the memory and computation cost by decomposing the con-

volutional filters into a sequence of tensors with fewer pa-

rameters. Unlike pruning, it explores the low-rank struc-

ture of the original weights, which keeps the dimension

of convolutional outputs unchanged. Early works directly

introduce different tensor decomposition methods on the

original weights, such as SVD-decomposition [44], Tucker-

decomposition [15] and CP-decomposition [17]. Later on,

Lin et al. [22] proposed a novel closed-form low-rank de-

composition for fast decomposition. Different from direct

decomposition, Wen et al. [41] proposed a force regular-

ization to coordinate and learn more weight information

into a low-rank space. Compared to these single compres-
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(d) GoogLeNet: A3-B4-C1
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(f) DenseNet40:Block2-Conv5
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(g) VGGNet:Conv4
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Figure 2: Compression sensitivity analysis of different convolutional layers in different networks on CIFAR-10. For each

subfigure, the x-axis represents the compression rate and the y-axis is the information loss based on Eq. 6, both of which are

normalized to [0, 1]. R2 represents the coefficient of determination between Dl and the learned exponential model, which

measures the result of model fitting. R2 closer to 1 is better.

sion operation-based methods (i.e., only using one com-

pression operation), we propose a collaborative compres-

sion method, which focuses on simultaneously reducing the

sparsity and low-rankness in the weights and fully considers

the mutual influence between them.

To combine multiple compression operations, previous

studies [5, 4] proposed multiple compression stages, which

independently adopt one compression operation at each step

and ignore the mutual influence between different com-

pression operations. For instance, Dubey et al. [4] first

adopted filter pruning to compress the weights and then

decompose them based on a Coreset-based decomposi-

tion method. Moreover, some training-aware compression

methods [43, 37, 20] compress networks during training

by using regularization. Li et al. [20] first introduced

a sparsity-inducing matrix followed at each weight and

then added group sparsity constraints on them during train-

ing. However, these training-aware methods are difficult to

search a good trade-off between compression rate and ac-

curacy under the target compression rate. In contrast, our

collaborative compression employs the global compression

rate optimization method to easily obtain the compression

rate of each layer under the target compression rate.

3. Proposed Method

3.1. Preliminaries

Generally, the l-th convolutional layer in CNNs trans-

forms an input tensor X l ∈ R
cl×hl

in×wl
in into an out-

put tensor Y l ∈ R
nl×hl

out×wl
out by using a weight tensor

W l ∈ R
nl×cl×kl×kl

, where cl and nl denote the number

of input channels and filters (output channels), respectively,

and kl × kl is the spatial size of the filters. The convolution

operation is represented as:

Y l = W l ⊗X l
, (1)

where ⊗ denotes the convolution operation. The biases are

omitted for simplicity. Both channel pruning and tensor de-

composition seek a compact approximated representation

W l ∈ R
nl×cl×kl×kl

to replace W l. Thus, the compression

process is regarded as a function W l
= f(W l, o), where

o represents a single unit index, whose corresponding unit

should be removed.

Channel Pruning. We introduce input channel pruning,

where each input channel is regarded as a compression unit.

Therefore, the compression function is defined as:

W
l

:,i,:,: =

{
0, i = o,

W l
:,i,:,:, i 6= o.

(2)

Tensor Decomposition. We decompose the network’s

weights based on the Singular Value Decomposition (SVD),

where the original W l is first mapped from a tensor to

a matrix M l ∈ R
nl×(clklkl). After that, let M l =

U lΣlV l⊤ be the SVD of M l, where U l ∈ R
nl×nl

and

V l ∈ R
clklkl×clklkl

are two orthogonal matrices. The di-

agonal elements in Σl ∈ R
nl×(clklkl) are singular values

of M l, whose number is rl = min(nl, clklkl). Finally,

the weight matrix M l is decomposed into two light matri-

ces M l
1 =

√
ΣlV l⊤ and M l

2 = U l
√
Σl when the num-

ber of non-zero singular values r̄l is much smaller than rl.

For implementation, M l
1 and M l

2 are reshaped back into

W l
1 ∈ R

rl×cl×kl×kl

and W l
2 ∈ R

nl×rl×1×1, respectively.

Thus, two light convolutions are computed to approximate
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the original convolution by W l
2 ⊗W l

1 ⊗ X l. The compres-

sion rate is controlled by the number of non-zero singular

values rl in Σl. Therefore, the compression unit index is

the index of the singular values, and the compression func-

tion is defined as:

f(W l
, o) = W

l
= φ(U lΣ

l
V

l⊤), Σ
l

i,i =

{
0, i = o,

Σl
i,i, i 6= o,

(3)

where φ : Rnl×(clklkl) 7→ R
nl×cl×kl×kl

is a mapping func-

tion (a.k.a. reshaping operator).

In summary, W l has cl+rl candidate compression units.

We can obtain compressed weights W̃ l if removing t1 input

channels and t2 singular values:

W̃ l =





W̃ l
1 ∈ R(rl−t2)×(cl−t1)×kl×kl

,
t2 6= 0

W̃ l
2 ∈ Rnl×(rl−t2)×1×1,

W̃ l ∈ Rnl×(cl−t1)×kl×kl

, t2 = 0,

(4)

where t2 = 0 represents that we only adopt channel prun-

ing to compress the convolutional weights. In addition, the

compression rate at the l-th layer is defined as:

R
l =





1−
(rl − t2) ∗ [(c

l − t1) ∗ k
l ∗ kl + nl]

nl ∗ cl ∗ kl ∗ kl
, t2 6= 0,

t1

cl
, t2 = 0.

(5)

3.2. Global Compression Rate Optimization

As presented in [19, 23], since the compression sensitiv-

ity of each layer is different, the compression rate of the

sensitive layers should be set to a small value while the

compression rate of the insusceptible layers should be set

to a large one. To obtain the compression sensitivity of the

layers, the method [19] first removes a certain ratio of less

important compression units in the weights and then eval-

uates the information loss. Such process needs to be eval-

uated iteratively with different compression rates to obtain

the curve between compression rate and information loss,

which is used to visualize the compression sensitivity. It in-

evitably makes the method labor-intensive and costs plenty

of time with human analysis to determine the best compres-

sion rate. In this paper, we first fast evaluate the compres-

sion sensitivity of each layer and then search the best com-

pression rate by solving a simple optimization problem.

Firstly, the information loss at the l-th layer is defined to

indicate how much the network loss increases when remov-

ing the compression units in this layer. Inspired by [31, 30],

we measure the information loss at the l-th layer by adopt-

ing the first-order Taylor-based approximation of the net-

Algorithm 1 Compression sensitivity learning algorithm

Require: The pre-trained weights W l at the l-th layer and the

corresponding average gradients Gl.

Ensure: An exponential model Il = aleb
lRl

.

1: Initialize the set of compression unit indices U l, whose corre-

sponding unit number is cl + rl.

2: for each compression unit index o in U l do

3: Ilo = ||Gl ∗ (f(W l, o)−W l)||22.

4: end for

5: Sort U l based on Il ascendingly.

6: Initialize W
l
= W l, Dl = ∅.

7: for each compression unit index o in the sorted U l do

8: W
l
= f(W

l
, o).

9: Il =
||Gl∗(W

l
−Wl)||22

||Gl∗Wl||22
.

10: Compute Rl via Eq. 5.

11: Add (Rl, Il) into Dl.

12: end for

13: Using the least squares method to fit Dl by the exponential

model Il = aleb
lRl

.

Algorithm 2 Compression rate decision algorithm

Require: The evaluation model of each layer {I =

a1eb
1R, ..., I = aLeb

LR}, the FLOPs of each layer

{F 1, ..., FL}, the FLOPs of the entire network F , the

target compression rate C, and learning rate η.

Ensure: The target compression rate of each layer

{R1, ..., RL}.

1: Initialize I
′
= 0.1.

2: while (
L∑

i=1

F i

bi
log( y′

aibi
)− CF )2 > 104 do

3: g = 2(
L∑

i=1

F i

bi
log( I

′

aibi
)− CF )(

L∑
i=1

F i

biI
′ ).

4: I
′
= I

′ − ηg.

5: end while

6: return {Ri = 1
bi
log( I

′

aibi
)}Li=1.

work loss on the compressed weights W l:

I l = [L(W l
)− L(W l)]2 ≈

∑

i∈Ql

(
∂L
∂W l

i

∗ (W l

i −W l
i))

2

= S[(Gl ∗ (W l −W l))2],
(6)

where Gl ∈ R
nl×cl×kl×kl

denotes the gradient computed

by the average gradient of the loss w.r.t. the pre-trained

weights W l over the entire dataset, Ql is all element in-

dices in W l, and S[·] denotes the sum of all elements in the

tensor.

After that, we propose a greedy algorithm shown in

Alg. 1 to fast evaluate the information loss under differ-

ent compression rates, which is significantly fast to measure
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compression sensitivity of each layer. We first compute the

importance of each compression unit using Eq. 6. Then,

to obtain the information loss under different compression

rates (i.e., a point set Dl), we remove candidate compres-

sion units, based on their importance progressively, and

compute the corresponding information loss I l and com-

pression rate Rl after each unit removed. As shown in

Fig. 2, the green lines are from the point set Dl where Rl

and I l are normalized to [0, 1]. The results show that the

compression sensitivity of different layers are possibly vari-

able, such as Fig. 2(a) vs. Fig. 2(e) in ResNet-56. Through

calculating all the layers across various networks, we em-

pirically find that the curve of Dl can be estimated by an

exponential function, I l = aleb
lRl

. Therefore, we fit the

function to learn the parameters al and bl by using the least-

squares method. Also in Fig. 2, we find that the curve of Dl

is well approximated by our exponential function with ex-

tremely small reconstruction error. More results are shown

in the supplementary materials.

The compression sensitivity at the l-th layer can be de-

fined by the gradient of the exponential function w.r.t the

compression rate Rl as ∂Il

∂Rl = albleb
lRl

. We construct the

following optimization problem to decide the compression

rate of each layer when given the whole network compres-

sion rate C:

min
R

(
L∑

i=1

F
i ·Ri − C · F )2,

s.t. a
i
b
i
e
biRi

= a
j
b
j
e
bjRj

, ∀i, j ∈ {1, 2..., L},

(7)

where R = {R1, R2, ..., RL} denotes the set of compres-

sion rates for the layers, F l and F represents the FLOPs

of the l-th layer and the entire network, respectively. Un-

der the same compression rate, the compression sensitivity
∂I
∂R

of the sensitive layers is higher than that of the insus-

ceptible layers. Correspondingly, the sensitive layers have

a smaller compression rate than the insusceptible layers un-

der the same compression sensitivity. Therefore, in the con-

straint term, the compression sensitivity of all layers are set

to the same to make the compression rate of the sensitive

layers smaller than that of the insusceptible layers. To sim-

plify the optimization, we formulate the following equation

as:

I
′
=

∂Il

∂Rl
= a

l
b
l
e
blRl

⇒ R
l =

1

bl
log(

I
′

albl
). (8)

Therefore, we can transform the optimized variables from

R to I
′

according to the constraint term in Eq. 7. Thus,

Eq. 7 is rewritten as:

min
I
′
(

L∑

i=1

F i

bi
log(

I
′

aibi
)− C · F )2. (9)

This optimization problem can be directly solved by a gradi-

ent descent algorithm. The detailed optimization process is

presented in Alg. 2. After obtaining the optimal sensitivity

(i.e., final result of I
′
), we can also obtain the compression

rate of each layer via Eq. 8.

3.3. Multi­Step Heuristic Compression

After determining the compression rate, we propose a

heuristic method to compress each layer’s weights. As dis-

cussed above, the importance of units will change due to

the removal of other units because of the mutual influence

between different compression operations. Therefore, the

previous importance metric [9, 21, 30] is no longer effec-

tive by only taking fixed weights into consideration and

only computing the importance metric once. Inspired by

the value function in the Markov Decision Process, we pro-

pose a novel importance metric, in which the importance of

the o-th compression unit in the l-th layer at the t-th step

can be computed as:

P
l,(t)
o = I

l,(t)
o + γ

1

|U l,(t)| − 1

∑

i∈Ul,(t)\o

I
l,(t)

i|o , (10)

where U l,(t) represents the remaining compression units

(i.e., a set of not removed compression units) after t − 1
steps and γ is a hyper-parameter to trade-off the influence of

removed units and remaining compression space. Besides,

I
l,(t)
o = S[(Gl ∗ (W

l,(t)
o −Wl))2] , W

l,(t)
o = f(W

l,(t−1)
, o), (11)

and

I
l,(t)

i|o = S[(Gl ∗ (W
l,(t)

i|o −W l))2], W
l,(t)

i|o = f(W
l,(t)
o , i). (12)

The first item in Eq. 10 represents the importance of the o-th

compression unit based on the compressed weight W l,(t−1)

at the (t − 1)-th step. The second item represents the po-

tential information loss for searching the remaining com-

pression space, which is an average information loss of the

weights generated by removing the remaining compression

units of W l,(t)

o . Based on proposed important metric, we

compute the importance of each compression unit and re-

move the least important one step-by-step. The compres-

sion process stops when the compression rate of W l,(t)
is

larger than the target compression rate at the l-th layer. Af-

ter finishing the compression of all layers parallelly, the ap-

proximated weight W l,(t)
will be transformed to W̃ l via

Eq. 4. Finally, fine-tuning is used to improve the accuracy

of the compressed network.

However, the time complexity of the above computation

process is O((cl + rl)3)1, which significantly affects the

efficiency of offline compression. Instead, we propose to

remove the T compression units after measuring the impor-

tance metric each time to accelerate the compression pro-

cess, where T is a balance hyper-parameter. As such, the

1We omit the time complexity of SVD and matrix multiplication to

simplify the analysis.
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Model Method FLOPs(PR) #Param.(PR) Top-1 Acc%

ResNet-56

Baseline 125M 0.85M 93.33

L1[19] 112M(10.4%) 0.77M(9.4%) 93.10

HRank[21] 89M(28.8%) 0.71M(16.5%) 93.52

Nisp[42] 81M(35.2%) 0.49M(42.4%) 93.01

GAL[25] 78M(37.6%) 0.75M(11.8%) 92.98

CC (C = 0.4) 72M(42.4%) 0.54M(36.5%) 93.87

ENC[14] 63M(49.6%) - 93.09

CP[10] 62M(50.4%) - 91.80

CC (C = 0.5) 60M(52.0%) 0.44M(48.2%) 93.64

FPGM[9] 59M(52.8%) - 93.49

C-SGD[2] 49M(60.8%) - 93.44

DenseNet-40

Baseline 283M 1.04M 94.81

GAL[25] 183M(35.3%) 0.67M(35.6%) 94.61

HRank[21] 167M(41.0%) 0.66M(36.5%) 94.24

CC (C = 0.4) 150M(47.0%) 0.50M(51.9%) 94.67

slimming[26] 120M(57.6%) 0.35M(66.3%) 94.35

C-SGD[2] 113M(60.1%) - 94.37

CC (C = 0.6) 112M(60.4%) 0.37M(64.4%) 94.40

GAL[25] 78M(72.4%) 0.75M(27.9%) 92.98

VGGNet

Baseline 313M 14.72M 93.70

L1[19] 206M(34.2%) 5.40M(63.3%) 93.60

GAL[25] 189M(39.6%) 3.36M(77.2%) 93.77

AOFP[3] 186M(40.6%) - 94.03

CC (C = 0.5) 154M(50.8%) 5.02M(65.9%) 94.15

HRank[21] 145M(53.7%) 2.51M(82.9%) 93.42

CC (C = 0.6) 123M(60.7%) 4.02M(72.7%) 94.09

GoogLeNet

Baseline 1.52B 6.15M 95.05

L1[19] 1.02B(32.9%) 3.51M(42.9%) 94.54

GAL[25] 0.94B(38.2%) 3.12M(49.3%) 93.93

CC (C = 0.5) 0.76B(50.0%) 2.83M(54.0%) 95.18

HRank[21] 0.69M(54.6%) 2.74M(55.4%) 94.53

CC (C = 0.6) 0.61B(59.9%) 2.26M(63.3%) 94.88

Table 1: Comparison with single compression operation-based methods on CIFAR-10. In this table and all following tables

and figures, M/B means million/billion, and PR denotes pruning rate.

computational complexity for the importance metric P
l,(t)
o

is O(cl+rl), we re-formulate the second item in the impor-

tance metric as:

γ
1

|U l,(t)| − 1

∑

i∈Ul,(t)\o

I
l,(t)
i|o

= γ
1

|U
l,(t)
o |

∑

i∈U
l,(t)
o

S[(Gl ∗ (W
l,(t)
i|o −Wl))2]

= γ
1

|U
l,(t)
o |

∑

i∈U
l,(t)
o

S[(Gl ∗ (θ
l,(t)
i|o

+ θ
l,(t)
o ))2]

(13)

where θ
l,(t)
i|o = W l,(t)

i|o −W l,(t)

o and θ
l,(t)
o = W l,(t)

o −W l, ∗
represents element-wise multiplication and U l,t

o = U l,t \ o.

The detailed computation process is presented in the supple-

mentary materials. Finally, we can compute the importance

metric as:

P
l,(t)
o = (1 + γ)S[(Gl ∗ (W

l,(t)
o −W l))2]

− γ
4

|U
l,(t)
o |

S[(Gl)2 ∗ θl,(t)o ∗W
l,(t)
o ]

+ γ
1

|U
l,(t)
o |

S[(Gl ∗W
l,(t)
o )2]

+ γ
1

|U
l,(t)
o |

S[(Gl)2 ∗ φ((U l,(t)
o )2(Σl,(t)

o )2(V l,(t)⊤

o )2)],

(14)

where U
l,(t)
o , Σ

l,(t)

o and V
l,(t)⊤

o is the SVD result of

φ−1(W l,(t)

o ). Thus, the computational complexity for the

importance metric is reduced to O(1), which significantly

accelerates the calculation of the importance metric. Our

heuristic compression algorithm is summarized in Alg. A

in the supplementary materials.

4. Experiments

The proposed CC scheme is implemented using Pytorch

[32] and evaluated on two datasets, CIFAR-10 and Ima-

geNet ILSVRC 2012. The input images in CIFAR-10 are

classified into 10 classes, whose sizes are all 32 × 32. The

training set contains 50,000 images and the test set contains

10,000 images. ImageNet ILSVRC 2012 consists of 1.28

million training images and 50,000 validation images for

testing over 1,000 classes.

4.1. Experimental Settings

All networks are trained via the stochastic gradient de-

scent (SGD) with momentum 0.9. On CIFAR-10, we train

the networks for 300 epochs using the mini-batch size of

128. The initial learning rate is set to 0.01 and is mul-

tiplied by 0.1 at 50% and 75% of the total epoch num-
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Model Method FLOPs (PR) #Param. (PR) Top-1 Acc% Top-5 Acc%

VGG-16

Baseline 15.48B 138M 71.59 90.38

LRSD[43] - 9.70M(93.0%) 68.75 -

Coreset[4] - 9.81M(92.9%) 68.56 -

Coreset[4] - 8.70M(93.7%) 68.16 -

CC-GAP (C = 0.5) 7.37B(52.4%) 8.35M(93.9%) 68.81 88.70

ResNet-50

Baseline 4.10B 25.56M 76.15 92.87

Hinge[20] 1.91B(53.4%) - 74.70 -

Rethinking[27]+SVD[44] 1.93B(52.9%) - 74.75 92.17

FPGM [9]+SVD[44] 1.93B(52.9%) - 75.47 92.55

CC (C = 0.5) 1.93B(52.9%) 13.2M(48.4%) 75.59 92.64

CC (C = 0.6) 1.53B(62.7%) 10.58M(58.6%) 74.54 92.25

Table 2: Comparison with multiple compression operations-based methods on ImageNet2012.

ber. On ImageNet, we train the networks for 90 and 120

epochs with the initial learning rate is set to 0.001 and 0.01

for VGG and ResNet, respectively. Both mini-batch sizes

on VGG and ResNets are set to 256. The learning rate

is divided by 10 at epoch 30, 60 and 90. For fine-tuning

the compressed networks, we follow the previous work2

for training MobileNet-V2. We do not compress the first

and the last layers of the networks. In our method, we use

T l = ⌊0.01 ∗ (cl+ rl)⌋ to control the calculation interval of

the importance metric and set γ to 0.5.

4.2. Comparison with State­of­the­Art Methods

CIFAR-10. We compare our CC scheme with other

methods with a single compression operation (either

channel pruning or tensor decomposition) on ResNet-56,

DenseNet-40, VGGNet, and GoogLeNet. As shown in Ta-

ble 1, our method achieves the largest reductions of param-

eters and FLOPs, but with better performance, compared

to other SOTA methods. For instance, compared to HRank

[21] based on channel pruning, CC achieves higher reduc-

tions of FLOPs (59.9% vs. 54.6%) and parameters (63.3%

vs. 55.4%) with higher accuracy (94.88% vs. 94.53%)

on GoogLeNet. Meanwhile, compared to ENC [14] based

on tensor decomposition, CC has better performance on

ResNet-56 (52.0% vs. 49.6% in FLOPs reduction, and

93.64% vs. 93.09% in top-1 accuracy).

ImageNet 2012. We further compare our CC scheme

with other methods based on multiple compression oper-

ations on VGG-16 and ResNet-50. “CC-GAP” represents

that the convolutional layers are compressed by CC and

all the fully-connected (FC) layers in VGG-16 are replaced

by a global average pooling (GAP) and one FC layer. We

also employ the same training parameters to fine-tune the

compressed model by CC-GAP. As shown in Table 2, our

method achieves the best performance with only a decrease

of 0.56% in Top-1 accuracy by a factor of 1.94× compres-

sion and 2.12× theoretical speedup on ResNet-50. The re-

sult of “Rethinking+SVD” is obtained by compressing the

2https://github.com/d-li14/mobilenetv2.pytorch

Method FLOPs Top-1 Acc%

MobileNet-V2 300M 71.88

0.75× MobileNet-v2[35] 220M 69.80

AMC[8] 220M 70.80

CC(C = 0.12) 215M 70.91

Table 3: Results of MobileNet-V2 on ImageNet2012.

Model Method
Batch Size

1 8 32

VGG-16
Baseline 225ms 1224ms 4603ms

CC(C = 0.5) 173ms 784ms 2983ms

ResNet-50
Baseline 96ms 584ms 2420ms

CC(C = 0.5) 88ms 420ms 1776ms

Table 4: Results of latency on CPU.

pruned network “ThiNet ResNet50-70% Scratch-B” in [27]

and then using SVD-decomposition [44] to conduct further

compression. This method is regraded as the intuitive com-

bination of two compression operations. Meanwhile, the

result of “FPGM+SVD” is also obtained by compressing

the pruned network “FPGM-only 30%” in [9] and then per-

forming SVD-decomposition [44]. More results are given

in the supplementary materials. In Table 3, we compare

the proposed CC scheme with the state-of-the-art AutoML

based pruning methods on MobileNet-V2. We find that our

method achieves the best performance with 70.91% top-1

accuracy and only 215M FLOPs on ImageNet 2012.

Moreover, we demonstrate the effectiveness of our

method in wall-clock time speedup using VGG-16 and

ResNet-50 on PyTorch using the CPU AMD Ryzen Thread-

ripper 1900X. As shown in Table 4, our method achieves

1.54× and 1.36× acceleration rates with batch size 32 on

VGG-16 and ResNet-50, respectively.

4.3. Ablation Study

4.3.1 Effect of the Two Components in CC

In this section, we evaluate the effectiveness of CC’s Global

Compression Rate Optimization (GCRO) and Multi-Step

Heuristic Compression (MSHC). We use the same com-

pression rate for each layer to replace GCRO (i.e., CC w/o

GCRO), and only compute the importance metric once by

setting T = rl+ cl to replace MSHC (i.e., CC w/o MSHC),
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Figure 3: Ablation study of CC with ResNet-50 on Ima-

geNet 2012.

separately. As shown in Fig. 3, both GCRO and MSHC in-

deed increase the performance of the compressed network.

It demonstrates the effectiveness of GCRO and MSHC.

We also observe that MSHC is more important in our CC

scheme, compared to GCRO. This reveals the compression

strategy is more important than the compression rate deci-

sion in the union compression.

4.3.2 Effect of the Compression Order

We propose two different variants of our method to inves-

tigate the effect of the compression order for the perfor-

mance of the compressed network under a fixed structure.

Our CC method simultaneously prunes and decomposes

the weights during compression. Therefore, we can obtain

the architecture of the compressed network, including the

pruned t1 input channels and t2 singular values. In Fig. 4,

“Pruning→Decomposition” represents that we first prune

the weights and then fine-tune the pruned network, and con-

tinue to decompose the pruned network with the following

fine-tuning. “Decomposition→Pruning” is in reverse order

to “Pruning→Decomposition”. Note that these two meth-

ods can obtain the same compressed network structure (i.e.

the same t1 and t2) as that by our CC scheme, but only with

different compression orders. The result demonstrates that

the compression order (i.e., “Pruning→Decomposition”,

“Decomposition→Pruning”, and Collaborative Compres-

sion) has less effect on the final performance. In other

words, the different compression strategies influence the

performance of the compressed network by producing

different network’s structures rather than the network’s

weights. The result demonstrates that the network’s struc-

ture is more important than network’s weights in the com-

pression algorithm, which is also shown in [27].

4.3.3 Compression Percentage Analysis.

Fig. 5 shows the proportion of removed compression units

in channel pruning and tensor-decomposition from differ-

ent layers in ResNet-50. Each bottleneck block has three

convolutional layers. In our CC, the first convolution layer

in each bottleneck block tends to generate sparse weights

rather than low-rank weights. It reveals that the diversity of

input features is more important for each bottleneck block

40% 50% 60% 70% 80% 90%
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Figure 4: Comparison of different variants of CC with

ResNet-56 on CIFAR-10.
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Figure 5: Compression rates of different compression oper-

ations in different layers of ResNet-50.

in ResNet-50. In contrast, the final layer of the block pays

more attention to produce compact features.

5. Conclusion

In this paper, we first investigate the problem of post-

training union compression and propose a novel unified

compression framework Collaborative Compression (CC)

for CNN. Our method is divided into two stages: Global

Compression Rate Optimization and Multi-Step Heuristic

Compression. The first stage decides the compression rates

of the layers by solving an optimization problem based on

their compression sensitivity. After that, we compress each

layer separately by removing the less important compres-

sion units step-by-step. Therefore, our compression process

is more reliable, which fully takes the effect of the removed

compression units and remaining compression space into

account. Extensive experiments on various modern CNNs

demonstrate the effectiveness of CC for reducing the com-

putational complexity and model size.
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